
How to think like a computer scientist

Allen B. Downey
adapted to Pop11 by Waldek Hebisch

Pop11 Version, First Edition



2

How to think like a computer scientist
Pop11 Version, First Edition

Copyright (C) 2000 Allen B. Downey
Copyright (C) 2007 Waldek Hebisch

This book is an Open Source Textbook (OST). Permission is granted to
reproduce, store or transmit the text of this book by any means, electrical,
mechanical, or biological, in accordance with the terms of the GNU General
Public License as published by the Free Software Foundation (version 2).

This book is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

The original form of this book is LaTeX source code. Compiling this LaTeX
source has the effect of generating a device-independent representation of a
textbook, which can be converted to other formats and printed. All intermediate
representations (including DVI and Postscript), and all printed copies of the
textbook are also covered by the GNU General Public License.

The LaTeX source for Java version of this book, and more information about
the Open Source Textbook project, is available from

http://rocky.wellesley.edu/downey/ost

or by writing to Allen B. Downey, Computer Science Dept, Wellesley College,
Wellesley, MA 02482.

The GNU General Public License is available from www.gnu.org or by writ-
ing to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA.

This book was typeset by the author using LaTeX and dvips, which are both
free, open-source programs.



Contents

1 The way of the program 1
1.1 What is a programming language? . . . . . . . . . . . . . . . . 1
1.2 What is a program? . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 What is debugging? . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Formal and natural languages . . . . . . . . . . . . . . . . . . . 6
1.5 The first program . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.6 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Variables, values and types 11
2.1 More on printing . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Printing variables . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.7 Order of operations . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.8 Operators for strings . . . . . . . . . . . . . . . . . . . . . . . . 17
2.9 Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.10 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Functions 19
3.1 Floating-point . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Converting from decimals to integers . . . . . . . . . . . . . . . 20
3.3 Math functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5 Adding new functions . . . . . . . . . . . . . . . . . . . . . . . 22
3.6 Programs with multiple functions . . . . . . . . . . . . . . . . . 24
3.7 Parameters and arguments . . . . . . . . . . . . . . . . . . . . . 25
3.8 Functions with multiple parameters . . . . . . . . . . . . . . . . 26
3.9 Functions with results and the stack . . . . . . . . . . . . . . . 26
3.10 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

i



ii CONTENTS

4 Conditionals and recursion 29
4.1 The modulus and integer division . . . . . . . . . . . . . . . . . 29
4.2 Conditional execution . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Alternative execution . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4 Chained conditionals . . . . . . . . . . . . . . . . . . . . . . . . 31
4.5 Nested conditionals . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.6 The return statement . . . . . . . . . . . . . . . . . . . . . . . . 32
4.7 Type conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.8 Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.9 Stack diagrams for recursive functions . . . . . . . . . . . . . . 34
4.10 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Fruitful functions 37
5.1 Return values . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Program development . . . . . . . . . . . . . . . . . . . . . . . 39
5.3 Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.4 Overloading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.5 Boolean expressions . . . . . . . . . . . . . . . . . . . . . . . . 42
5.6 Logical operators . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.7 Boolean functions . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.8 More recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.9 Leap of faith . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.10 One more example . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.11 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6 Iteration 49
6.1 Multiple assignment . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2 Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.3 The while statement . . . . . . . . . . . . . . . . . . . . . . . . 50
6.4 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.5 Two-dimensional tables . . . . . . . . . . . . . . . . . . . . . . 54
6.6 Encapsulation and generalization . . . . . . . . . . . . . . . . . 54
6.7 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.8 More encapsulation . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.9 Local variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.10 More generalization . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.11 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7 Strings and things 61
7.1 Characters and codes . . . . . . . . . . . . . . . . . . . . . . . . 61
7.2 Extracting character from a string . . . . . . . . . . . . . . . . 62
7.3 Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.4 Traversal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.5 Run-time errors . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.6 Reading documentation . . . . . . . . . . . . . . . . . . . . . . 63
7.7 The locchar function . . . . . . . . . . . . . . . . . . . . . . . 63



CONTENTS iii

7.8 Looping and counting . . . . . . . . . . . . . . . . . . . . . . . 64
7.9 Creating strings from characters . . . . . . . . . . . . . . . . . . 64
7.10 Strings are mutable . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.11 Character arithmetic . . . . . . . . . . . . . . . . . . . . . . . . 65
7.12 Generalized booleans . . . . . . . . . . . . . . . . . . . . . . . . 66
7.13 Comparing strings . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.14 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

8 Words and lists 69
8.1 Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.2 Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
8.3 Type predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
8.4 Creating lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
8.5 Extracting element from a list . . . . . . . . . . . . . . . . . . . 71
8.6 Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
8.7 Linked lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
8.8 List traversal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
8.9 List are mutable . . . . . . . . . . . . . . . . . . . . . . . . . . 73
8.10 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

9 Compound values 75
9.1 Why to use objects? . . . . . . . . . . . . . . . . . . . . . . . . 75
9.2 Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
9.3 Point objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
9.4 Instance variables . . . . . . . . . . . . . . . . . . . . . . . . . . 77
9.5 Objects as parameters . . . . . . . . . . . . . . . . . . . . . . . 78
9.6 Rectangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
9.7 Objects as return types . . . . . . . . . . . . . . . . . . . . . . 79
9.8 Objects are mutable . . . . . . . . . . . . . . . . . . . . . . . . 79
9.9 Aliasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
9.10 Empty list as a null object . . . . . . . . . . . . . . . . . . . . 81
9.11 Garbage collection . . . . . . . . . . . . . . . . . . . . . . . . . 82
9.12 Objects and primitives . . . . . . . . . . . . . . . . . . . . . . . 83
9.13 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

10 More objects 85
10.1 Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
10.2 Constructors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
10.3 Creating a new object . . . . . . . . . . . . . . . . . . . . . . . 86
10.4 Printing an object . . . . . . . . . . . . . . . . . . . . . . . . . 86
10.5 Operations on objects . . . . . . . . . . . . . . . . . . . . . . . 87
10.6 Pure functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
10.7 Modifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
10.8 Fill-in functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
10.9 Which is best? . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
10.10 Incremental development vs. planning . . . . . . . . . . . . . . 91



iv CONTENTS

10.11 Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
10.12 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
10.13 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

11 Arrays 95
11.1 Accessing elements . . . . . . . . . . . . . . . . . . . . . . . . . 96
11.2 Copying arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
11.3 for loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
11.4 Arrays and objects . . . . . . . . . . . . . . . . . . . . . . . . . 98
11.5 Array length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
11.6 Random numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 99
11.7 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
11.8 Array of random numbers . . . . . . . . . . . . . . . . . . . . . 100
11.9 Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
11.10 Many buckets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
11.11 A single-pass solution . . . . . . . . . . . . . . . . . . . . . . . . 103
11.12 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

12 Arrays of Objects 105
12.1 Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
12.2 Card objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
12.3 The print card function . . . . . . . . . . . . . . . . . . . . . 106
12.4 Comparing Cards . . . . . . . . . . . . . . . . . . . . . . . . . . 108
12.5 The compare card function . . . . . . . . . . . . . . . . . . . . 109
12.6 Arrays of cards . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
12.7 The print deck function . . . . . . . . . . . . . . . . . . . . . 111
12.8 Searching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
12.9 Decks and subdecks . . . . . . . . . . . . . . . . . . . . . . . . . 115
12.10 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

13 Objects of Arrays 117
13.1 Shuffling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
13.2 Sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
13.3 Subdecks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
13.4 Shuffling and dealing . . . . . . . . . . . . . . . . . . . . . . . . 121
13.5 Mergesort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
13.6 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

14 Object-oriented programming – incomplete chapter 125
14.1 Programming languages and styles . . . . . . . . . . . . . . . . 125
14.2 Ordinary functions and methods . . . . . . . . . . . . . . . . . 126
14.3 The print instance method . . . . . . . . . . . . . . . . . . . 126
14.4 The = instance method . . . . . . . . . . . . . . . . . . . . . . 126
14.5 Invoking one method from another . . . . . . . . . . . . . . . . 127
14.6 Oddities and errors . . . . . . . . . . . . . . . . . . . . . . . . . 127
14.7 Inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127



CONTENTS v

14.8 The class hierarchies . . . . . . . . . . . . . . . . . . . . . . . . 127
14.9 Object-oriented design . . . . . . . . . . . . . . . . . . . . . . . 127
14.10 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

15 Linked lists 129
15.1 References in objects . . . . . . . . . . . . . . . . . . . . . . . . 129
15.2 The Node class . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
15.3 Lists as collections . . . . . . . . . . . . . . . . . . . . . . . . . 131
15.4 Lists and recursion . . . . . . . . . . . . . . . . . . . . . . . . . 132
15.5 Infinite lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
15.6 The fundamental ambiguity theorem . . . . . . . . . . . . . . . 133
15.7 Object methods for nodes . . . . . . . . . . . . . . . . . . . . . 134
15.8 Modifying lists . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
15.9 Wrappers and helpers . . . . . . . . . . . . . . . . . . . . . . . 136
15.10 The LinkedList class . . . . . . . . . . . . . . . . . . . . . . . 137
15.11 Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
15.12 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

16 Stacks 141
16.1 Abstract data types . . . . . . . . . . . . . . . . . . . . . . . . 141
16.2 The Stack ADT . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
16.3 Using the Stack object . . . . . . . . . . . . . . . . . . . . . . . 142
16.4 Postfix expressions . . . . . . . . . . . . . . . . . . . . . . . . . 143
16.5 Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
16.6 Implementing ADTs . . . . . . . . . . . . . . . . . . . . . . . . 145
16.7 Array implementation of the Stack ADT . . . . . . . . . . . . . 145
16.8 Resizing arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
16.9 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

17 Queues and Priority Queues 149
17.1 The queue ADT . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
17.2 Veneer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
17.3 Linked Queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
17.4 Circular buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
17.5 Priority queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
17.6 Array implementation of Priority Queue . . . . . . . . . . . . . 157
17.7 A Priority Queue client . . . . . . . . . . . . . . . . . . . . . . 158
17.8 The Golfer class . . . . . . . . . . . . . . . . . . . . . . . . . . 159
17.9 The Comparable class . . . . . . . . . . . . . . . . . . . . . . . 161
17.10 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

18 Trees 163
18.1 A tree node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
18.2 Building trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
18.3 Traversing trees . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
18.4 Expression trees . . . . . . . . . . . . . . . . . . . . . . . . . . . 165



vi CONTENTS

18.5 Traversal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
18.6 Encapsulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
18.7 General tree traversal . . . . . . . . . . . . . . . . . . . . . . . . 168
18.8 Simplified visitor pattern . . . . . . . . . . . . . . . . . . . . . . 168
18.9 Defining an abstract class . . . . . . . . . . . . . . . . . . . . . 169
18.10 Implementing an abstract class . . . . . . . . . . . . . . . . . . 169
18.11 General visitor pattern . . . . . . . . . . . . . . . . . . . . . . . 170
18.12 Array implementation of trees . . . . . . . . . . . . . . . . . . . 170
18.13 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

19 Heap 175
19.1 The Heap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
19.2 Performance analysis . . . . . . . . . . . . . . . . . . . . . . . . 176
19.3 Analysis of mergesort . . . . . . . . . . . . . . . . . . . . . . . . 178
19.4 Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
19.5 Priority Queue implementations . . . . . . . . . . . . . . . . . . 179
19.6 Definition of a Heap . . . . . . . . . . . . . . . . . . . . . . . . 180
19.7 Heap remove . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
19.8 Heap insert . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
19.9 Performance of heaps . . . . . . . . . . . . . . . . . . . . . . . . 185
19.10 Heapsort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
19.11 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186



Chapter 1

The way of the program

The goal of this book, and this class, is to teach you to think like a computer
scientist. I like the way computer scientists think because they combine some of
the best features of Mathematics, Engineering, and Natural Science. Like math-
ematicians, computer scientists use formal languages to denote ideas (specifi-
cally computations). Like engineers, they design things, assembling components
into systems and evaluating tradeoffs among alternatives. Like scientists, they
observe the behavior of complex systems, form hypotheses, and test predictions.

The single most important skill for a computer scientist is problem-solving.
By that I mean the ability to formulate problems, think creatively about solu-
tions, and express a solution clearly and accurately. As it turns out, the process
of learning to program is an excellent opportunity to practice problem-solving
skills. That’s why this chapter is called “The way of the program.”

On one level, you will be learning to program, which is a useful skill by itself.
On another level you will use programming as a means to an end. As we go
along, that end will become clearer.

1.1 What is a programming language?

The programming language you will be learning is Pop11. Pop11 is an example
of a high-level language; other high-level languages you might have heard of
are Pascal, C, Java and Lisp.

Pop11 is implemented by Poplog system. Beside Pop11 Poplog offers other
languages: Prolog, Lisp and Standard ML. Poplog used to be a very expensive
commercial product and only relatively recently (in 1999) was released as a free
software.

As you might infer from the name “high-level language,” there are also
low-level languages, sometimes referred to as machine language or assembly
language. Loosely-speaking, computers can only execute programs written in
low-level languages. Thus, programs written in a high-level language have to
be translated before they can run. This translation takes some time, which is a

1



2 CHAPTER 1. THE WAY OF THE PROGRAM

small disadvantage of high-level languages.

But the advantages are enormous. First, it is much easier to program in
a high-level language; by “easier” I mean that the program takes less time to
write, it’s shorter and easier to read, and it’s more likely to be correct. Secondly,
high-level languages are portable, meaning that they can run on different kinds
of computers with few or no modifications. Low-level programs can only run on
one kind of computer, and have to be rewritten to run on another.

Due to these advantages, almost all programs are written in high-level lan-
guages. Low-level languages are only used for a few special applications.

There are two ways to translate a program; interpreting or compiling.
An interpreter is a program that reads a high-level program and does what it
says. In effect, it translates the program line-by-line, alternately reading lines
and carrying out commands.

interpreter

source
code

The interpreter
reads the
source code...

... and the result
appears on
the screen.

A compiler is a program that reads a high-level program and translates it all
at once, before executing any of the commands. Often you compile the program
as a separate step, and then execute the compiled code later. In this case, the
high-level program is called the source code, and the translated program is
called the object code or the executable.

As an example, suppose you write a program in C. You might use a text
editor to write the program (a text editor is a simple word processor). When
the program is finished, you might save it in a file named program.c, where
“program” is an arbitrary name you make up, and the suffix .c is a convention
that indicates that the file contains C source code.

Then, depending on what your programming environment is like, you might
leave the text editor and run the compiler. The compiler would read your source
code, translate it, and create a new file named program.o to contain the object
code, or program to contain the executable.



1.1. WHAT IS A PROGRAMMING LANGUAGE? 3

object
code executor

The compiler
reads the
source code...

... and generates
object code.

You execute the
program (one way
or another)...

... and the result
appears on
the screen.

source
code compiler

The advantage of compilation is that some computations can be done before
running the program. Typically compiled programs run 10–100 times faster then
interpreted ones. On the other hand compilation takes time so if we want to run
program just once it may be faster to use interpreter than wait for compilation.

The Poplog system is an incremental compiler. For user it feels like an
interpreter, but the commands given by the user are first compiled to machine
code and the resulting machine code is directly executed by the processor. Since
Poplog compiler is very fast (and works on small chunks of the program), from
the point of view of the user commands are executed just after they are typed
in.

Poplog also includes a more conventional batch compiler. This compiler
works slower but can do slightly better job, so batch compiled programs gain
some extra speed.

All this may seem complicated, the good news is that most of the time you
will be using incremental compiler which hides most of the complexity under
the hood. We can use incremental compiler in two ways. You can start the
compiler from the command line and give it the name of the file containing your
program. The compiler will then read your program, compile and then execute.
You can also use compiler in the interactive mode, where you give commands
and the compiler compiles and immediately executes them:

$ poplog pop11
Sussex Poplog Version 15.53

Sussex Poplog (Version 15.53 Wed Dec 8 23:03:00 CET 2004)
Copyright (c) 1982-1999 University of Sussex. All rights reserved.

Setpop
: 2 + 2 =>
** 4
:

Interactive mode is good for experimentation — normally you will keep
programs in files, and submit small pieces to the compiler. It is workable to
have compile and editor in separate windows and just cut part of your source



4 CHAPTER 1. THE WAY OF THE PROGRAM

file and paste it into the compiler, but there are also development environments
(for example the ved editor coming with Poplog system) that largely automate
this process — a single command allows you to compile and run part or whole
program.

1.2 What is a program?

A program is a sequence of instructions that specifies how to perform a com-
putation. The computation might be something mathematical, like solving a
system of equations or finding the roots of a polynomial, but it can also be
a symbolic computation, like searching and replacing text in a document or
(strangely enough) compiling a program.

The instructions (or commands, or statements) look different in different
programming languages, but there are a few basic functions that appear in just
about every language:

input: Get data from the keyboard, or a file, or some other device.

output: Display data on the screen or send data to a file or other device.

math: Perform basic mathematical operations like addition and multiplication.

testing: Check for certain conditions and execute the appropriate sequence of
statements.

repetition: Perform some action repeatedly, usually with some variation.

Believe it or not, that’s pretty much all there is to it. Every program you’ve
ever used, no matter how complicated, is made up of functions that look more or
less like these. Thus, one way to describe programming is the process of breaking
a large, complex task up into smaller and smaller subtasks until eventually the
subtasks are simple enough to be performed with one of these simple functions.

1.3 What is debugging?

Programming is a complex process, and since it is done by human beings, it often
leads to errors. For whimsical reasons, programming errors are called bugs and
the process of tracking them down and correcting them is called debugging.

There are a few different kinds of errors that can occur in a program, and it
is useful to distinguish between them in order to track them down more quickly.

1.3.1 Compile-time errors

The compiler can only translate a program if the program is syntactically cor-
rect; otherwise, the compilation fails and you will not be able to run your
program. Syntax refers to the structure of your program and the rules about
that structure.



1.3. WHAT IS DEBUGGING? 5

For example, in English, a sentence must begin with a capital letter and end
with a period. this sentence contains a syntax error. So does this one

For most readers, a few syntax errors are not a significant problem, which is
why we can read the poetry of e e cummings without spewing error messages.

Compilers are not so forgiving. If there is a single syntax error anywhere in
your program, the compiler will print an error message and quit, and you will
not be able to run your program.

To make matters worse, the error messages you get from the compiler are
often not very helpful. During the first few weeks of your programming career,
you will probably spend a lot of time tracking down syntax errors. As you gain
experience, though, you will make fewer errors and find them faster.

1.3.2 Run-time errors

The second type of error is a run-time error, so-called because the error does
not appear until you run the program. In Poplog, run-time errors occur when
you attempt to do some operation which makes no sense, like adding a number
to a string:

: 1 + ’ala’;

;;; MISHAP - NUMBER(S) NEEDED
;;; INVOLVING: 1 ’ala’
;;; DOING : + pop_setpop_compiler

Setpop
:

In Poplog run-time errors are called mishaps (hence the message). In other
languages they are usually called exceptions.

You are likely to see run-time errors even in very simple programs. The
reason is that Poplog allows you to independently change parts of the program
(even at runtime). This gives you much freedom during development. But this
also means that Poplog can not check in advance if you program is consistent
— inconsistent program may become consistent later.

You may be worried now, but the good news is that in simple programs it
is easy to find the cause of a run-time error. You should then correct mistakes
in the program and re-run it.

1.3.3 Logic errors and semantics

The third type of error is the logical or semantic error. If there is a logical
error in your program, it will compile and run successfully, in the sense that
the computer will not generate any error messages, but it will not do the right
thing. It will do something else. Specifically, it will do what you told it to do.

The problem is that the program you wrote is not the program you wanted
to write. The meaning of the program (its semantics) is wrong. Identifying



6 CHAPTER 1. THE WAY OF THE PROGRAM

logical errors can be tricky, since it requires you to work backwards by looking
at the output of the program and trying to figure out what it is doing.

1.3.4 Experimental debugging

One of the most important skills you will acquire in this class is debugging.
Although it can be frustrating, debugging is one of the most intellectually rich,
challenging, and interesting parts of programming.

In some ways debugging is like detective work. You are confronted with
clues and you have to infer the processes and events that lead to the results you
see.

Debugging is also like an experimental science. Once you have an idea what
is going wrong, you modify your program and try again. If your hypothesis
was correct, then you can predict the result of the modification, and you take
a step closer to a working program. If your hypothesis was wrong, you have to
come up with a new one. As Sherlock Holmes pointed out, “When you have
eliminated the impossible, whatever remains, however improbable, must be the
truth.” (from A. Conan Doyle’s The Sign of Four).

For some people, programming and debugging are the same thing. That is,
programming is the process of gradually debugging a program until it does what
you want. The idea is that you should always start with a working program
that does something, and make small modifications, debugging them as you go,
so that you always have a working program.

For example, Linux is an operating system that contains thousands of lines
of code, but it started out as a simple program Linus Torvalds used to explore
the Intel 80386 chip. According to Larry Greenfield, “One of Linus’s earlier
projects was a program that would switch between printing AAAA and BBBB.
This later evolved to Linux” (from The Linux Users’ Guide Beta Version 1).

In later chapters I will make more suggestions about debugging and other
programming practices.

1.4 Formal and natural languages

Natural languages are the languages that people speak, like English, Spanish,
and French. They were not designed by people (although people try to impose
some order on them); they evolved naturally.

Formal languages are languages that are designed by people for specific
applications. For example, the notation that mathematicians use is a formal
language that is particularly good at denoting relationships among numbers and
symbols. Chemists use a formal language to represent the chemical structure of
molecules. And most importantly:

Programming languages are formal languages that have
been designed to express computations.



1.4. FORMAL AND NATURAL LANGUAGES 7

As I mentioned before, formal languages tend to have strict rules about
syntax. For example, 3+3 = 6 is a syntactically correct mathematical statement,
but 3 = +6$ is not. Also, H2O is a syntactically correct chemical name, but
2Zz is not.

Syntax rules come in two flavors, pertaining to tokens and structure. Tokens
are the basic elements of the language, like words and numbers and chemical
elements. One of the problems with 3=+6$ is that $ is not a legal token in
mathematics (at least as far as I know). Similarly, 2Zz is not legal because
there is no element with the abbreviation Zz.

The second type of syntax error pertains to the structure of a statement;
that is, the way the tokens are arranged. The statement 3=+6$ is structurally
illegal, because you can’t have a plus sign immediately after an equals sign.
Similarly, molecular formulas have to have subscripts after the element name,
not before.

When you read a sentence in English or a statement in a formal language,
you have to figure out what the structure of the sentence is (although in a
natural language you do this unconsciously). This process is called parsing.

For example, when you hear the sentence, “The other shoe fell,” you under-
stand that “the other shoe” is the subject and “fell” is the verb. Once you have
parsed a sentence, you can figure out what it means, that is, the semantics of
the sentence. Assuming that you know what a shoe is, and what it means to
fall, you will understand the general implication of this sentence.

Although formal and natural languages have many features in common—
tokens, structure, syntax and semantics—there are many differences.

ambiguity: Natural languages are full of ambiguity, which people deal with
by using contextual clues and other information. Formal languages are
designed to be nearly or completely unambiguous, which means that any
statement has exactly one meaning, regardless of context.

redundancy: In order to make up for ambiguity and reduce misunderstand-
ings, natural languages employ lots of redundancy. As a result, they are
often verbose. Formal languages are less redundant and more concise.

literalness: Natural languages are full of idiom and metaphor. If I say, “The
other shoe fell,” there is probably no shoe and nothing falling. Formal
languages mean exactly what they say.

People who grow up speaking a natural language (everyone) often have a
hard time adjusting to formal languages. In some ways the difference between
formal and natural language is like the difference between poetry and prose, but
more so:

Poetry: Words are used for their sounds as well as for their meaning, and the
whole poem together creates an effect or emotional response. Ambiguity
is not only common but often deliberate.



8 CHAPTER 1. THE WAY OF THE PROGRAM

Prose: The literal meaning of words is more important and the structure con-
tributes more meaning. Prose is more amenable to analysis than poetry,
but still often ambiguous.

Programs: The meaning of a computer program is unambiguous and literal,
and can be understood entirely by analysis of the tokens and structure.

Here are some suggestions for reading programs (and other formal lan-
guages). First, remember that formal languages are much more dense than
natural languages, so it takes longer to read them. Also, the structure is very
important, so it is usually not a good idea to read from top to bottom, left to
right. Instead, learn to parse the program in your head, identifying the tokens
and interpreting the structure. Finally, remember that the details matter. Lit-
tle things like spelling errors and bad punctuation, which you can get away with
in natural languages, can make a big difference in a formal language.

1.5 The first program

Traditionally the first program people write in a new language is called “Hello,
World.” because all it does is print the words “Hello, World.” In Pop11, this
program looks like this:

printf(’Hello World!\n’);

Small explanation is in place: incremental compiler reads the program as a
command and executes it. Semicolon indicates that the command is complete.
Apostrophes indicate that the text between them is a string (which is passed as
an argument to the printf procedure.

Some people judge the quality of a programming language by the simplicity
of the “Hello, World.” program. By this standard, Pop11 does extremally well.

1.6 Glossary

problem-solving: The process of formulating a problem, finding a solution,
and expressing the solution.

high-level language: A programming language like Pop11 that is designed to
be easy for humans to read and write.

low-level language: A programming language that is designed to be easy for
a computer to execute. Also called “machine language” or “assembly
language.”

formal language: Any of the languages people have designed for specific pur-
poses, like representing mathematical ideas or computer programs. All
programming languages are formal languages.



1.6. GLOSSARY 9

natural language: Any of the languages people speak that have evolved nat-
urally.

portability: A property of a program that can run on more than one kind of
computer.

interpret: To execute a program in a high-level language by translating it one
line at a time.

compile: To translate a program in a high-level language into a low-level lan-
guage, all at once, in preparation for later execution.

source code: A program in a high-level language, before being compiled.

object code: The output of the compiler, after translating the program.

executable: Another name for object code that is ready to be executed.

byte code: A special kind of object code used for Java programs. Byte code is
similar to a low-level language, but it is portable, like a high-level language.

algorithm: A general process for solving a category of problems.

bug: An error in a program.

syntax: The structure of a program.

semantics: The meaning of a program.

parse: To examine a program and analyze the syntactic structure.

syntax error: An error in a program that makes it impossible to parse (and
therefore impossible to compile).

exception: An error in a program that makes it fail at run-time. Also called
a run-time error.

logical error: An error in a program that makes it do something other than
what the programmer intended.

debugging: The process of finding and removing any of the three kinds of
errors.



10 CHAPTER 1. THE WAY OF THE PROGRAM



Chapter 2

Variables, values and types

2.1 More on printing

2.1.1 Using printf procedure

You can put as many statements as you want in a program. For example, to
print more than one line:

;;; generate some output
printf (’Hello, world.\n’); ;;; print one line
printf (’How are you?\n’); ;;; print another

Notice that the first line begins with ;;;. This indicates that this line contains
a comment, which is a bit of English text that you can put in the middle of
a program, usually to explain what the program does. When the compiler sees
a ;;;, it ignores everything from there until the end of the line. Also, as you
can see, it is legal to put comments at the end of a line, as well as on a line by
themselves.

The phrases that are surrounded by apostrophes are called strings, because
they are made up of a sequence (string) of letters. Actually, strings can con-
tain any combination of letters, numbers, punctuation marks, and other special
characters.

You may notice that strings that we passed to printf contain the funny
character \ (called “backslash”). The combination of backslash and the letter
n denotes newline — a special character that causes the cursor to move to the
next line of the display.

One can put multiple newlines into a string, so that it prints as multiple
lines:

;;; generate some output
printf (’Hello, world.\nHow are you?\n’); ;;; print two lines

Often it is useful to display the output from multiple print statements all on
one line. This is easy: just add the newline only at the end of the last string:

11



12 CHAPTER 2. VARIABLES, VALUES AND TYPES

;;; generate some simple output

printf (’Goodbye, ’);
printf (’cruel world!\n’);

In this case the output appears on a single line as Goodbye, cruel world!.
Notice that there is a space between the word “Goodbye” and the second apos-
trophe. This space appears in the output, so it affects the behavior of the
program.

Spaces that appear outside of quotation marks generally do not affect the
behavior of the program. For example, I could have written:

printf(’Goodbye, ’);
printf(’cruel world!\n’);

This program would compile and run just as well as the original. The breaks
at the ends of lines (newlines) do not affect the program’s behavior either, so I
could have written:

printf(’Goodbye, ’); printf(’cruel world!\n’);

That would work, too, although you have probably noticed that the program is
getting harder and harder to read. Newlines and spaces are useful for organizing
your program visually, making it easier to read the program and locate syntax
errors.

printf is short for “print formatted,” because it not only prints strings, it
may also convert (format) other values to strings. For example, I could write:

printf(’Goodbye, cruel world!’, ’%p\n’);

The last argument above is called “format string”. It contains the sequence
%p which in the output is replaced by the previous argument.

Printf is rather general function, here I will only show one more example:

printf(25, 5, ’%p squared is %p\n’);

which prints 5 squared is 25.

2.1.2 Print arrow

Printf allow full control of the output, but requires some work to use. Since
printing is frequently used for debugging, Pop11 contains a simpler construct:
“print arrow”. Writing:

’Goodbye, cruel world!’ =>

prints ** Goodbye, cruel world! in a separate line. Also note the two stars
at the beginning of the line.



2.2. VARIABLES 13

2.2 Variables

One of the most powerful features of a programming language is the ability
to manipulate variables. A variable is a named location that stores a value.
Values are things that can be printed and stored and (as we’ll see later) operated
on. The strings we have been printing (’Hello, World.’, ’Goodbye, ’, etc.)
are values.

In order to store a value, you have to create a variable.

lvars fred;

This statement is a declaration, because it declares that the word fred names
a variable.

In general, you will want to make up variable names that indicate what you
plan to do with the variable. For example, if you saw these variable declarations:

lvars first_name;
lvars last_ame;
lvars hour, minute;

you could probably make a good guess at what values would be stored in them.
This example also demonstrates the syntax for declaring multiple variables:
hour and second.

2.3 Assignment

Now that we have created some variables, we would like to store values in them.
We do that with an assignment statement.

’Hello.’ -> fred; ;;; give fred the value ’Hello.’
11 -> hour; ;;; assign the value 11 to hour
59 -> minute; ;;; set minute to 59

This example shows three assignments, and the comments show three different
ways people sometimes talk about assignment statements. The vocabulary can
be confusing here, but the idea is straightforward:

• When you declare a variable, you create a named storage location.

• When you make an assignment to a variable, you give it a value.

Unlike many other languages Pop11 allows you to store any value in a vari-
able:

’123’ -> fred; ;;; store a string
"fred" -> fred; ;;; store a word
123 -> fred; ;;; store an integer
[123] -> fred; ;;; store a list
{123} -> fred; ;;; store a vector



14 CHAPTER 2. VARIABLES, VALUES AND TYPES

It may be confusing that some values look very similar, but are different.
For example the integer 123 is different than the string ’123’ which in turn is
different than the word "’123’".

A common way to represent variables on paper is to draw a box with the
name of the variable on the outside and the value of the variable on the inside.
This figure shows the effect of the three assignment statements:

fred hour minute

11 59’Hello.’

2.4 Printing variables

You can print the value of a variable using the same commands we used to print
strings.

lvars first_line;
’Hello, again!’ -> first_line;
first_line => ;;; print using print arrow
printf(first_line, ’%p\n’); ;;; print again using printf

This program creates a variable named first line, assigns it the value ’Hello,
again!’ and then prints that value twice. When we talk about “printing a
variable,” we mean printing the value of the variable. To print the name of a
variable, you have to put it in apostrophes. For example: ’first line’ =>

If you want to get a little tricky, you could write

lvars first_line;
’Hello, again!’ -> first_line;
printf (’The value of first_line is ’);
printf (first_line, ’%p\n’);

The output of this program is

The value of first_line is Hello, again!

I am pleased to report that you can use the same the syntax for printing a value
regardless of the value’s type.

lvars hour, minute;
11 -> hour;
59 -> minute;
printf (’The current time is ’, ’%p’);
printf (hour, ’%p’);



2.5. KEYWORDS 15

printf (’:’, ’%p’);
printf (minute, ’%p’);
printf (’.’, ’%p\n’);

The output of this program is The current time is 11:59.
WARNING: It is common practice to use several printf commands, in order

to put multiple values on the same line. But you have to be careful to remember
the to add newline at the end.

2.5 Keywords

A few sections ago, I said that you can make up any name you want for your
variables, but that’s not quite true. There are certain words that are used by
the Pop11 compiler to parse the structure of your program, and if you use them
as variable names, it will get confused. These words, called keywords, include
lvars, define, if, while, and many more. Unlike most other languages Pop11
allows you add your own keywords or change some predefined keyword to an
ordinary word.

Below we list some commonly used Pop11 keywords

and by constant define dlocal
do else elseif enddefine endfor
endif endprocedure endrepeat endunless enduntil
endwhile for from goto if
in lconstant lvars nextif nextloop
nextunless or procedure quitif quitloop
quitunless repeat return step then
to unless until uses vars

The complete list is contained in ref file syntax.

2.6 Operators

Operators are special symbols that are used to represent simple computations
like addition and multiplication. Many of the operators in Pop11 do exactly
what you would expect them to do, because they are common mathematical
symbols. For example, the operator for adding two integers is +.

The following are all legal Pop11 expressions whose meaning is more or less
obvious:

1+1 hour-1 hour*60 + minute minute/60

Expressions can contain both variable names and numbers. In each case the
name of the variable is replaced with its value before the computation is per-
formed.

Addition, subtraction and multiplication all do what you expect, but you
might be surprised by division. For example, the following program:



16 CHAPTER 2. VARIABLES, VALUES AND TYPES

lvars hour, minute;
11 -> hour;
59 -> minute;
printf(’Number of minutes since midnight: ’);
printf(hour*60 + minute, ’%p\n’);
printf(’Fraction of the hour that has passed: ’);
printf(minute/60, ’%p\n’);

would generate the following output:

Number of minutes since midnight: 719
Fraction of the hour that has passed: 59_/60

The first line is what we expected, but the second line may be unexpected. The
value of the variable minute is 59, and 59 divided by 60 is not an integer, so the
result is a fraction 59/60. This is perfectly accurate, but different than typical
answer form computer (or a pocket calculator).

A possible alternative in this case is to calculate a percentage rather than a
fraction:

printf(’Percentage of the hour that has passed: ’);
printf((minute*100) div 60, ’%s\n’);

The result is:

Percentage of the hour that has passed: 98

I have used div operator to round down the result, so it is only approximately
correct. In order to get more accurate decimal fraction as an answer, we could
use a different type of values, called floating-point, that is capable of storing
fractional values. We’ll get to that in the next chapter.

2.7 Order of operations

When more than one operator appears in an expression the order of evaluation
depends on the rules of precedence. A complete explanation of precedence
can get complicated, but just to get you started:

• Multiplication take precedence (happen before) addition and subtraction.
So 2*3-1 yields 5, not 4.

• Integer division div has higher precedence than multiplication. So 2*2
div 3 yields 0, not 1.

• If the operators have the same precedence they are evaluated from left to
right. So in the expression 1-2+3, the subtraction happens first, yielding
-1, which in turn yields 2. If the operations had gone from right to left,
the result would be 1-5 which is -4, which is wrong.



2.8. OPERATORS FOR STRINGS 17

• Any time you want to override the rules of precedence (or you are not sure
what they are) you can use parentheses. Expressions in parentheses are
evaluated first, so 2 * (3-1) is 4. You can also use parentheses to make
an expression easier to read, as in minute * (100 div 60), even though
it doesn’t change the result.

2.8 Operators for strings

In general you cannot perform mathematical operations on strings, even if the
strings look like numbers. The following are illegal (if we know that fred contains
a string)

fred - 1 ’Hello’/123 fred * ’Hello’

Interestingly, there is an operator which work with strings: for strings, the ><
operator represents concatenation, which means joining up the two operands
by linking them end-to-end. So ’Hello, ’ >< ’world.’ yields the string
’Hello, world.’ and fred >< ’ism’ adds the suffix ism to the end of what-
ever fred is, which is often handy for naming new forms of bigotry.

2.9 Composition

So far we have looked at the elements of a programming language—variables,
expressions, and statements—in isolation, without talking about how to combine
them.

One of the most useful features of programming languages is their ability to
take small building blocks and compose them. For example, we know how to
multiply numbers and we know how to print; it turns out we can do both at the
same time:

printf (17 * 3, ’%p\n’);

Actually, I shouldn’t say “at the same time,” since in reality the multiplication
has to happen before the printing, but the point is that any expression, involving
numbers, strings, and variables, can be used inside a print statement. We’ve
already seen one example:

printf(hour*60 + minute, ’%p\n’);

But you can also put arbitrary expressions on the left-hand side of an assignment
statement:

lvars percentage;
(minute * 100) div 60 -> percentage;



18 CHAPTER 2. VARIABLES, VALUES AND TYPES

This ability may not seem so impressive now, but we will see other examples
where composition makes it possible to express complex computations neatly
and concisely.

WARNING: There are limits on where you can use certain expressions; most
notably, the right-hand side of an assignment statement must have an “updater”
which typically means that it has to be a variable name, not an expression.
That’s because the right-hand side indicates what to do with the result – typ-
ically the result is stored in a variable. So the following is illegal: hour ->
minute+1;.

2.10 Glossary

variable: A named storage location for values. Normal Pop11 variables can
store values of arbitrary type.

value: A number or string (or other thing to be named later) that can be stored
in a variable. Every value belongs to some type.

type: A set of values. The type of a value determines which operation can be
applied to the value. So far, the types we have seen are integers, rationals,
strings and words.

keyword: A word that is used by the compiler to parse programs.

statement: A line of code that represents a command or action. So far, the
statements we have seen are declarations, assignments, and print state-
ments.

declaration: A statement that creates a new variable.

assignment: A statement that assigns a value to a variable.

expression: A combination of variables, operators and values that represents
a single result value. Expressions also have types, as determined by their
operators and operands.

operator: A special symbol that represents a simple computation like addition,
multiplication or string concatenation.

operand: One of the values on which an operator operates.

precedence: The order in which operations are evaluated.

concatenate: To join two operands end-to-end.

composition: The ability to combine simple expressions and statements into
compound statements and expressions in order to represent complex com-
putations concisely.



Chapter 3

Functions

3.1 Floating-point

In the last chapter we have seen that one can use fractions to deal with numbers
that were not integers. While fractions give perfectly accurate results for arith-
metic operations, and should be used when accuracy is a requirement, they are
more complicated (both for humans and computer) than integers. Also, frac-
tions can represent only rational numbers and many important mathematical
functions (like square root) may give irrational result even for rational argu-
ments. If we want numerical result from such a function the best we can do is
to approximate the correct result. In other words the answer is strictly speaking
wrong, but if the error is small enough this wrong answer works as well as the
correct one.

In real life many quantities are known only approximately, and effort needed
to get perfect accuracy during calculations is wasted. Scientists long ago in-
vented a useful shortcut: decimal fractions (approximations) using exponential
notation. It allows calculation using only few significant digits but usually
gives reasonable result.

For approximate calculation on fractions computers use floating-point num-
bers. In Pop11, the floating-point type is called decimal, to stress connection
with decimal fractions and exponential notation. However, on modern machines
this name is a misnomer, because internally calculation are done in binary.

You can create floating-point variables and assign values to them using the
same syntax we used for other values. For example:

lvars my_pi;
3.14159 -> my_pi;

It is also legal to declare a variable and assign a value to it at the same time:

lvars x = 1;
lvars empty = ’’;
lvars my_pi = 3.14159;

19



20 CHAPTER 3. FUNCTIONS

In fact, this syntax is quite common. A combined declaration and assignment is
sometimes called an initialization. One can also combine multiple declarations
and initializations in a single statement:

lvars x = 1, empty = ’’, my_pi = 3.14159;

Although floating-point numbers are useful, they are often a source of con-
fusion because there seems to be an overlap between integers and floating-point
numbers. For example, if you have the value 1, is that an integer, a floating-
point number, or both?

Strictly speaking, Pop11 distinguishes the integer value 1 from the floating-
point value 1.0, even though they seem to be the same number.

All the operations we have seen so far—addition, subtraction, multiplica-
tion, and division—also work on floating-point values, although you might be
interested to know that the underlying mechanism is completely different. In
fact, most processors have special hardware just for performing floating-point
operations.

3.2 Converting from decimals to integers

Pop11 converts an integer to decimal automatically if necessary, because the
result is as accurate as possible. On the other hand, a decimal holds only an
approximate value — even if this value looks like an integer we can not be
sure that exact calculation would also produce an integer, so Pop11 does not
automatically convert decimals to integers. Normally, converting floating point
value to an integer requires rounding off.

The simplest way to convert a floating-point value to an integer is to use a
round function:

lvars x = round(3.1415);

The round function has the effect of converting its argument into the closest
integer, so x gets the value 3. If the closest integer is bigger than floating-point
the value the rounded up, so for example round(1.51) gives 2.

If you want to throw out fractional part you can use intof function:

intof(3.99) =>
intof(-3.99) =>

The result is 3 and -3. Note, that for positive numbers intof rounds down
while for negative numbers it rounds up.

3.3 Math functions

In mathematics, you have probably seen functions like sin and log, and you have
learned to evaluate expressions like sin(π/2) and log(1/x). First, you evaluate



3.4. COMPOSITION 21

the expression in parentheses, which is called the argument of the function.
For example, π/2 is approximately 1.571, and 1/x is 0.1 (assuming that x is
10).

Then you can evaluate the function itself, either by looking it up in a table
or by performing various computations. The sin of 1.571 is 1, and the log of 0.1
is -1 (assuming that log indicates the logarithm base 10).

This process can be applied repeatedly to evaluate more complicated ex-
pressions like log(1/ sin(π/2)). First we evaluate the argument of the innermost
function, then evaluate the function, and so on.

Pop11 provides a set of built-in functions that includes most of the mathe-
matical operations you can think of.

The math functions are invoked using a syntax that is similar to the printf
commands we have already seen:

lvars root = sqrt (17.0);
lvars angle = 1.5;
lvars height = sin (angle);

The first example sets root to the square root of 17. The second example finds
the sine of 1.5, which is the value of the variable angle. By default Pop11
assumes that the values you use with sin and the other trigonometric functions
(cos, tan) are in degrees. To work with radians you need to set magic variable
popradinas to true:

true -> popradians;

To convert from degrees to radians, you can divide by 360 and multiply by 2π.
Conveniently, Pop11 provides π as a built-in value:

lvars degrees = 90;
lvars angle = degrees * 2 * pi / 360.0;

We have already met another useful function, namely round, which rounds
a floating-point value off to the nearest integer and returns an integer.

lvars x = round (pi * 20.0);

In this case the multiplication happens first, before the function is invoked. The
result is 63 (rounded up from 62.8318).

3.4 Composition

Just as with mathematical functions, Pop11 functions can be composed, mean-
ing that you use one expression as part of another. For example, you can use
any expression as an argument to a function:

lvars x = cos (angle + pi/2);



22 CHAPTER 3. FUNCTIONS

This statement takes the value pi, divides it by two and adds the result to the
value of the variable angle. The sum is then passed as an argument to the cos
function.

You can also take the result of one function and pass it as an argument to
another:

lvars x = exp (log (10.0));

In Pop11, the log function uses base e, so this statement finds the log base e of
10 and then raises e to that power. The result gets assigned to x; I hope you
know what it is.

3.5 Adding new functions

So far we have only been using the functions that are built into Pop11, but it
is also possible to add new functions:

define NAME ( LIST OF PARAMETERS );
STATEMENTS

enddefine;

You can make up any name you want for your function, except that you can’t
use Pop11 keywords. The list of parameters specifies what information, if any,
you have to provide in order to use (or invoke) the new function.

The first couple of functions we are going to write have no parameters, so
the syntax looks like this:

define new_line();
printf(’\n’);

enddefine;

This function is named new line, and the empty parentheses indicate that it
takes no parameters. It contains only a single statement, which prints a newline.
Since newline skips to the next line after it prints, so this statement has the effect
of skipping to the next line.

We can invoke this new function using syntax that is similar to the way we
invoke the built-in Pop11 commands:

printf (’First line.\n’);
new_line ();
printf (’Second line.\n’);

The output of this program is

First line.

Second line.



3.5. ADDING NEW FUNCTIONS 23

Notice the extra space between the two lines. What if we wanted more space
between the lines? We could invoke the same function repeatedly:

printf (’First line.\n’);
new_line ();
new_line ();
new_line ();
printf (’Second line.\n’);

Or we could write a new function, named three line, that prints three new
lines:

define three_line ();
new_line (); new_line (); new_line ();

enddefine;

printf (’First line.\n’);
three_line ();
printf (’Second line.\n’);

You should notice a few things about this program:

• You can invoke the same procedure repeatedly. In fact, it is quite common
and useful to do so.

• You can have one function invoke another function. In this case, main
program invokes three line and three line invokes new line. Again,
this is common and useful.

• In three line I wrote three statements all on the same line, which is syn-
tactically legal (remember that spaces and new lines usually don’t change
the meaning of a program). On the other hand, it is usually a better idea
to put each statement on a line by itself, to make your program easy to
read. I sometimes break that rule in this book to save space.

So far, it may not be clear why it is worth the trouble to create all these new
functions. Actually, there are a lot of reasons, but this example only demon-
strates two:

1. Creating a new function gives you an opportunity to give a name to a group
of statements. Functions can simplify a program by hiding a complex
computation behind a single command, and by using English words in
place of arcane code. Which is clearer, new line or printf (’\n’)?

2. Creating a new function can make a program smaller by eliminating repet-
itive code. For example, how would you print nine consecutive new lines?
You could just invoke three line three times.



24 CHAPTER 3. FUNCTIONS

3.6 Programs with multiple functions

Pulling together all the code fragments from the previous section, the whole
program looks like this:

define new_line();
printf(’\n’);

enddefine;

define three_line();
new_line (); new_line (); new_line ();

enddefine;

printf (’First line.\n’);
three_line ();
printf (’Second line.\n’);

When you look at a program that contains several functions, it is tempting to
read it from top to bottom, but that is likely to be confusing, because that is
not the order of execution of the program.

Execution begins at the first statement at the top level (outside function),
regardless of where it is in the program (in this case I deliberately put it at
the bottom). Statements are executed one at a time, in order, until you reach
a function invocation. Function invocations are like a detour in the flow of
execution. Instead of going to the next statement, you go to the first line of
the invoked function, execute all the statements there, and then come back and
pick up again where you left off.

That sounds simple enough, except that you have to remember that one
function can invoke another. Thus, while we are in the middle of the main
program, we might have to go off and execute the statements in three line.
But while we are executing three line, we get interrupted three times to go
off and execute new line.

For its part, new line invokes the built-in function printf, which causes
yet another detour. Fortunately, Pop11 is quite adept at keeping track of where
it is, so when printf completes, it picks up where it left off in new line, and
then gets back to three line, and then finally gets back to the main program
so the program can terminate.

Actually, when given statements terminates it passes control back to inter-
active compiler which waits for next statement. If statements are read from the
file at the end of the file the compiler cleans up and then the program terminates.

What’s the moral of this sordid tale? When you read a program, don’t read
from top to bottom. Instead, follow the flow of execution.



3.7. PARAMETERS AND ARGUMENTS 25

3.7 Parameters and arguments

Some of the built-in functions we have used have parameters, which are values
that you provide to let the function do its job. For example, if you want to find
the sine of a number, you have to indicate what the number is. Thus, sin takes
a floating-point value as a parameter. To print a string, you have to provide the
string, which is why printf takes a string as a parameter.

Some functions take more than one parameter, like arctan2.
New function also may have parameters:

define print_twice(phil);
printf(phil, ’%p\n’);
printf(phil, ’%p\n’);

enddefine;

This function takes a single parameter, named phil. Whatever that parameter
is (and at this point we have no idea what it is), it gets printed twice. I chose
the name phil to suggest that the name you give a parameter is up to you, but
in general you want to choose something more illustrative than phil.

In order to invoke this function, we have to provide some value. For example,
we might invoke it like this:

print_twice (’Don\’t make me say this twice!’);

The string you provide is called an argument, and we say that the argument is
passed to the function. In this case we are creating a string value that contains
the text “Don’t make me say this twice!” and passing that string as an argument
to print twice where, contrary to its wishes, it will get printed twice.

We can also use value of different type as an argument, for example we can
pass an integer:

print_twice(123);

Alternatively, if we had a variable, we could use it as an argument instead:

lvars argument = ’Never say never.’;
print_twice (argument);

Notice something very important here: the name of the variable we pass as an
argument (argument) has nothing to do with the name of the parameter (phil).
Let me say that again:

The name of the variable we pass as an argument has noth-
ing to do with the name of the parameter.

They can be the same or they can be different, but it is important to realize
that they are not the same thing, except that they happen to have the same
value (in this case the string ’Never say never.’).



26 CHAPTER 3. FUNCTIONS

The value you provide as an argument may be of any type, however the
called function must be able to handle it. Note that the compiler will accept
argument of any type. However, he called function must be able to handle it —
if the function receives argument if type which it can not handle you will get
runtime error.

One last thing you should realize is that normally parameters exist only
inside their own functions. In the main program, there is no such thing as
phil. If you try to use it, the compiler will complain and create a new different
variable.

3.8 Functions with multiple parameters

The syntax for declaring and invoking function with multiple parameters is
similar to the one parameter case:

define print_time (hour, minute);
printf (hour, ’%p’);
printf (’:’);
printf (minute, ’%p\n’);

enddefine;

The syntax to invoke our new function is print time (hour, minute).

3.9 Functions with results and the stack

You might have noticed by now that some of the functions we are using, like
the mathematical functions, yield results. Other functions, like prinf and
new line, perform some action but they don’t return a value. That raises
some questions:

• What happens if you invoke a function and you don’t do anything with
the result (i.e. you don’t assign it to a variable or use it as part of a larger
expression)?

• What happens if you use a prinf function as part of an expression, like
printf (’boo!’) + 7?

• Can we write functions that yield results, or are we stuck with things like
new line and print twice?

The answer to the third question is “yes, you can write functions that return
values,” and we’ll do it in a couple of chapters. The answer to the other two
questions is unexpected and slightly complicated.

Pop11 uses so called “stack” (or more precisely “user stack”) to evaluate
expression.

When you write a simple assignment like:



3.10. GLOSSARY 27

11 -> hours;

what happens is: the integer 11 is first put on the stack and then the value form
the top of the stack is assigned to the variable hours. To make it more explicit
you can write:

11;
-> hours;

Now, the first statement puts value on the stack and the second statement reads
value form the top of the stack and assign to the variable hours.

3.10 Glossary

floating-point: A type of value that can contain fractions or integers. In Pop11
this type is called decimal (or ddecimal).

function: A named sequence of statements that performs something useful.
Functions may or may not take parameters, and may or may not produce
a result. Functions are frequently called procedures or subroutines.

parameter: A piece of information you provide in order to invoke a function.
Parameters are like variables in the sense that they contain values.

argument: A value that you provide when you invoke a function.

invoke: Cause a function to be executed.



28 CHAPTER 3. FUNCTIONS



Chapter 4

Conditionals and recursion

4.1 The modulus and integer division

The modulus operator works on integers (and integer expressions) and yields
the remainder when the first operand is divided by the second. In Pop11, the
modulus operator is the keyword rem. The syntax is exactly the same as for
other operators:

7 div 3 -> quotient;
7 rem 3 -> remainder;

The first operator, integer division div, yields 2. The second operator yields 1.
Thus, 7 divided by 3 is 2 with 1 left over.

The modulus operator turns out to be surprisingly useful. For example, you
can check whether one number is divisible by another: if x rem y is zero, then
x is divisible by y.

Also, you can use the modulus operator to extract the rightmost digit or
digits from a number. For example, x rem 10 yields the rightmost digit of x
(in base 10). Similarly x rem 100 yields the last two digits.

4.2 Conditional execution

In order to write useful programs, we almost always need the ability to check
certain conditions and change the behavior of the program accordingly. Condi-
tional statements give us this ability. The simplest form is the if statement:

if x > 0 then
printf(’x is positive\n’);

endif;

The expression between if and then is called the condition. If it is true, then
the statements between then and endif get executed. If the condition is not
true, nothing happens.

29



30 CHAPTER 4. CONDITIONALS AND RECURSION

The condition can contain any of the comparison operators, sometimes called
relational operators:

x = y ;;; x is equal to y
x /= y ;;; x is not equal to y
x > y ;;; x is greater than y
x < y ;;; x is less than y
x >= y ;;; x is greater than or equal to y
x <= y ;;; x is less than or equal to y

Although these operations are probably familiar to you, the syntax Pop11 uses is
a little different from mathematical symbols like 6= and ≤. Some other languages
use a single = to denote assignment, which is a frequent source of errors. Also
C-like languages use a double == for equality. In Pop11 == denotes identity
(identical values are equal, but mathematically equal values do not need to be
identical). Also, =< is the same as <=, but => is a print arrow.

You can compare any two values for equality (or lack of equality), but the
other four comparisons are valid only for numbers.

4.3 Alternative execution

A second form of conditional execution is alternative execution, in which there
are two possibilities, and the condition determines which one gets executed. The
syntax looks like:

if x rem 2 = 0 then
printf (’x is even\n’);

else
printf (’x is odd\n’);

endif;

If the remainder when x is divided by 2 is zero, then we know that x is even, and
this code prints a message to that effect. If the condition is false, the second
set of statements is executed. Since the condition must be true or false, exactly
one of the alternatives will be executed.

As an aside, if you think you might want to check the parity (evenness
or oddness) of numbers often, you might want to “wrap” this code up in a
procedure, as follows:

define print_parity(x);
if x rem 2 = 0 then

printf (’x is even\n’);
else

printf (’x is odd\n’);
endif;

enddefine;



4.4. CHAINED CONDITIONALS 31

Now you have a procedure named print parity that will print an appropriate
message for any integer you care to provide. You would invoke this procedure
as follows:

print_parity (17);

4.4 Chained conditionals

Sometimes you want to check for a number of related conditions and choose
one of several actions. One way to do this is to chain conditions using elseif
keyword:

if x > 0 then
printf (’x is positive\n’);

elseif x < 0 then
printf (’x is negative\n’);

else
printf (’x is zero\n’);

endif;

These chains can be as long as you want, although they can be difficult to read
if they get out of hand. One way to make them easier to read is to use standard
indentation, as demonstrated in these examples. If you keep all the statements
lined up, you are less likely to make syntax errors and you can find them more
quickly if you do.

4.5 Nested conditionals

In addition to chaining, you can also nest one conditional within another. We
could have written the previous example as:

if x = 0 then
printf (’x is zero\n’);

else
if x > 0 then

printf (’x is positive\n’);
else

printf (’x is negative\n’);
endif;

endif;

There is now an outer conditional that contains two branches. The first branch
contains a simple printf statement, but the second branch contains another
conditional statement, which has two branches of its own. Fortunately, those two
branches are both printf statements, although they could have been conditional
statements as well.



32 CHAPTER 4. CONDITIONALS AND RECURSION

Notice again that indentation helps make the structure apparent, but nev-
ertheless, nested conditionals get difficult to read very quickly. In general, it is
a good idea to avoid them when you can.

On the other hand, this kind of nested structure is common, and we will
see it again, so you better get used to it.

4.6 The return statement

The return statement allows you to terminate the execution of a procedure
before you reach the end. One reason to use it is if you detect an error condition:

define print_logarithm (x);
if x <= 0.0 then

printf(’Positive numbers only, please.\n’);
return;

endif;
lvars result = log(x);
printf(’The log of x is ’ >< result >< ’\n’);

enddefine;

This defines a function named print logarithm which has a parameter named
x. The first thing it does is check whether x is less than or equal to zero, in
which case it prints an error message and then uses return to exit the function.
The flow of execution immediately returns to the caller and the remaining lines
of the function are not executed.

I used a floating-point value on the right side of the condition because I
expect that x has a floating-point value.

4.7 Type conversion

You might wonder how you can get away with an expression like ’The log of
x is ’ >< result, since one of the operands is a string and the other is a
ddecimal. Well, in this case Pop11 is being smart on our behalf, by automati-
cally converting the ddecimal to a string before it does the string concatenation.

This kind of feature is an example of a common problem in designing a
programming language, which is that there is a conflict between formalism,
which is the requirement that formal languages should have simple rules with
few exceptions, and convenience, which is the requirement that programming
languages be easy to use in practice.

More often than not, convenience wins, which is usually good for expert
programmers (who are spared from rigorous but unwieldy formalism), but bad
for beginning programmers, who are often baffled by the complexity of the rules
and the number of exceptions. In this book I have tried to simplify things by
emphasizing the rules and omitting many of the exceptions.



4.8. RECURSION 33

Nevertheless, it is handy to know that whenever you apply >< to two ex-
pressions, then Pop11 will convert them to strings and then perform string
concatenation.

4.8 Recursion

I mentioned in the last chapter that it is legal for one function to call another,
and we have seen several examples of that. I neglected to mention that it is also
legal for a function to invoke itself. It may not be obvious why that is a good
thing, but it turns out to be one of the most magical and interesting things a
program can do.

For example, look at the following function:

define countdown(n);
if n = 0 then

printf(’Blastoff!\n’);
else

printf(n, ’%p\n’);
countdown (n - 1);

endif;
enddefine;

The name of the function is countdown and it takes a single integer as a param-
eter. If the parameter is zero, it prints the word “Blastoff.” Otherwise, it prints
the number and then invokes a function named countdown—itself—passing n-1
as an argument.

What happens if we invoke this function, in the main program, like this:

countdown (3);

The execution of countdown begins with n=3, and since n is not zero, it prints
the value 3, and then invokes itself...

The execution of countdown begins with n=2, and since n is not zero,
it prints the value 2, and then invokes itself...

The execution of countdown begins with n=1, and since n
is not zero, it prints the value 1, and then invokes itself...

The execution of countdown begins with n=0, and
since n is zero, it prints the word “Blastoff!” and
then returns.

The countdown that got n=1 returns.

The countdown that got n=2 returns.

The countdown that got n=3 returns.
And then you’re back in main (what a trip). So the total output looks like:



34 CHAPTER 4. CONDITIONALS AND RECURSION

3
2
1
Blastoff!

As a second example, let’s look again at the functions new line and three line.

define new_line();
printf(’\n’);

enddefine;

define three_line ();
new_line (); new_line (); new_line ();

enddefine;

Although these work, they would not be much help if I wanted to print 2 new-
lines, or 106. A better alternative would be

define n_lines(n);
if n > 0 then

printf(’\n’);
n_lines(n - 1);

endif;
enddefine;

This program is very similar; as long as n is greater than zero, it prints one
newline, and then invokes itself to print n-1 additional newlines. Thus, the
total number of newlines that get printed is 1 + (n-1), which usually comes
out to roughly n.

The process of a function invoking itself is called recursion, and such func-
tions are said to be recursive.

4.9 Stack diagrams for recursive functions

In the previous chapter we used a stack diagram to represent the state of a
program during a function call. The same kind of diagram can make it easier
to interpret a recursive function.

Remember that every time a function gets called it creates a new instance
of the function that contains a new version of the function’s local variables and
parameters.

The following figure is a stack diagram for countdown, called with n = 3:



4.10. GLOSSARY 35

n: 3

n:

n:

n:

2

1

0

top level

countdown

countdown

countdown

countdown

There is one instance of main program and four instances of countdown, each
with a different value for the parameter n. The bottom of the stack, countdown
with n=0 is the base case. It does not make a recursive call, so there are no
more instances of countdown.

The instance of main program is empty because the main program does not
have any parameters or local variables. As an exercise, draw a stack diagram
for n lines, invoked with the parameter n=4.

4.10 Glossary

modulus: An operator that works on integers and yields the remainder when
one number is divided by another. In Pop11 it is denoted by the rem word.

conditional: A block of statements that may or may not be executed depend-
ing on some condition.

chaining: A way of joining several conditional statements in sequence.

nesting: Putting a conditional statement inside one or both branches of an-
other conditional statement.

recursion: The process of invoking the same function you are currently exe-
cuting.

infinite recursion: A function that invokes itself recursively without every
reaching the base case. The usual result is a runtime error.



36 CHAPTER 4. CONDITIONALS AND RECURSION



Chapter 5

Fruitful functions

5.1 Return values

Some of the built-in functions we have used, like the mathematical functions,
have produced results. That is, the effect of invoking the function is to generate
a new value, which we usually assign to a variable or use as part of an expression.
For example:

lvars e = exp (1.0);
lvars height = radius * sin (angle);

But so far all the function we have written have been void functions; that is,
functions that return no value. When you invoke a void function, it is typically
on a line by itself, with no assignment:

n_lines (3);
print_logarithm(17);

In this chapter, we are going to write functions that return things, which I will
refer to as fruitful functions, for want of a better name. The first example is
area, which takes a decimal as a parameter, and returns the area of a circle
with the given radius:

define area(radius);
lvars result = pi * radius * radius;
return (result);

enddefine;

The last line is an return statement that includes a return value. This
statement means, “return immediately from this function and use the following
expression as a return value.” Notice that the return value must be inside
parenthesis. The expression you provide can be arbitrarily complicated, so we
could have written this function more concisely:

37



38 CHAPTER 5. FRUITFUL FUNCTIONS

define area(radius);
return (pi * radius * radius);

enddefine;

On the other hand, temporary variables like result often make debugging
easier.

Sometimes it is useful to have multiple return statements, one in each branch
of a conditional:

define absolute_value (x);
if x < 0 then

return(-x);
else

return(x);
endif;

enddefine;

Since these returns statements are in an alternative conditional, only one will
be executed. Although it is legal to have more than one return statement in a
function, you should keep in mind that as soon as one is executed, the function
terminates without executing any subsequent statements.

Code that appears after a return statement, or any place else where it can
never be executed, is called dead code.

If you put return statements inside a conditional, then you have to guarantee
that every possible path through the program returns correct value. For example:

define absolute_value (x);
if x < 0 then

return(-x);
elseif x > 0 then

return(x);
endif; ;;; WRONG!!

enddefine;

This program is wrong because if x happens to be 0, then neither condition will
be true and the function will end without hitting a return statement. Trying to
use this nonexistent return value like:

absolute_value(0) + 1 =>

will produce error message like:

;;; MISHAP - ste: STACK EMPTY (missing argument? missing result?)
;;; DOING : + pop_setpop_compiler

Note that in Pop11 it is legal to return value for some arguments and no value
for other arguments. In fact, it is possible to return multiple values, and the
number of returned values may depend on the arguments. Similarly number of



5.2. PROGRAM DEVELOPMENT 39

argument may be different for different invocations. This is a powerful feature,
but is also error-prone — if a function is supposed to return a value but return
statement is missing in correct place, then the error will be detected only at
runtime (and sometimes such program may simply produce wrong values).

5.2 Program development

At this point you should be able to look at complete Pop11 functions and tell
what they do. But it may not be clear yet how to go about writing them. I am
going to suggest one technique that I call incremental development.

As an example, imagine you want to find the distance between two points,
given by the coordinates (x1, y1) and (x2, y2). By the usual definition,

distance =
√

(x2 − x1)2 + (y2 − y1)2 (5.1)

The first step is to consider what a distance function should look like in Pop11.
In other words, what are the inputs (parameters) and what is the output (return
value).

In this case, the two points are the parameters, and it is natural to represent
them using four decimals, although we will see later that one can also use a
Point object. There is one return value, namely the distance.

Already we can write an outline of the function:

define distance (x1, y1, x2, y2);
return (0.0);

enddefine;

The statement return (0.0); is a place-keeper that is necessary in order to
compile the program. Obviously, at this stage the program doesn’t do anything
useful, but it is worthwhile to try compiling it so we can identify any syntax
errors before we make it more complicated.

In order to test the new function, we have to invoke it with sample values.
Somewhere in main program I would add:

lvars dist = distance (1.0, 2.0, 4.0, 6.0);

I chose these values so that the horizontal distance is 3 and the vertical distance
is 4; that way, the result will be 5 (the hypotenuse of a 3-4-5 triangle). When
you are testing a function, it is useful to know the right answer.

Once we have checked the syntax of the function definition, we can start
adding lines of code one at a time. After each incremental change, we recompile
and run the program. That way, at any point we know exactly where the error
must be—in the last line we added.

The next step in the computation is to find the differences x2−x1 and y2−y1.
I will store those values in temporary variables named dx and dy.



40 CHAPTER 5. FRUITFUL FUNCTIONS

define distance (x1, y1, x2, y2);
lvars dx = x2 - x1;
lvars dy = y2 - y1;
’dx is ’ >< dx =>
’dy is ’ >< dy =>
return (0.0);

enddefine;

I added print statements that will let me check the intermediate values before
proceeding. As I mentioned, I already know that they should be 3.0 and 4.0.

When the function is finished I will remove the print statements. Code like
that is called scaffolding, because it is helpful for building the program, but
it is not part of the final product. Sometimes it is a good idea to keep the
scaffolding around, but comment it out, just in case you need it later.

The next step in the development is to square dx and dy. We could use the
** operator, but it is simpler and faster to just multiply each term by itself.

define distance (x1, y1, x2, y2);
lvars dx = x2 - x1;
lvars dy = y2 - y1;
lvars dsquared = dx*dx + dy*dy;
’dsquared is ’ >< dsquared =>
return (0.0);

enddefine;

Again, I would compile and run the program at this stage and check the inter-
mediate value (which should be 25.0).

Finally, we can use the sqrt function to compute and return the result.

define distance (x1, y1, x2, y2);
lvars dx = x2 - x1;
lvars dy = y2 - y1;
lvars dsquared = dx*dx + dy*dy;
lvars result = sqrt (dsquared);
return (result);

enddefine;

Then in main program, we should print and check the value of the result.
As you gain more experience programming, you might find yourself writing

and debugging more than one line at a time. Nevertheless, this incremental
development process can save you a lot of debugging time.

The key aspects of the process are:

• Start with a working program and make small, incremental changes. At
any point, if there is an error, you will know exactly where it is.

• Use temporary variables to hold intermediate values so you can print and
check them.



5.3. COMPOSITION 41

• Once the program is working, you might want to remove some of the
scaffolding or consolidate multiple statements into compound expressions,
but only if it does not make the program difficult to read.

5.3 Composition

As you should expect by now, once you define a new function, you can use it as
part of an expression, and you can build new functions using existing functions.
For example, what if someone gave you two points, the center of the circle and
a point on the perimeter, and asked for the area of the circle?

Let’s say the center point is stored in the variables xc and yc, and the
perimeter point is in xp and yp. The first step is to find the radius of the circle,
which is the distance between the two points. Fortunately, we have a function,
distance that does that.

lvars radius = distance (xc, yc, xp, yp);

The second step is to find the area of a circle with that radius, and return it.

lvars area1 = area (radius);
return (area1);

Wrapping that all up in a function, we get:

define area2 (xc, yc, xp, yp);
lvars radius = distance (xc, yc, xp, yp);
lvars area1 = area (radius);
return (area1);

enddefine;

The name of this function is area2, because the name area is already taken. I
will comment about this in the next section.

The temporary variables radius and area1 are useful for development and
debugging, but once the program is working we can make it more concise by
composing the function invocations:

define area2 (xc, yc, xp, yp);
return (area(distance (xc, yc, xp, yp)));

enddefine;

5.4 Overloading

In the previous section you might have noticed that area2 and area perform
similar functions—finding the area of a circle—but take different parameters.
For area, we have to provide the radius; for area2 we provide two points.



42 CHAPTER 5. FRUITFUL FUNCTIONS

If two functions do the same thing, it is natural to give them the same name.
In other words, it would make more sense if area2 were called area.

Having more than one function with the same name, which is called over-
loading, is legal in Pop11, however there are certain restrictions, which are not
satisfied in the current case. We will explain how overloading works in the chap-
ter about object orientation. In Pop11 preferred style (and the only one possible
without using object features) is to use longer names which uniquely identify
functions. Choosing good names is an art, if names are hard to distinguish the
programer may call different function than intended.

Actually, that reminds me of one of the cardinal rules of debugging: make
sure that the version of the program you are looking at is the version
of the program that is running! Some time you may find yourself making
one change after another in your program, and seeing the same thing every
time you run it. This is a warning sign that for one reason or another you
are not running the version of the program you think you are. To check, stick
in a printf statement (it doesn’t matter what you print) and make sure the
behavior of the program changes accordingly.

5.5 Boolean expressions

Most of the operations we have seen produce results that are the same type as
their operands. For example, the + operator takes two integers and produces an
integer, or two decimals and produces a decimal, etc.

The exceptions we have seen are the relational operators, which compare
integers and floating point values and return either true or false. true and
false are special values in Pop11, and together they make up a type called
boolean. You might recall that when I defined a type, I said it was a set of
values. In the case of integers, decimals and strings, those sets are pretty big.
For booleans, not so big.

Boolean expressions and variables work just like other types of expressions
and variables:

lvars fred;
true -> fred;
lvars test_result = false;

The first example is a simple variable declaration; the second example is an
assignment, and the third example is a combination of a declaration and as
assignment, sometimes called an initialization. The values true and false
are keywords in Pop11, so they may appear in a different color, depending on
your development environment.

As I mentioned, the result of a conditional operator is a boolean, so you can
store the result of a comparison in a variable:

lvars even_flag = (n rem 2 = 0); ;;; true if n is even
lvars positive_flag = x > 0; ;;; true if x is positive



5.6. LOGICAL OPERATORS 43

and then use it as part of a conditional statement later:

if even_flag then
printf(’n was even when I checked it\n’);

endif;

A variable used in this way is frequently called a flag, since it flags the presence
or absence of some condition.

5.6 Logical operators

There are three logical operators in Pop11: AND, OR and NOT, which are
denoted by the symbols and, or and not. The semantics (meaning) of these
operators is similar to their meaning in English. For example x > 0 and x <
10 is true only if x is greater than zero AND less than 10.

even flag or n rem 3 = 0 is true if either of the conditions is true, that
is, if even flag is true OR the number is divisible by 3.

Finally, the NOT operator has the effect of negating or inverting a boolean
expression, so not(even flag) is true if even flag is false—if the number is
odd. NOTE: the not is a function and requires parenthesis around its argument.

Logical operators often provide a way to simplify nested conditional state-
ments. For example, how would you write the following code using a single
conditional?

if x > 0 then
if x < 10 then

printf (’x is a positive single digit.\n’);
endif;

endif;

5.7 Boolean functions

Functions can return boolean values just like any other type, which is often
convenient for hiding complicated tests inside functions. For example:

define is_single_digit (x);
if x >= 0 and x < 10 then

return(true);
else

return(false);
endif;

enddefine;

The name of this function is is single digit. It is common to give boolean
functions names that sound like yes/no questions.



44 CHAPTER 5. FRUITFUL FUNCTIONS

The code itself is straightforward, although it is a bit longer than it needs
to be. Remember that the expression x >= 0 and x < 10 has type boolean, so
there is nothing wrong with returning it directly, and avoiding the if statement
altogether:

define is_single_digit (x);
return(x >= 0 and x < 10);

enddefine;

In the main program you can invoke this function in the usual ways:

lvars bib_flag = not(is_single_digit(17));
printf (is_single_digit (2), ’%p\n’);

The first line assigns the value true to big flag only if 17 is not a single-digit
number. The second line prints <true> because 2 is a single-digit number. Yes,
printf can handle booleans, too.

The most common use of boolean functions is inside conditional statements

if is_single_digit (x) then
printf (’x is little\n’);

else
printf (’x is big\n’);

endif;

5.8 More recursion

Now that we have functions that return values, you might be interested to
know that we have a complete programming language, by which I mean that
anything that can be computed can be expressed in this language. Any program
ever written could be rewritten using only the language features we have used
so far (actually, we would need a few commands to control devices like the
keyboard, mouse, disks, etc., but that’s all).

Proving that that claim is true is a non-trivial exercise first accomplished by
Alan Turing, one of the first computer scientists (well, some would argue that
he was a mathematician, but a lot of the early computer scientists started as
mathematicians). Accordingly, it is known as the Turing thesis. If you take a
course on the Theory of Computation, you will have a chance to see the proof.

To give you an idea of what you can do with the tools we have learned so
far, let’s look at some functions for evaluating recursively-defined mathematical
functions. A recursive definition is similar to a circular definition, in the sense
that the definition contains a reference to the thing being defined. A truly
circular definition is typically not very useful:

frabjuous: an adjective used to describe something that is frabjuous.



5.8. MORE RECURSION 45

If you saw that definition in the dictionary, you might be annoyed. On
the other hand, if you looked up the definition of the mathematical function
factorial, you might get something like:

0! = 1
n! = n · (n− 1)!

(Factorial is usually denoted with the symbol !, which is not to be confused
with the Pop11 operator ! which has quite different meaning.) This definition
says that the factorial of 0 is 1, and the factorial of any other value, n, is n
multiplied by the factorial of n − 1. So 3! is 3 times 2!, which is 2 times 1!,
which is 1 times 0!. Putting it all together, we get 3! equal to 3 times 2 times 1
times 1, which is 6.

If you can write a recursive definition of something, you can usually write a
Pop11 program to evaluate it. The first step is to decide what the parameters
are for this function — factorial needs one parameter:

define factorial(n);
enddefine;

If the argument happens to be zero, all we have to do is return 1:

define factorial(n);
if n = 0 then

return(1);
endif;

enddefine;

Otherwise, and this is the interesting part, we have to make a recursive call to
find the factorial of n− 1, and then multiply it by n.

define factorial(n);
if n = 0 then

return(1);
else

lvars recurse = factorial (n - 1);
lvars result = n * recurse;
return(result);

endif;
enddefine;

If we look at the flow of execution for this program, it is similar to nLines from
the previous chapter. If we invoke factorial with the value 3:

Since 3 is not zero, we take the second branch and calculate the factorial of
n− 1...



46 CHAPTER 5. FRUITFUL FUNCTIONS

Since 2 is not zero, we take the second branch and calculate the
factorial of n− 1...

Since 1 is not zero, we take the second branch and calculate
the factorial of n− 1...

Since 0 is zero, we take the first branch and re-
turn the value 1 immediately without making any
more recursive calls.

The return value (1) gets multiplied by n, which is 1, and
the result is returned.

The return value (1) gets multiplied by n, which is 2, and the result
is returned.

The return value (2) gets multiplied by n, which is 3, and the result, 6, is
returned to main program, or whoever invoked factorial (3).

Here is what the stack diagram looks like for this sequence of function calls:

3

n:

n:

n:

2

1

0
1

2

1

6

result:recurse:n:

recurse:

recurse:

result:

result:1

1 2

2 6

1

top level

factorial

factorial

factorial

factorial

The return values are shown being passed back up the stack.
Notice that in the last instance of factorial, the local variables recurse

and result do not exist because when n=0 the branch that creates them does
not execute.

5.9 Leap of faith

Following the flow of execution is one way to read programs, but as you saw
in the previous section, it can quickly become labarynthine. An alternative is
what I call the “leap of faith.” When you come to a function invocation, instead
of following the flow of execution, you assume that the function works correctly
and returns the appropriate value.



5.10. ONE MORE EXAMPLE 47

In fact, you are already practicing this leap of faith when you use built-in
functions. When you invoke cos or printf, you don’t examine the implemen-
tations of those functions. You just assume that they work, because the people
who wrote the built-in classes were good programmers.

Well, the same is true when you invoke one of your own functions. For exam-
ple, in Section 5.7 we wrote a function called is single digit that determines
whether a number is between 0 and 9. Once we have convinced ourselves that
this function is correct—by testing and examination of the code—we can use
the function without ever looking at the code again.

The same is true of recursive programs. When you get to the recursive
invocation, instead of following the flow of execution, you should assume that
the recursive invocation works (yields the correct result), and then ask yourself,
“Assuming that I can find the factorial of n− 1, can I compute the factorial of
n?” In this case, it is clear that you can, by multiplying by n.

Of course, it is a bit strange to assume that the function works correctly
when you have not even finished writing it, but that’s why it’s called a leap of
faith!

5.10 One more example

In the previous example I used temporary variables to spell out the steps, and
to make the code easier to debug, but I could have saved a few lines:

define factorial(n);
if n = 0 then

return(1);
else

return(n * factorial (n-1));
endif;

enddefine;

From now on I will tend to use the more concise version, but I recommend that
you use the more explicit version while you are developing code. When you have
it working, you can tighten it up, if you are feeling inspired.

After factorial, the classic example of a recursively-defined mathematical
function is fibonacci, which has the following definition:

fibonacci(0) = 1
fibonacci(1) = 1
fibonacci(n) = fibonacci(n− 1) + fibonacci(n− 2);

Translated into Pop11, this is

define fibonacci (n);
if n = 0 or n = 1 then



48 CHAPTER 5. FRUITFUL FUNCTIONS

return(1);
else

return(fibonacci (n-1) + fibonacci (n-2));
endif;

enddefine;

If you try to follow the flow of execution here, even for fairly small values of n,
your head explodes. But according to the leap of faith, if we assume that the
two recursive calls (yes, you can make two recursive calls) work correctly, then
it is clear that we get the right result by adding them together.

5.11 Glossary

return value: The value provided as the result of a function invocation.

dead code: Part of a program that can never be executed, often because it
appears after a return statement.

scaffolding: Code that is used during program development but is not part of
the final version.

boolean: A type that contains only the two values true and false.

flag: A variable (usually boolean) that records a condition or status informa-
tion.

conditional operator: An operator that compares two values and produces a
boolean that indicates the relationship between the operands.

logical operator: An operator that combines boolean values and produces
boolean values.

initialization: A statement that declares a new variable and assigns a value
to it at the same time.



Chapter 6

Iteration

6.1 Multiple assignment

I haven’t said much about it, but it is legal in Pop11 to make more than one
assignment to the same variable. The effect of the second assignment is to
replace the old value of the variable with a new value.

lvars fred = 5;
printf(fred, ’%p’);
7 -> fred;
printf(fred, ’%p\n’);

The output of this program is 57, because the first time we print fred his value
is 5, and the second time his value is 7.

This kind of multiple assignment is the reason I described variables as
a container for values. When you assign a value to a variable, you change the
contents of the container, as shown in the figure:

fred

5

lvars fred = 5; 7 −> fred;

fred

5 7

When there are multiple assignments to a variable, it is especially important
to distinguish between an assignment statement and a statement of equality.
Some other languages use the = symbol for assignment, which may cause con-
fusion. Pop11 use -> as an assignment symbol, which makes distinction very
clear.

It is tempting to interpret a statement like lvars a = b; as a statement of
equality. It kind of works if there is no more assignments to a and b. Namely,

49



50 CHAPTER 6. ITERATION

in mathematics, a statement of equality is true for all time. If a = b now, then
a will always equal b. In Pop11, even if variables are equal at one time they
don’t have to stay that way — an assignment later can make them unequal.

lvars a = 5;
lvars b = a; ;;; a and b are now equal
3 -> a; ;;; a and b are no longer equal

The third line changes the value of a but it does not change the value of b, and
so they are no longer equal.

Although multiple assignment is frequently useful, you should use it with
caution. If the values of variables are changing constantly in different parts of
the program, it can make the code difficult to read and debug.

6.2 Iteration

One of the things computers are often used for is the automation of repetitive
tasks. Repeating identical or similar tasks without making errors is something
that computers do well and people do poorly.

We have already seen programs that use recursion to perform repetition,
such as n lines and countdown. This type of repetition is called iteration, and
Pop11 provides several language features that make it easier to write iterative
programs.

The two features we are going to look at are the while statement and the
for statement.

6.3 The while statement

Using a while statement, we can rewrite countdown:

define countdown(n);
while n > 0 do

printf(n, ’%p\n’);
n - 1 -> n;

endwhile;
printf (’Blastoff!’);

enddefine;

You can almost read a while statement as if it were English. What this means
is, “While n is greater than zero, continue printing the value of n and then
reducing the value of n by 1. When you get to zero, print the word ‘Blastoff!”’

More formally, the flow of execution for a while statement is as follows:

1. Evaluate the condition between while and do, yielding true or false.

2. If the condition is false, exit the while statement and continue execution
at the next statement.



6.3. THE WHILE STATEMENT 51

3. If the condition is true, execute each of the statements between the do
and endwhile, and then go back to step 1.

This type of flow is called a loop because the third step loops back around
to the top. Notice that if the condition is false the first time through the loop,
the statements inside the loop are never executed. The statements inside the
loop are sometimes called the body of the loop.

The body of the loop should change the value of one or more variables so
that, eventually, the condition becomes false and the loop terminates. Otherwise
the loop will repeat forever, which is called an infinite loop. An endless source
of amusement for computer scientists is the observation that the directions on
shampoo, “Lather, rinse, repeat,” are an infinite loop.

In the case of countdown, we can prove that the loop will terminate because
we know that the value of n is finite, and we can see that the value of n gets
smaller each time through the loop (each iteration), so eventually we have to
get to zero. In other cases it is not so easy to tell:

define sequence(n);
while n /= 1 do

printf(n, ’%p\n’);
if n rem 2 = 0 then ;;; n is even

n div 2 -> n;
else ;;; n is odd

n*3 + 1 -> n;
endif;

endwhile;
enddefine;

The condition for this loop is n /= 1, so the loop will continue until n is 1,
which will make the condition false.

At each iteration, the program prints the value of n and then checks whether
it is even or odd. If it is even, the value of n is divided by two. If it is odd, the
value is replaced by 3n + 1. For example, if the starting value (the argument
passed to sequence) is 3, the resulting sequence is 3, 10, 5, 16, 8, 4, 2, 1.

Since n sometimes increases and sometimes decreases, there is no obvious
proof that n will ever reach 1, or that the program will terminate. For some
particular values of n, we can prove termination. For example, if the starting
value is a power of two, then the value of n will be even every time through
the loop, until we get to 1. The previous example ends with such a sequence,
starting with 16.

Particular values aside, the interesting question is whether we can prove that
this program terminates for all values of n. So far, no one has been able to prove
it or disprove it!



52 CHAPTER 6. ITERATION

6.4 Tables

One of the things loops are good for is generating and printing tabular data.
For example, before computers were readily available, people had to calculate
logarithms, sines and cosines, and other common mathematical functions by
hand.

To make that easier, there were books containing long tables where you could
find the values of various functions. Creating these tables was slow and boring,
and the result tended to be full of errors.

When computers appeared on the scene, one of the initial reactions was,
“This is great! We can use the computers to generate the tables, so there
will be no errors.” That turned out to be true (mostly), but shortsighted. Soon
thereafter computers (and calculators) were so pervasive that the tables became
obsolete.

Well, almost. It turns out that for some operations, computers use tables of
values to get an approximate answer, and then perform computations to improve
the approximation. In some cases, there have been errors in the underlying
tables, most famously in the table the original Intel Pentium used to perform
floating-point division.

Although a “log table” is not as useful as it once was, it still makes a good
example of iteration. The following program prints a sequence of values in the
left column and their logarithms in the right column:

lvars x = 1.0;
while x < 10.0 do

printf(x, ’%p ’);
printf(log(x), ’%p\n’);
x + 1.0 -> x;

endwhile;

The output of this program is

1.0 0.0
2.0 0.693147
3.0 1.09861
4.0 1.38629
5.0 1.60944
6.0 1.79176
7.0 1.94591
8.0 2.07944
9.0 2.19722

Looking at these values, can you tell what base the log function uses by default?
Since powers of two are so important in computer science, we often want to

find logarithms with respect to base 2. To find that, we have to use the following
formula:



6.4. TABLES 53

log2 x =
logex

loge2
(6.1)

Changing the printf statement containing log to

printf (log(x) / log(2.0), ’%p\n’);

yields

1.0 0.0
2.0 1.0
3.0 1.58496
4.0 2.0
5.0 2.32193
6.0 2.58496
7.0 2.80735
8.0 3.0
9.0 3.16992

We can see that 1, 2, 4 and 8 are powers of two, because their logarithms base
2 are round numbers. If we wanted to find the logarithms of other powers of
two, we could modify the program like this:

lvars x = 1.0;
while x < 100.0 do

printf(x, ’%p ’);
printf (log(x) / log(2.0), ’%p\n’);
x * 2.0 -> x;

endwhile;

Now instead of adding something to x each time through the loop, which yields
an arithmetic sequence, we multiply x by something, yielding a geometric
sequence. The result is:

1.0 0.0
2.0 1.0
4.0 2.0
8.0 3.0
16.0 4.0
32.0 5.0
64.0 6.0

Log tables may not be useful any more, but for computer scientists, knowing
the powers of two is! Some time when you have an idle moment, you should
memorize the powers of two up to 65536 (that’s 216).



54 CHAPTER 6. ITERATION

6.5 Two-dimensional tables

A two-dimensional table is a table where you choose a row and a column and
read the value at the intersection. A multiplication table is a good example.
Let’s say you wanted to print a multiplication table for the values from 1 to 6.

A good way to start is to write a simple loop that prints the multiples of 2,
all on one line.

lvars i = 1;
while i <= 6 do

printf (2*i, ’%p ’);
i + 1 -> i;

endwhile;
printf(’\n’);

The first line initializes a variable named i, which is going to act as a counter,
or loop variable. As the loop executes, the value of i increases from 1 to 6,
and then when i is 7, the loop terminates. Each time through the loop, we
print the value 2*i followed by three spaces. Since we print newline only in the
final statement, all the output appears on a single line.

The output of this program is:

2 4 6 8 10 12

So far, so good. The next step is to encapsulate and generalize.

6.6 Encapsulation and generalization

Encapsulation usually means taking a piece of code and wrapping it up in a
function, allowing you to take advantage of all the things functions are good
for. We have seen two examples of encapsulation, when we wrote print parity
in Section 4.3 and is single digit in Section 5.7.

Generalization means taking something specific, like printing multiples of 2,
and making it more general, like printing the multiples of any integer.

Here’s a function that encapsulates the loop from the previous section and
generalizes it to print multiples of n.

define print_multiples(n);
lvars i = 1;
while i <= 6 do

printf (n*i, ’%p ’);
i + 1 -> i;

endwhile;
printf(’\n’);

enddefine;



6.7. FUNCTIONS 55

To encapsulate, all I had to do was add the first line, which declares the name
and parameter, and the last line. To generalize, all I had to do was replace the
value 2 with the parameter n.

If I invoke this function with the argument 2, I get the same output as before.
With argument 3, the output is:

3 6 9 12 15 18

and with argument 4, the output is

4 8 12 16 20 24

By now you can probably guess how we are going to print a multiplication table:
we’ll invoke print multiples repeatedly with different arguments. In fact, we
are going to use another loop to iterate through the rows.

lvars i = 1;
while i <= 6 do

print_multiples (i);
i + 1 -> i;

endwhile;

First of all, notice how similar this loop is to the one inside print multiples.
All I did was replace the print statement with a function invocation.

The output of this program is

1 2 3 4 5 6
2 4 6 8 10 12
3 6 9 12 15 18
4 8 12 16 20 24
5 10 15 20 25 30
6 12 18 24 30 36

which is a (slightly sloppy) multiplication table. If the sloppiness bothers you,
Pop11 provides functions that give you more control over the format of the
output, but I’m not going to get into that here.

6.7 Functions

In the last section I mentioned “all the things functions are good for.” About
this time, you might be wondering what exactly those things are. Here are some
of the reasons functions are useful:

• By giving a name to a sequence of statements, you make your program
easier to read and debug.

• Dividing a long program into functions allows you to separate parts of the
program, debug them in isolation, and then compose them into a whole.



56 CHAPTER 6. ITERATION

• Functions facilitate both recursion and iteration.

• Well-designed functions are often useful for many programs. Once you
write and debug one, you can reuse it.

6.8 More encapsulation

To demonstrate encapsulation again, I’ll take the code from the previous section
and wrap it up in a function:

define print_mult_table();
lvars i = 1;
while i <= 6 do

print_multiples (i);
i + 1 -> i;

endwhile
enddefine;

The process I am demonstrating is a common development plan. You develop
code gradually by adding lines to main program or someplace else, and then
when you get it working, you extract it and wrap it up in a function.

The reason this is useful is that you sometimes don’t know when you start
writing exactly how to divide the program into functions. This approach lets
you design as you go along.

6.9 Local variables

About this time, you might be wondering how we can use the same variable i
in both print multiples and print mult table. Didn’t I say that you can
only declare a variable once? And doesn’t it cause problems when one of the
functions changes the value of the variable?

The answer to both questions is “no,” because the i in print multiples
and the i in print mult table are not the same variable. They have the same
name, but they do not refer to the same storage location, and changing the
value of one of them has no effect on the other.

Variables that are declared inside a function definition are called local vari-
ables because they are local to their own functions. You cannot access a local
variable from outside its “home” function, and you are free to have multiple
variables with the same name, as long as they are not in the same function.

It is often a good idea to use different variable names in different function, to
avoid confusion, but there are good reasons to reuse names. For example, it is
common to use the names i, j and k as loop variables. If you avoid using them
in one function just because you used them somewhere else, you will probably
make the program harder to read.



6.10. MORE GENERALIZATION 57

6.10 More generalization

As another example of generalization, imagine you wanted a program that would
print a multiplication table of any size, not just the 6x6 table. You could add a
parameter to print mult table:

define print_mult_table(high);
lvars i = 1;
while i <= high do

print_multiples (i);
i + 1 -> i;

endwhile
enddefine;

I replaced the value 6 with the parameter high. If I invoke print mult table
with the argument 7, I get

1 2 3 4 5 6
2 4 6 8 10 12
3 6 9 12 15 18
4 8 12 16 20 24
5 10 15 20 25 30
6 12 18 24 30 36
7 14 21 28 35 42

which is fine, except that I probably want the table to be square (same num-
ber of rows and columns), which means I have to add another parameter to
print multiples, to specify how many columns the table should have.

Just to be annoying, I will also call this parameter high, demonstrating
that different functions can have parameters with the same name (just like local
variables):

define print_multiples(n, high);
lvars i = 1;
while i <= high do

printf (n*i, ’%p ’);
i + 1 -> i;

endwhile;
printf(’\n’);

enddefine;

define print_mult_table(high);
lvars i = 1;
while i <= high do

print_multiples (i);
i + 1 -> i;

endwhile
enddefine;



58 CHAPTER 6. ITERATION

Notice that when I added a new parameter, I had to change the first line of
the function (containing parameter list), and I also had to change the place
where the function is invoked in printi mult table. As expected, this program
generates a square 7x7 table:

1 2 3 4 5 6 7
2 4 6 8 10 12 14
3 6 9 12 15 18 21
4 8 12 16 20 24 28
5 10 15 20 25 30 35
6 12 18 24 30 36 42
7 14 21 28 35 42 49

When you generalize a function appropriately, you often find that the resulting
program has capabilities you did not intend. For example, you might notice
that the multiplication table is symmetric, because ab = ba, so all the entries in
the table appear twice. You could save ink by printing only half the table. To
do that, you only have to change one line of print mult table. Change

print_multiples (i, high);

to

print_multiples (i, i);

and you get

1
2 4
3 6 9
4 8 12 16
5 10 15 20 25
6 12 18 24 30 36
7 14 21 28 35 42 49

I’ll leave it up to you to figure out how it works.

6.11 Glossary

loop: A statement that executes repeatedly while or until some condition is
satisfied.

infinite loop: A loop whose condition is always true.

body: The statements inside the loop.

iteration: One pass through (execution of) the body of the loop, including the
evaluation of the condition.



6.11. GLOSSARY 59

encapsulate: To divide a large complex program into components (like func-
tions) and isolate the components from each other (for example, by using
local variables).

local variable: A variable that is declared inside a function and that exists
only within that function. Local variables cannot be accessed from outside
their home function, and do not interfere with any other functions.

generalize: To replace something unnecessarily specific (like a constant value)
with something appropriately general (like a variable or parameter). Gen-
eralization makes code more versatile, more likely to be reused, and some-
times even easier to write.

development plan: A process for developing a program. In this chapter,
I demonstrated a style of development based on developing code to do
simple, specific things, and then encapsulating and generalizing. In Sec-
tion 5.2 I demonstrated a technique I called incremental development. In
later chapters I will suggest other styles of development.



60 CHAPTER 6. ITERATION



Chapter 7

Strings and things

7.1 Characters and codes

The data contained in a string are the letters of the string. Individual let-
ters are called characters. In Pop11 characters are not a separate type, each
character is represented by a small integer, called “character code”. The exact
correspondence between characters and integer is called an “character encod-
ing” and vary widely between computer systems. Fortunately, there is subset of
characters which is encoded the same on all computers running Pop11 — called
the ASCII charset. All characters that we will use are in this subset.

How Pop11 know that an integer is really not an integer, but represents a
character? Well, it does not know, Pop11 just performs operation on integers
and most of the time this gives intended effect. For example, to copy a character
just copy corresponding integer. However, sometimes you need tell Pop11 that
you want an integer to be handled as a character. For example, integer 97
represents lowercase ’a’. To print it and see the character we have to tell printf
that we want a character. Compare:

printf(97, ’%p\n’);
printf(97, ’%c\n’);

The first statement prints 97 while the second prints a. I wrote previously that
print replaces %p sequence in the second argument by its first argument. In
fact, printf converts its first argument to a string and then replaces %p by the
resulting string. For each type Pop11 has rules how to convert it to a string.

The %c sequence is similar to %p, but requires integer argument and simply
treats it as a character code.

It would be awkward to write such numbers as 97 in programs — Pop11 has
special notation for writing characters: just put a character inside grave quotes
and Pop11 will know that you want this character code:

lvars fred = ‘c‘;

61



62 CHAPTER 7. STRINGS AND THINGS

printf(fred, ’%p\n’);
printf(fred, ’%c\n’);

Unlike string values (which appear in apostrophes), character values can contain
only a single letter.

7.2 Extracting character from a string

Pop11 uses parenthesis ( and ) to extract characters from strings:

lvars fruit = ’banana’;
lvars letter = fruit(1);
printf (letter, ’%c\n’);

The expression fruit(1) indicates that I want character number 1 (that is first
character) from the string named fruit. Note: many languages start counting
from 0, however counting starting from 1 is more natural for humans.

Note that fruit(1) looks like a function invocation — you may wonder why
Pop11 uses the same notation here. In fact, fruit(1) is a function invocation:
in Pop11 string may serve as a function and applying this function to an integer
n gives character number n from the string.

7.3 Length

The second function we’ll look at is length, which returns the number of char-
acters in the string. For example:

lvars fruilt_length = length(fruit);

length takes the string as an argument and returns an integer, in this case 6.
To find the last letter of a string, you may do

lvars fruilt_length = length(fruit);
lvars last = fruit(length(fruit));

7.4 Traversal

A common thing to do with a string is start at the beginning, select each char-
acter in turn, do something to it, and continue until the end. This pattern of
processing is called a traversal. A natural way to encode a traversal is with a
while statement:

lvars index = 1;
while index <= length(fruit) do

lvars letter = fruit(index);



7.5. RUN-TIME ERRORS 63

printf(letter, ’%c\n’);
index + 1 -> index;

endwhile;

This loop traverses the string and prints each letter on a line by itself. Notice
that the condition is index <= length(fruit), which means that when index
is bigger than the length of the string, the condition is false and the body of
the loop is not executed. The last character we access is the one with the index
length(fruit).

The name of the loop variable is index. An index is a variable or value
used to specify one member of an ordered set (in this case the set of characters
in the string). The index indicates (hence the name) which one you want. The
set has to be ordered so that each letter has an index and each index refers to
a single character.

As an exercise, write a function that takes a string as an argument and that
prints the letters backwards, all on one line.

7.5 Run-time errors

Way back in Section 1.3.2 I talked about run-time errors, which are errors that
don’t appear until a program has started running.

7.6 Reading documentation

7.7 The locchar function

In some ways, locchar is the opposite of the () operator. () takes an index
and returns the character at that index. locchar takes a character and finds
the index where that character appears.

locchar fails if the character does not appear in the string, and returns the
value false.

lvars fruit = ’banana’;
lvars index = locchar(‘a‘, 1, fruit);

This finds the index of the letter ’a’ in the string. In this case, the letter
appears three times, so it is not obvious what locchar should do. According to
the documentation, it returns the index of the first appearance. You may ask
why we gave three arguments to locchar: the second argument tells locchar
where to start searching (in our case at index 1).

In order to find subsequent appearances of ’a’ invoke

lvars index = locchar(‘a‘, 3, fruit);



64 CHAPTER 7. STRINGS AND THINGS

it will start at the third letter (the first n) and find the second a, which is at
index 4. If the letter happens to appear at the starting index, the starting index
is the answer. Thus,

lvars index = locchar(‘a‘, 6, fruit);

returns 6.
What happens if the starting index is out of range: if the starting index is

negative or zero you will get runtime error. If the starting index is bigger than
the length of string locchar gives you false indicating that the character is
not found.

7.8 Looping and counting

The following program counts the number of times the letter ’a’ appears in a
string:

lvars fruit = ’banana’;
lvars fruilt_length = length(fruit);
lvars count = 0;
lvars index = 1;
while index <= fruilt_length do

if fruit(index) = ‘a‘ then
count + 1 -> count;

endif;
index + 1 -> index;

endwhile;
printf (count, ’%p\n’);

This program demonstrates a common idiom, called a counter. The variable
count is initialized to zero and then incremented each time we find an ‘a‘ (to
increment is to increase by one; it is the opposite of decrement, and unrelated
to excrement, which is a noun). When we exit the loop, count contains the
result: the total number of a’s.

As an exercise, encapsulate this code in a function named count letters,
and generalize it so that it accepts the string and the letter as arguments.

As a second exercise, rewrite the method so that it uses locchar to locate
the a’s, rather than checking the characters one by one.

7.9 Creating strings from characters

Often we have a few charaters in hand and want to create from then a new
string. Pop11 has a special for that purpose: consstring. For example

consstring(‘O‘, ‘K‘, 2) =>



7.10. STRINGS ARE MUTABLE 65

Prints OK. The consstring function is somewhat unusual, it takes variable
number of arguments. It one argument for each character in the string and the
last argument tells consstring how long the string is, hence, the number of
other arguments. Since OK has length 2 we passed 2 as the last argument.

If the string is constant putting it in apostrophes is more convenient than
using consstring, but consstring works also when charaters are stored in
variables

lvars g = ‘G‘;
lvars o = ‘o‘;
consstring(g, o, o, ‘d‘, 4) =>

7.10 Strings are mutable

The () operator not only allows you to access individual characters of the string,
it also allows you to change them. For example

lvars fruit = ’banana’;
‘f‘ -> fruit(1);
printf(fruit, ’%p\n’);

prints fanana.

7.11 Character arithmetic

Since in Pop11 character really are you can do arithmetic with characters! The
expression ‘a‘ + 1 yields the same value as ‘b‘. Similarly, if you have a variable
named letter that contains a character, then letter - ’a’ + 1 will tell you
where in the alphabet it appears.

This sort of thing is useful for converting between the characters that contain
numbers, like ‘0‘, ‘1‘ and ‘2‘, and the corresponding integers. To convert ’3’ to
the corresponding integer value you can subtract ’0’:

lvars x = letter - ‘0‘;

Another use for character arithmetic is to loop through the letters of the
alphabet in order. For example, in Robert McCloskey’s book Make Way for
Ducklings, the names of the ducklings form an abecedarian series: Jack, Kack,
Lack, Mack, Nack, Ouack, Pack and Quack. Here is a loop that prints these
names in order:

lvars name = ’Jack’;
lvars letter = ‘J‘;
while letter <= ‘Q‘ do

letter -> name(1);
printf (name, ’%p\n’);



66 CHAPTER 7. STRINGS AND THINGS

letter + 1 -> letter;
endwhile;

Notice that in addition to the arithmetic operators, we can also use the condi-
tional operators on characters. The output of this program is:

Jack
Kack
Lack
Mack
Nack
Oack
Pack
Qack

Of course, that’s not quite right because I’ve misspelled “Ouack” and “Quack.”
As an exercise, modify the program to correct this error.

Above, we used modified the value of name. We could alternatively create
new string in each iteration. To do this it is enough to replace the line

letter -> name(1);

by

consstring(letter, 1) >< ’ack’ -> name;

7.12 Generalized booleans

Up to now we used the if statement many times. You may thin that you need
boolean expression as a condition in the if statement. This is not true. Pop11
has so called “generalized booleans”. It allows any value in condition. The
boolean false means really false, while any other value is treated as true

if 0 then
printf(’0 is the same as true\n’);

endif;

Prints 0 is the same as true.
Generalized booleans frequently allow writing shorter and more efficient pro-

grams, but they may be confusing, especially for beginners. In this book I
will try to avoid them, but many built-in Pop11 functions return generalized
booleans, so you need to know about them. Let me also say that logical opera-
tors not, and and or handle generalized booleans.



7.13. COMPARING STRINGS 67

7.13 Comparing strings

It is often necessary to compare strings to see if they are the same, or to see
which comes first in alphabetical order. To check for equality we can just use
= or /= operator. Later you will learn about == operator—typically you do not
want to use this operator to compare strings. It would be nice if we could use
other comparison operators, like >, but we can’t.

In order check which string comes first in dictionary order use alphabefore
function. For example:

lvars name1 = ’Alan Turing’;
lvars name2 = ’Ada Lovelace’;

if name1 = name2 then
printf (’The names are the same.\n’);

elseif alphabefore(name1, name2) then
printf (’name1 comes before name2.\n’);

else
printf (’name2 comes before name1.\n’);

endif;

The return value from alphabefore is strange: true if the first string is lexically
before the second, false if the second string is lexically before the first and 1 if
both strings contain the same characters. So the return value of alphabefore
is a generalized boolean.

Using properties of alphabefore we can do comparison in slightly different
way:

lvars name1 = ’Alan Turing’;
lvars name2 = ’Ada Lovelace’;
lvars cmp = alphabefore(name1, name2);

if cmp = 1 then
printf (’The names are the same.\n’);

elseif cmp then
printf (’name1 comes before name2.\n’);

else
printf (’name2 comes before name1.\n’);

endif;

7.14 Glossary

index: A variable or value used to select one of the members of an ordered set,
like a character from a string.

traverse: To iterate through all the elements of a set performing a similar
operation on each.



68 CHAPTER 7. STRINGS AND THINGS

counter: A variable used to count something, usually initialized to zero and
then incremented.

increment: Increase the value of a variable by one.

decrement: Decrease the value of a variable by one.

exception: A run time error. Exceptions cause the execution of a program to
terminate.



Chapter 8

Words and lists

8.1 Identity

I wrote that values are stored in variables. It is more precise to say that variables
“reference” values. Namely, two different variables can reference (“contain”) the
same value. Look at the following example

lvars fred = ’day’;
lvars frank = fred;
‘s‘ -> frank(1);
printf(fred, ’%p\n’);

It prints say. One would expect that fred contains the string day and that
this sting should appear in the output. What happened? The second line copy
reference but the string itself is not copied, so both fred and frank reference the
same string. Hence, modifying string referenced by frank has effect on fred.

How can you detect that two variables reference the same (identical) value
and not merely an exact copy? Pop11 uses == operator to check if two values
are identical. For example

lvars fred = ’day’;
lvars frank = fred;
frank == fred =>
’day’ -> frank;
frank == fred =>
frank = fred =>

prints <true>, <false> and <true>. After the second line fred and frank are
identical. The line ’day’ -> frank; assings a new string to frank. This new
string has the same charactes as the old one, so frank and fred are equal, but
not identical.

Checking for identity is very cheap: this check essentially compares it two
values are stored in the same memory location—this can be done in a single

69



70 CHAPTER 8. WORDS AND LISTS

machine operation. On the other hand checking equality may be much more
expensive: to check that two strings are equal one has to compare all characters
are equal, which requires several machine operations. To get better execution
speed some programmers prefer to use identity of values instead of equality.
However, real life problem usually require equality. We could get the best of
two words if could arrange things such that equal values are always identical
(that is stored in the same memory location). In general, trying to make equal
values identical has many problems. But we can get most of benefits if we
replace strings by words.

8.2 Words

Words is special data type related to strings. However, unlike strings equal
words are always identical. To guarantee that equal words are identical Pop11
stores all words in a special central place, called dictionary. When you try to
create a new word Pop11 first checks if the word is present in the dictionary. If
the word is present in the dictionary Pop11 uses the copy from dictionary. If the
word is absent from the dictionary Pop11 add the new word to the dictionary.
Words can be used similarly to strings.

To create a new word we put the letter in quotes:

lvars word1 = "I_am_a_word";

Note: if you want to have some funny characters inside a word you need to first
put characters into apostrophes (like string) and then put quotes around it:

lvars word2 = "’I am a word’";

Print arrow and printf function works on words

word1 =>
printf(word1, ’%p\n’);

Note: you can not use one argument version of printf to print words, because
the last argument to printf must be a string.

As I promised, equal words are identical

lvars word3 = "I_am_a_word";
word1 == word3 =>

Given a string we can create corresponding word using consword:

lvars word = consword(’word from string’);

The consword function can also create a word from characters

lvars word = consword(‘O‘, ‘K‘, 2);

We can use word string to convert a word to a string

lvars string = word_string(word);



8.3. TYPE PREDICATES 71

8.3 Type predicates

As saw in the previous section words and strings when printed look exactly the
same. So have can we check that given variable references a word (as opposed
say to a string). Pop11 has a general solution to this problem. Each data type
has a special function which returns true if a value is of that type and false
otherwise. Such function is called “recognizer” (or “type predicate”). In Pop11
type predicates have very regular names: the name of type predicate is the name
of the type with the letters is prepended. So, to check is a value is a word we
use isword function

isword(word) =>

To check for strings we use isstring function

isstring(word) =>
isstring(’a string’) =>

8.4 Creating lists

We can create a list by writting some elements inside the square brackets [ and
]:

lvars numbers = [1 2 5];
numbers =>

which prints [1 2 5].
Inside list brackets Pop11 uses special rules to read the program

lvars fruits = [apple banana pear];
fruits =>

gives a list of three words – it like all elements were in quotes.
We can put elements of any type in a list, even nested lists

lvars mixed = [1 apple ’banana’ [4 5]];
mixed =>

gives a list having the integer 1 as the first element, the word apple as the
second element, the string banana as the thired element and the list [1 2] as
the fourth element.

8.5 Extracting element from a list

Pop11 uses first function to extact first element from a list

first(fruits) =>



72 CHAPTER 8. WORDS AND LISTS

To extract any element from lists, Pop11 uses parenthesis ( and )

lvars fruit = fruits(2);
printf (fruit, ’%p\n’);

The expression fruits(2) indicates that I want element number 2 (that is
second element) from the list named fruits.

NOTE: fruits(n) looks like a simple operation, but in fact it must traverse
the list and skip first n - 1 elements. For large n it is a substantial work.

8.6 Length

The length returns the number of characters in the list. For example:

lvars fruilts_length = length(fruits);

We alredy saw that length can compute length of a string, now we see that it
computes length of a list. In fact, length is a general function which can be
applied to many different types.

8.7 Linked lists

Pop11 lists are linked lists. The simplest possible list is an empty list, which
contains no elements. Pop11 uses square brackets with on elements to denote
empty list: []. Other lists consist of series of nodes, each one references the
next one (the last node references the empty list). Additionally, each node stores
a value. The first function extracts values stored in the first node. The list
referenced by the first node is called tail of a list. Pop11 uses the back function
to get the tail

back([first second third]) =>

You can use conspair function to build list with given first element and tail.
For example, if tail is the empty list we get one element list

conspair(2, []) =>

We can build longer lists composing conspair

conspair("a", conspair("longer", conspair("list", []))) =>



8.8. LIST TRAVERSAL 73

8.8 List traversal

A common thing to do with a list is start at the beginning, select each element
in turn, do something to it, and continue until the end. A natural way to
handle lists is via recursion: first we handle the first element (given by the
first) function, then we apply the same operation to the tail (given by the
back function). We stop when we arrive to the empty list.

However, it is easy to do the same using while statement:

while fruits /= [] do
lvars element = front(fruits);
printf(element, ’%p\n’);
back(fruits) -> fruits;

endwhile;

This loop traverses the string and prints each element on a line by itself. Notice
that the condition is fruits /= [], which means that when fruits is empty
than, the condition is false and the body of the loop is not executed.

Traversing list is a common operation so Pop11 provides special syntax for
this purpose, the for loop

lvars element;
for element in fruits do

printf(element, ’%p\n’);
endfor;

8.9 List are mutable

We can modify list elements:

lvars animals = [rat dog cat];
animals =>
"horse" -> first(animals);
animals =>
"snake" -> animals(3);
animals =>

8.10 Glossary



74 CHAPTER 8. WORDS AND LISTS



Chapter 9

Compound values

9.1 Why to use objects?

A common motivation for creating a new object type is to take several related
pieces of data and encapsulate them into an object that can be manipulated
(passed as an argument, operated on) as a single unit.

Although Strings and lists are compound values, their components have no
name. Sometimes unnamed components are a feature, however typically named
components make program easier to read and write.

Here are the most important ideas in this chapter:

• A class definition is like a template for objects: it determines what slots
(instance variables) the objects have.

• Every object belongs to some object type; hence, it is an instance of some
class.

• When you define a class like Point Pop11 automatically creates several
functions for you: slot accessors, and constructors. Slot accessorss have
the same name as slots. Name of constructors is the name of class with
the word cons or new prepended – the Point class have consPoint and
newPoint constructors.

• You create a new object of a class by calling its constructor.

• You read or modify slots using slot accessors.

In this chapter, we are going to create two new object types Point and
Rectangle. Right from the start, I want to make it clear that these points
and rectangles are not graphical objects that appear on the screen. They are
variables that contain data, just like ints and doubles. Like other variables,
they are used internally to perform computations.

75



76 CHAPTER 9. COMPOUND VALUES

9.2 Libraries

Poplog system is divide into many parts called libraries. Pop11 support object
is in a library called objectclass. Before we can use object we must first tell
Pop11 that we need the library using uses statement:

uses objectclass;

9.3 Point objects

At the most basic level, a point is two numbers (coordinates) that we treat
collectively as a single object. In mathematical notation, points are often written
in parentheses, with a comma separating the coordinates. For example, (0, 0)
indicates the origin, and (x, y) indicates the point x units to the right and y
units up from the origin.

To represent points in Pop11 we will create Point class.

define :class Point;
slot x = 0;
slot y = 0;

enddefine;

To create a new point, you can use the consPoint function:

lvars blank = consPoint (3, 4);

This line is a conventional variable declaration: blank is initialized with the
value produced by consPoint. It will probably not surprise you that the ar-
guments to consPoint are the coordinates of the new point, (3, 4). In general
consSomething need an argument for each slot (instance variable) of Something
(the arguments appear in the same order as slots in the class definition).

The result of the consPoint function is a reference to the new point. I’ll
explain references more later; for now the important thing is that the variable
blank contains a reference to the newly-created object. There is a standard way
to diagram this assignment, shown in the figure.

blank

3x:

y: 4

As usual, the name of the variable blank appears outside the box and its
value appears inside the box. In this case, that value is a reference, which is



9.4. INSTANCE VARIABLES 77

shown graphically with a dot and an arrow. The arrow points to the object
we’re referring to.

The big box shows the newly-created object with the two values in it. The
names x and y are the names of the instance variables.

Taken together, all the variables, values, and objects in a program are called
the state. Diagrams like this that show the state of the program are called
state diagrams. As the program runs, the state changes, so you should think
of a state diagram as a snapshot of a particular point in the execution.

9.4 Instance variables

The pieces of data that make up an object are sometimes called components,
records, or fields. In Pop11 the they are officially called slots, but we will call
them instance variables because each object, which is an instance of its type,
has its own copy of the instance variables.

It’s like the glove compartment of a car. Each car is an instance of the type
“car,” and each car has its own glove compartment. If you asked me to get
something from the glove compartment of your car, you would have to tell me
which car is yours.

Similarly, if you want to read a value from an instance variable, you have to
specify the object you want to get it from. In Pop11 the each instance variable
has an associated accessor function, to get (or set) value of instance variable
you pass the object as an argument to the accessor:

lvars blank_x = x(blank);

The expression x(blank) means “go to the object blank refers to, and get the
value of x.” In this case we assign that value to a variable named blank x. We
can not use the name x as the name of variable, because the name is already
taken (by the accessor function).

In Pop11 you can also use “dot notation.”

lvars blank_x = blank.x;

The expression blank.x is just a shorthand for x(blank).
You can use dot notation as part of any Pop11 expression, so the following

are legal.

blank.x >< ’, ’ >< blank.y =>
lvars distance = blank.x * blank.x + blank.y * blank.y;

The first line prints 3, 4; the second line calculates the value 25.



78 CHAPTER 9. COMPOUND VALUES

9.5 Objects as parameters

You can pass objects as parameters in the usual way. For example

define print_point (p) {
printf (’(’ >< x(p) >< ’, ’ >< y(p) + ’)’, ’%s\n’);

enddefine;

is a function that takes a point as an argument and prints it in the standard
format. If you invoke print point (blank), it will print (3, 4). Actually,
Pop11 printf can also print Points. If you invoke printf (blank, ’%\n’),
you get

<Point x:3 y:4>

This is a standard format Pop11 uses for printing objects. It prints the name of
the type, followed by the contents of the object, including the names and values
of the instance variables.

As a second example, we can rewrite the distance function from Section 5.2
so that it takes two Points as parameters instead of four doubles.

define distance(p1, p2);
lvars dx = x(p1) - x(p1);
lvars dy = y(p2) - y(p1);
return(sqrt(dx*dx + dy*dy));

enddefine;

9.6 Rectangles

Rectangles are similar to points, except that they have four instance variables,
named x, y, width and height.

Other than that, everything is pretty much the same:

define :class Rectangle;
slot x = 0;
slot y = 0;
slot width = 0;
slot height = 0;

enddefine;

lvars box = consRectangle (0, 0, 100, 200);

creates a new Rectangle object and makes box refer to it. The figure shows
the effect of this assignment.



9.7. OBJECTS AS RETURN TYPES 79

x:

y:

box

width: 100

200

0

0 height:

If you print box, you get

<Rectangle x:0 y:0 width:100 height:200>

Again, this result is because Pop11 has a built-in way to print all objects.

9.7 Objects as return types

You can write functions that return objects. For example, find center takes a
Rectangle as an argument and returns a Point that contains the coordinates
of the center of the Rectangle:

define find_center (box);
lvars x1 = x(box) + width(box)/2;
lvars y1 = y(box) + height(box)/2;
return(consPoint (x1, y1);

enddefine;

Notice that you can use consPoint to create a new object, and then immediately
use the result as a return value.

9.8 Objects are mutable

You can change the contents of an object by making an assignment to one of
its instance variables. For example, to “move” a rectangle without changing its
size, you could modify the x and y values:

x(box) + 50 -> x(box);
y(box) + 100 -> y(box);

The result is shown in the figure:

x:

y:

0

0

box

200

width:

height:100

100 50



80 CHAPTER 9. COMPOUND VALUES

We could take this code and encapsulate it in a function, and generalize it
to move the rectangle by any amount:

define move_rect(box, dx, dy);
x(box) + dx -> x(box);
y(box) + dy -> y(box);

enddefine;

The variables dx and dy indicate how far to move the rectangle in each direction.
Invoking this function has the effect of modifying the Rectangle that is passed
as an argument.

lvars box = consRectangle (0, 0, 100, 200);
move_rect (box, 50, 100);
box =>

prints <Rectangle x:50 y:100 width:100 height:200>.
Modifying objects by passing them as arguments to functions can be useful,

but it can also make debugging more difficult because it is not always clear
which function invocations do or do not modify their arguments. Later, I will
discuss some pros and cons of this programming style.

9.9 Aliasing

Remember that when you make an assignment to an object variable, you are
assigning a reference to an object. It is possible to have multiple variables that
refer to the same object. For example, this code:

lvars box1 = consRectangle (0, 0, 100, 200);
lvars box2 = box1;

generates a state diagram that looks like this:

x:

y:

width: 100

200

0

0 height:

box1

box2

Both box1 and box2 refer or “point” to the same object. In other words,
this object has two names, box1 and box2. When a person uses two names, it’s
called aliasing. Same thing with objects.

When two variables are aliased, any changes that affect one variable also
affect the other. For example:



9.10. EMPTY LIST AS A NULL OBJECT 81

box2.width =>
width(box1) + 50 -> width(box1);
height(box1) + 50 -> height(box1);
box2.width =>

The first line prints 100, which is the width of the Rectangle referred to by
box2. The second line and third line increase width and height of box1 by 50
(in other word thos two lines expands the box1 by 50 pixels in every direction).
The effect is shown in the figure:

x:

y:

0

0

box1

box2

100

200

width:

height:

−50

−50

200

300

As should be clear from this figure, whatever changes are made to box1 also
apply to box2. Thus, the value printed by the third line is 200, the width of
the expanded rectangle. (As an aside, it is perfectly legal for the coordinates of
a Rectangle to be negative.)

As you can tell even from this simple example, code that involves aliasing
can get confusing fast, and it can be very difficult to debug. In general, aliasing
should be avoided or used with care.

9.10 Empty list as a null object

When you create a variable, it is good to immediatly initialize it. In fact, if you
do not provide inital value Pop11 will initialize the variable with special undef
value (which serves as a marker to alert you that you are using an undefined
value). However, somtimes the value in not really undefined, but just there in no
value. For example a Person object may have an instance variable spouse: for
a single person we want explicitly say that thare is no spouse. Some languages
ifor this purpose use special null object. In Pop11 we can do this in multiple
ways. One is to use a special value, for example a word like "none". In the
sequel we will use empty list ([]) to signify that a variable references no object.

For example

lvars blank = [];

is shown in the following state diagram:

blank



82 CHAPTER 9. COMPOUND VALUES

The value [] is represented by a dot with no arrow.
If you try to use empty list in place of an object, either by accessing an

instance variable or passing it as argument to a function expecting an object,
you will get a mishap. The system will print an error message and terminate
the program.

lvars blank = [];
lvars blank_x = x(blank); ;;; mishap
move_rect(blank, 50, 50); ;;; mishap

On the other hand, it is legal to pass a empty list as an argument or receive one
as a return value. In fact, it is common to do so, for example to represent an
empty set or indicate an error condition.

9.11 Garbage collection

In Section 9.9 we talked about what happens when more than one variable refers
to the same object. What happens when no variable refers to an object? For
example:

lvars blank = consPoint (3, 4);
[] -> blank;

The first line creates a new Point object and makes blank refer to it. The
second line changes blank so that instead of referring to the object, it refers to
the empty list.

blank

3x:

y: 4

If no one refers to an object, then no one can read or write any of its values,
or invoke a function on it. In effect, it ceases to exist. We could keep the object
in memory, but it would only waste space, so periodically as your program runs,
the Pop11 system looks for stranded objects and reclaims them, in a process
called garbage collection. Later, the memory space occupied by the object
will be available to be used as part of a new object.

You don’t have to do anything to make garbage collection work, and in
general you will not be aware of it.



9.12. OBJECTS AND PRIMITIVES 83

9.12 Objects and primitives

Strictly speaking Pop11 object types are differenent from other Pop11 types.
However, Pop11 object system is so well integrated that the difference hardy
matters.

9.13 Glossary

instance: An example from a category. My cat is an instance of the category
“feline things.” Every object is an instance of some class.

instance variable: One of the named data items that make up an object. Each
object (instance) has its own copy of the instance variables for its class.

reference: A value that indicates an object. In a state diagram, a reference
appears as an arrow.

aliasing: The condition when two or more variables refer to the same object.

garbage collection: The process of finding values that have no references and
reclaiming their storage space.

state: A complete description of all the variables and objects and their values,
at a given point during the execution of a program.

state diagram: A snapshot of the state of a program, shown graphically.



84 CHAPTER 9. COMPOUND VALUES



Chapter 10

More objects

10.1 Time

Another example of class, is Time, which is used to record the time of day. The
various pieces of information that form a time are the hour, minute and second.
Because every Time object will contain these data, we need to create instance
variables to hold them.

Instance variables are declared like this:

define :class Time;
slot hour = 0;
slot minute = 0;
slot second = 0.0;

enddefine;

The state diagram for a Time object looks like this:

hour:

minute:

second: 0.0

0

0

10.2 Constructors

The usual role of a constructor is to initialize the instance variables.
Given class definition of Time Pop11 automatically generates two constructor

function consTime and newTime.

85



86 CHAPTER 10. MORE OBJECTS

The newTime constructor does not take any arguments, it initializes instance
variables to default values (either values given in the slot definition or special
undef value).

The consTime constructor has a parameter list that is identical to the list
of instance variables. All the constructor does is copy the information from the
parameters to the instance variables.

If you go back and look at Points and Rectangles, you will see that
both classes provide constructors like this (we used only consPoint and
consRectangle). Have both constructors provides the flexibility to create an
object first and then fill in the blanks, or to collect all the information before
creating the object.

Of course, sometimes the two automatically generated constructors are not
enough. For example, we want a constructor that has inital values for some
instance variables as parameters, and based on them computes to other values.
Such constructor is easy to write: just use the new variant of standard construc-
tor to a blank object, and fill the instance variables with required values.

10.3 Creating a new object

Constructors are just ordinary function, you invoke them like all other functions.
The following program demonstrates two ways to create and initialize Time

objects:

;;; one way to create and initialize a Time object
lvars t1 = newTime ();
11 -> hour(t1);
8 -> minute(t1);
3.14159 -> second(t1);
t1 =>

;;; another way to do the same thing
lvars t2 = consTime (11, 8, 3.14159);
t2 =>

The first time we invoke the newTime function, it takes no arguments. The next
few lines assign values to each of the instance variables.

The second time we invoke the consTime function, we provide values of
instance variables as arguments. This way of initializing the instance variables
is more concise (and slightly more efficient), but it can be harder to read, since
it is not as clear which values are assigned to which instance variables.

10.4 Printing an object

The output of this program is:



10.5. OPERATIONS ON OBJECTS 87

** <Time hour:11 minute:8 second:3.14159>
** <Time hour:11 minute:8 second:3.14159>

When Pop11 prints the value of a user-defined object type, it prints the name
of the type and names and values of all instance variables, surrounde by < and
>. The name of instance variables is separated from value by colon (:).

In order to print objects in a way that is more meaningful to users (as
opposed to programmers), you may want to write a function called something
like print time:

define print_time (t);
printf (hour(t) >< ’:’ >< minute(t) >< ’:’ >< second(t),

’%p\n’);
enddefine;

Compare this function to the version of print time in Section 3.8.
The output of this function, if we pass either t1 or t2 as an argument, is

11:8:3.14159. Although this is recognizable as a time, it is not quite in the
standard format. For example, if the number of minutes or seconds is less than
10, we expect a leading 0 as a place-keeper. Also, we might want to drop the
decimal part of the seconds. In other words, we want something like 11:08:03.

Pop11 provides very powerful format print function for printing formatted
things like numbers. We will get nicer output if we replace the printf invocation
in print time by the following:

format_print(’~A:~A:~7,4,,,‘0F\n’,
[^(hour(t)) ^(minute(t)) ^(second(t))]);

10.5 Operations on objects

Beside printing, we can write other function that manipulate Time objects.
In the next few sections, I will demonstrate several functions that operate on
objects. For some operations, you will have a choice of several possible styles,
so you should consider the pros and cons of each of these:

pure function: Takes objects and/or primitives as arguments but does not
modify the objects. The return value is either a primitive or a new object
created inside the function.

modifier: Takes objects as arguments and modifies some or all of them. Often
returns no value.

fill-in function: One of the arguments is an “empty” object that gets filled in
by the function. Technically, this is a type of modifier.



88 CHAPTER 10. MORE OBJECTS

10.6 Pure functions

A function is considered a pure function if the result depends only on the ar-
guments, and it has no side effects like modifying an argument or printing
something. The only result of invoking a pure function is the return value.

One example is after, which compares two Times and returns a boolean
that indicates whether the first operand comes after the second:

define after(time1,time2);
if hour(time1) > hour(time2) then

return(true);
elseif hour(time1) < hour(time2) then

return(false);
elseif minute(time1) > minute(time2) then

return(true);
elseif minute(time1) < minute(time2) then

return(false);
elseif second(time1) > second(time2) then

return(true);
elseif second(time1) < second(time2) then

return(false);
endif;
return(false);

enddefine;

What is the result of this function if the two times are equal? Does that seem like
the appropriate result for this function? If you were writing the documentation
for this function, would you mention that case specifically?

A second example is add time, which calculates the sum of two times. For
example, if it is 9:14:30, and your breadmaker takes 3 hours and 35 minutes,
you could use add time to figure out when the bread will be done.

Here is a rough draft of this function that is not quite right:

define add_time(t1, t2);
lvars sum = newTime();
hour(t1) + hour(t2) -> hour(sum);
minute(t1) + minute(t2)-> minute(sum);
second(t1) + second(t2) -> second(sum);
return(sum);

enddefine;

Here is an example of how to use this function. If current time contains the
current time and bread time contains the amount of time it takes for your
breadmaker to make bread, then you could use add time to figure out when the
bread will be done.

lvars current_time = consTime (9, 14, 30.0);



10.7. MODIFIERS 89

lvars bread_time = consTime (3, 35, 0.0);
lvars done_time = add_time (current_time, bread_time);
print_time (done_time);

The output of this program is 12:49:30.0, which is correct. On the other hand,
there are cases where the result is not correct. Can you think of one?

The problem is that this function does not deal with cases where the number
of seconds or minutes adds up to more than 60. In that case, we have to “carry”
the extra seconds into the minutes column, or extra minutes into the hours
column.

Here’s a second, corrected version of this function.

define add_time(t1, t2);
lvars sum = newTime();
hour(t1) + hour(t2) -> hour(sum);
minute(t1) + minute(t2)-> minute(sum);
second(t1) + second(t2) -> second(sum);
if second(sum) >= 60.0 then

second(sum) - 60.0 -> second(sum);
minute(sum) + 1 -> minute(sum);

endif;
if minute(sum) >= 60 then

minute(sum) - 60 -> minute(sum);
hour(sum) + 1 -> hour(sum);

endif;
return(sum);

enddefine;

Although it’s correct, it’s starting to get big. Later, I will suggest an alternate
approach to this problem that will be much shorter.

10.7 Modifiers

As an example of a modifier, consider increment, which adds a given number
of seconds to a Time object. Again, a rough draft of this function looks like:

define increment(time, secs);
second(time) + secs -> second(time);
if second(time) >= 60.0 then

second(time) - 60.0 -> second(time);
minute(time) + 1 -> minute(time);

endif;
if minute(time) >= 60 then

minute(time) - 60 -> minute(time);
hour(time) + 1 -> hour(time);

endif;
enddefine;



90 CHAPTER 10. MORE OBJECTS

The first line performs the basic operation; the remainder deals with the same
cases we saw before.

Is this function correct? What happens if the argument secs is much greater
than 60? In that case, it is not enough to subtract 60 once; we have to keep
doing it until second is below 60. We can do that by simply replacing the if
statements with while statements:

define increment(time, secs);
second(time) + secs -> second(time);
while second(time) >= 60.0 then

second(time) - 60.0 -> second(time);
minute(time) + 1 -> minute(time);

endif;
while minute(time) >= 60 then

minute(time) - 60 -> minute(time);
hour(time) + 1 -> hour(time);

endif;
enddefine;

This solution is correct, but not very efficient. Can you think of a solution that
does not require iteration?

10.8 Fill-in functions

Occasionally you will see functions like add time written with a different in-
terface (different arguments and return values). Instead of creating a new ob-
ject every time add time is invoked, we could require the caller to provide an
“empty” object where add time should store the result. Compare the following
with the previous version:

define add_time_fill(t1, t2, sum);
hour(t1) + hour(t2) -> hour(sum);
minute(t1) + minute(t2)-> minute(sum);
second(t1) + second(t2) -> second(sum);
if second(sum) >= 60.0 then

second(sum) - 60.0 -> second(sum);
minute(sum) + 1 -> minute(sum);

endif;
if minute(sum) >= 60 then

minute(sum) - 60 -> minute(sum);
hour(sum) + 1 -> hour(sum);

endif;
enddefine;

One advantage of this approach is that the caller has the option of reusing the
same object repeatedly to perform a series of additions. This can be slightly



10.9. WHICH IS BEST? 91

more efficient, although it can be confusing enough to cause subtle errors. For
the vast majority of programming, it is worth spending a little run time to avoid
a lot of debugging time.

10.9 Which is best?

Anything that can be done with modifiers and fill-in functions can also be done
with pure functions. In fact, there are programming languages, called func-
tional programming languages, that only allow pure functions. Some program-
mers believe that programs that use pure functions are faster to develop and
less error-prone than programs that use modifiers. Nevertheless, there are times
when modifiers are convenient, and some cases where functional programs are
less efficient.

In general, I recommend that you write pure functions whenever it is rea-
sonable to do so, and resort to modifiers only if there is a compelling advantage.
This approach might be called a functional programming style.

10.10 Incremental development vs. planning

In this chapter I have demonstrated an approach to program development I
refer to as rapid prototyping with iterative improvement. In each case,
I wrote a rough draft (or prototype) that performed the basic calculation, and
then tested it on a few cases, correcting flaws as I found them.

Although this approach can be effective, it can lead to code that is unnec-
essarily complicated—since it deals with many special cases—and unreliable—
since it is hard to convince yourself that you have found all the errors.

An alternative is high-level planning, in which a little insight into the prob-
lem can make the programming much easier. In this case the insight is that a
Time is really a three-digit number in base 60! The second is the “ones column,”
the minute is the “60’s column”, and the hour is the “3600’s column.”

When we wrote add time and increment, we were effectively doing addition
in base 60, which is why we had to “carry” from one column to the next.

Thus an alternate approach to the whole problem is to convert Times into a
floating point value and take advantage of the fact that the computer already
knows how to do arithmetic with floating point values. Here is a function that
converts a Time into a ddecimal:

define convert_to_seconds (t) {
lvars minutes = hour(t) * 60 + minute(minute);
lvars seconds = minutes * 60 + second(t);
return(seconds);

enddefine;

Now all we need is a way to convert from a ddecimal to a Time object: do it,
but it might make more sense to write it as a third constructor:



92 CHAPTER 10. MORE OBJECTS

define seconds_to_time(secs)
lvars this = newTime();
intof(secs / 3600.0) -> hour(this);
secs - hour(this) * 3600.0 -> secs;
intof(secs / 60.0) -> minute(this);
secs - minute(this) * 60 -> secs;
second -> secs second(this);
return(this);

enddefine;

This function is really a third constructor for Time. This constructor is a little
different from the others, since it involves some calculation along with assign-
ments to the instance variables.

It is quite tricky why the technique I am using to convert from one base
to another is correct (assuming that secs is non-negative). With some effort
you should see that this works provided that the arithmetic operations are done
exactly. However, floating point operation give only approximate result (due to
rounding). Fortunatly, on modern machines the intof operation is exact. Also,
integers of reasonable size (in particular 3600.0 are represented exactly. Next,
if x is an exact integer multiple of n and y > x then floating point division of y
by n gives bigger result than floating point division of x by n. Similarly, if x is
an exact integer multiple of n and y < x then loating point division of y by n
gives smaller result than floating point division of x by n. The net effect is that
inequalities that matter for us (for example that second(this) is smaller than
60) hold the same as in case of exact calculations.

Assuming you belive that seconds to time is correct, we can use these
functionss to rewrite add time:

define add_time(t1, t2);
lvars seconds = conver_to_seconds (t1) + convert_to_seconds (t2);
return(seconds_to_time(seconds));

enddefine;

This is much shorter than the original version, and it is much easier to demon-
strate that it is correct (assuming, as usual, that the functions it invokes are
correct). As an exercise, rewrite increment the same way.

10.11 Generalization

In some ways converting from base 60 to base 10 and back is harder than just
dealing with times. Base conversion is more abstract; our intuition for dealing
with times is better.

But if we have the insight to treat times as base 60 numbers, and make
the investment of writing the conversion functions (convert to seconds and
seconds to time), we get a program that is shorter, easier to read and debug,
and more reliable.



10.12. ALGORITHMS 93

It is also easier to add more features later. For example, imagine subtracting
two Times to find the duration between them. The naive approach would be
to implement subtraction complete with “borrowing.” Using the conversion
functions would be much easier.

Ironically, sometimes making a problem harder (more general) makes is eas-
ier (fewer special cases, fewer opportunities for error).

10.12 Algorithms

When you write a general solution for a class of problems, as opposed to a specific
solution to a single problem, you have written an algorithm. I mentioned this
word in Chapter 1, but did not define it carefully. It is not easy to define, so I
will try a couple of approaches.

First, consider some things that are not algorithms. For example, when you
learned to multiply single-digit numbers, you probably memorized the multipli-
cation table. In effect, you memorized 100 specific solutions, so that knowledge
is not really algorithmic.

But if you were “lazy,” you probably cheated by learning a few tricks. For
example, to find the product of n and 9, you can write n − 1 as the first digit
and 10−n as the second digit. This trick a general solution for multiplying any
single-digit number by 9. That’s an algorithm!

Similarly, the techniques you learned for addition with carrying, subtraction
with borrowing, and long division are all algorithms. One of the characteristics
of algorithms is that they do not require any intelligence to carry out. They
are mechanical processes in which each step follows from the last according to
a simple set of rules.

In my opinion, it is embarrassing that humans spend so much time in school
learning to execute algorithms that, quite literally, require no intelligence.

On the other hand, the process of designing algorithms is interesting, intel-
lectually challenging, and a central part of what we call programming.

Some of the things that people do naturally, without difficulty or conscious
thought, are the most difficult to express algorithmically. Understanding natural
language is a good example. We all do it, but so far no one has been able to
explain how we do it, at least not in the form of an algorithm.

Later you will have the opportunity to design simple algorithms for a variety
of problems.

10.13 Glossary

class: In this chapter we learned that a class definition is a template for a new
type of object.

instance: A member of a class. Every object is an instance of some class.



94 CHAPTER 10. MORE OBJECTS

constructor: A special function that creates a new object and initializes its
instance variables.

pure function: A function whose result depends only on its parameters, and
that has no side-effects other than returning a value.

functional programming style: A style of program design in which the ma-
jority of functions are pure.

modifier: A function that changes one or more of the objects it receives as
parameters, and usually returns no value.

fill-in function: A type of function that takes an “empty” object as a param-
eter and fills it its instance variables instead of generating a return value.
This type of function is usually not the best choice.

algorithm: A set of instructions for solving a class of problems by a mechanical,
unintelligent process.



Chapter 11

Arrays

An array is a set of values where each value is identified by an index. Pop11
has to kinds of arrays, a simple one called vector and more involved one called
array. Most of the time vectors will suffice, so talking about arrays I will
mostly talk about vectors and only rarely about general arrays.

The simplest way to create a vector is to use curly braces {}
lvars count = {0 0 0 0}

The first initialization makes count refer to a fresh vector containing four integer
zeros.

The following figure shows how arrays are represented in state diagrams:

0 0 0 0

1 2 3 4
count

The words inside the boxes are the elements of the array. The small num-
bers outside the boxes are the indices used to identify each box.

To create a vector, you can also use the initv function.

lvars count = initv(4);

This initialization makes count refer to a fresh four element vector filled with
the word undef. We gave no initial value for elements, so Pop11 uses the word
undef to remaind us to initialize the elements with correct values.

The following figure shows the new array:

undef undef undef undef

1 2 3 4
count

95



96 CHAPTER 11. ARRAYS

11.1 Accessing elements

To store values in the array, use the () operator. For example count(1) refers
to the first element of the array, and count(2) refers to the second element.
You can use the () operator anywhere in an expression:

7 -> count(1);
count(1) * 2 -> count(2);
-(count(1) rem 2) -> count(3);
-59 + count(3) -> count(4);

All of these are legal assignment statements. Here is the effect of this code
fragment:

1 2 3 4

7 1 −6014
count

By now you should have noticed that the four elements of this array are
numbered from 1 to 4, which means that there is no element with the index
5. This should sound familiar, since we saw the same thing with string indices.
Nevertheless, it is a common error to go beyond the bounds of an array, which
will cause an exception (mishap). As with all exceptions, you get an error
message and the program quits.

You can use any expression as an index, as long as its values are integers.
One of the most common ways to index an array is with a loop variable. For
example:

lvars i = 1;
while i <= 4 do

printf(count(i), ’%p\n’);
i + 1 -> i;

endwhile;

This is a standard while loop that counts from 1 up to 4, and when the loop
variable i is 5, the condition fails and the loop terminates. Thus, the body of
the loop is only executed when i is 1, 2, 3 and 4.

Each time through the loop we use i as an index into the array, printing the
ith element. This type of array traversal is very common. Arrays and loops go
together like fava beans and a nice Chianti.

11.2 Copying arrays

When you copy an array variable, remember that you are copying a reference
to the array. For example:



11.3. FOR LOOPS 97

lvars a = { 0.0 0.0 0.0 };
lvars b = a;

This code creates one array of three decimals, and sets two different variables
to refer to it. This situation is a form of aliasing.

1 2 3
a

0.00.0 0.0

b

Any changes in either array will be reflected in the other. This is not usually
the behavior you want; instead, you should make a copy of the array. You can
use copy function

lvars b = copy(a);

Alternatively, you can allocate a new array and copy each element from one
to the other.

lvars b = initv(3);

lvars i = 1;
while i <= 3 do

a(i) -> b(i);
i + 1 -> i;

endwhile;

11.3 for loops

The loops we have written so far have a number of elements in common. All of
them start by initializing a variable; they have a test, or condition, that depends
on that variable; and inside the loop they increment that variable.

This type of loop is so common that there is a variant of for statement, that
expresses it more concisely. The general syntax looks like this:

for var from START by STEP to END do
BODY

endfor;

If STEP is positive this statement is exactly equivalent to

START -> var;
while var <= END do



98 CHAPTER 11. ARRAYS

BODY
STEP + var -> var;

endwhile;

except that it is more concise and, since it puts all the loop-related statements
in one place, it is easier to read. If STEP is 1 you can omit the by STEP part.
For example:

lvars i;
for i from 1 to 4 do

printf (count(i), ’%p\n’);
endfor;

is equivalent to

lvars i = 1;
while i <= 4 do

printf (count(i), ’%p\n’);
i + 1 -> i;

endwhile;

As an exercise, write a for loop to copy the elements of an array.

11.4 Arrays and objects

In many ways, arrays behave like objects:

• When you declare an array variable, you get a reference to an array.

• You have to use the new command to create the array itself.

• When you pass an array as an argument, you pass a reference, which
means that the invoked function can change the contents of the array.

Some of the objects we have looked at, like Rectangles, are similar to arrays,
in the sense that they are named collection of values. This raises the question,
“How is an array of 4 integers different from a Rectangle object?”

If you go back to the definition of “array” at the beginning of the chapter,
you will see one difference, which is that the elements of an array are identified
by indices, whereas the elements (instance variables) of an object have names
(like x, width, etc.).

11.5 Array length

The length function works for arrays (the length of an array is the number of
elements). It is a good idea to use this value as the upper bound of a loop,
rather than a constant value. That way, if the size of the array changes, you
won’t have to go through the program changing all the loops; they will work
correctly for any size array.



11.6. RANDOM NUMBERS 99

for i from 1 to length(a) do
a(i) -> b(i);

endfor;

The last time the body of the loop gets executed, i is length(a), which is the
index of the last element. This code assumes that the array b contains at least
as many elements as a.

As an exercise, write your own version of copy function for vectors (call it
clone array) that takes a vector as a parameter, creates a new vector that is
the same size, copies the elements from the first array into the new one, and
then returns a reference to the new array.

11.6 Random numbers

Most computer programs do the same thing every time they are executed, so
they are said to be deterministic. Usually, determinism is a good thing, since
we expect the same calculation to yield the same result. For some applications,
though, we would like the computer to be unpredictable. Games are an obvious
example, but there are many more.

Making a program truly nondeterministic turns out to be not so easy,
but there are ways to make it at least seem nondeterministic. One of them is
to generate random numbers and use them to determine the outcome of the
program. Pop11 provides a built-in function that generates pseudorandom
numbers, which are not truly random in the mathematical sense, but for our
purposes, they will do.

Check out the documentation of the random function. The random function
takes one argument, an integer or a float. The return value is a integer bigger
than 0 and smaller or equal to the argument. If the argument is an integer the
return value is also an integer, if the argument is a float return value is a float.
Each time you invoke random you get a different randomly-generated number.
To see a sample, run this loop:

lvars i;
for i from 1 to 10 do

lvars x = random (1.0);
printf (x, ’%p\n’);

endfor;

To generate a random float between low and high high, you can add low to x.
Try to generate a random integer.

11.7 Statistics

The numbers generated by random are supposed to be distributed uniformly. If
you have taken statistics, you know what that means. Among other things, it



100 CHAPTER 11. ARRAYS

means that if we divide the range of possible values into equal sized “buckets,”
and count the number of times a random value falls in each bucket, each bucket
should get the same number of hits (eventually).

In the next few sections, we will write programs that generate a sequence of
random numbers and check whether this property holds true.

11.8 Array of random numbers

The first step is to generate a large number of random values and store them
in an array. By “large number,” of course, I mean 8. It’s always a good idea to
start with a manageable number, to help with debugging, and then increase it
later.

The following function takes a single argument, the size of the array. It
allocates a new array, fills it with random floats, and returns a reference to the
new array.

define random_array(n);
lvars a = initv(n);
lvars i;
for i from 1 to length(a) do

random(1.0) -> a(i);
endfor;
return (a);

enddefine;

To test this function, it is convenient to print the contents of an array – print
arrow works fine for vectors.

The following code generates an array and prints it:

lvars num_values = 8;
lvars array = random_array (num_values);
array =>

On my machine the output is

** {0.511548 0.465616 0.1745 0.714364 0.086424 0.390443 0.962521 0.468249}

which is pretty random-looking. Your results may differ.
If these numbers are really random, we expect half of them to be greater

than 0.5 and half to be less. In fact, five are smaller than 0.5, so that’s a little
different.

If we divide the range into four buckets—from 0.0 to 0.25, 0.25 to 0.5, 0.5
to 0.75, and 0.75 to 1.0—we expect 2 values to fall in each bucket. In fact, we
get 2, 3, 2, 1. Again, not exactly what we expected.

Do these results mean the values are not really random? It’s hard to tell.
With so few values, the chances are slim that we would get exactly what we



11.9. COUNTING 101

expect. But as the number of values increases, the outcome should be more
predictable.

To test this theory, we’ll write some programs that divide the range into
buckets and count the number of values in each.

11.9 Counting

A good approach to problems like this is to think of simple functions that are
easy to write, and that might turn out to be useful. Then you can combine them
into a solution. Of course, it is not easy to know ahead of time which functions
are likely to be useful, but as you gain experience you will have a better idea.

Also, it is not always obvious what sort of things are easy to write, but a
good approach is to look for subproblems that fit a pattern you have seen before.

Back in Section 7.8 we looked at a loop that traversed a string and counted
the number of times a given letter appeared. You can think of this program
as an example of a pattern called “traverse and count.” The elements of this
pattern are:

• A set or container that can be traversed, like an array or a string.

• A test that you can apply to each element in the container.

• A counter that keeps track of how many elements pass the test.

In this case, I have a function in mind called in bucket that counts the
number of elements in an array that fall in a given bucket. The parameters are
the array and two floats that specify the lower and upper bounds of the bucket.

define in_bucket(a, low, high);
lvars count = 0;
lvars i;
for i from 1 to length(a) do

if a(i) > low and a(i) <= high then
count + 1 -> count;

endif;
endfor;
return (count);

enddefine;

I haven’t been very careful about whether something equal to low or high falls
in the bucket, but you can see from the code that low is out and high is in.
That should prevent me from counting any elements twice.

Now, to divide the range into two pieces, we could write

lvars low = in_bucket (a, 0.0, 0.5);
lvars high = in_bucket (a, 0.5, 1.0);



102 CHAPTER 11. ARRAYS

To divide it into four pieces:

lvars bucket1 = in_bucket (a, 0.0, 0.25);
lvars bucket2 = in_bucket (a, 0.25, 0.5);
lvars bucket3 = in_bucket (a, 0.5, 0.75);
lvars bucket4 = in_bucket (a, 0.75, 1.0);

You might want to try out this program using a larger num values. As
num values increases, are the numbers in each bucket levelling off?

11.10 Many buckets

Of course, as the number of buckets increases, we don’t want to have to rewrite
the program, especially since the code is getting big and repetitive. Any time
you find yourself doing something more than a few times, you should be looking
for a way to automate it.

Let’s say that we wanted 8 buckets. The width of each bucket would be
one eighth of the range, which is 0.125. To count the number of values in each
bucket, we need to be able to generate the bounds of each bucket automatically,
and we need to have some place to store the 8 counts.

We can solve the first problem with a loop:

lvars num_buckets = 8;
lvars bucket_width = 1.0 / num_buckets;

for i from 0 to num_buckets - 1 do
lvars low = i * bucket_width;
lvars high = low + bucket_width;
printf(low >< ’ to ’ >< high, ’%p\n’);

endfor;

This code uses the loop variable i to multiply by the bucket width, in order to
find the low end of each bucket. The output of this loop is:

0.0 to 0.125
0.125 to 0.25
0.25 to 0.375
0.375 to 0.5
0.5 to 0.625
0.625 to 0.75
0.75 to 0.875
0.875 to 1.0

You can confirm that each bucket is the same width, that they don’t overlap,
and that they cover the whole range from 0.0 to 1.0.

Now we just need a way to store 8 integers, preferably so we can use an
index to access each one. Immediately, you should be thinking “array!”



11.11. A SINGLE-PASS SOLUTION 103

What we want is an array of 8 integers, which we can allocate outside the
loop; then, inside the loop, we’ll invoke in bucket and store the result:

lvars num_buckets = 8;
lvars buckets = initv(num_buckets);
lvars bucket_width = 1.0 / num_buckets;

for i from 0 to num_buckets - 1 do
lvars low = i * bucket_width;
lvars high = low + bucket_width;
;;; printf(low >< ’ to ’ >< high, ’%p\n’);
in_bucket (a, low, high) -> buckets(i + 1);

endfor;

The tricky thing here is that I am using the loop variable as an index into the
buckets array, in addition to using it to compute the range of each bucket.

This code works. I cranked the number of values up to 1000 and divided the
range into 8 buckets. The output is:

111 146 136 107 135 117 122 126

which is pretty close to 125 in each bucket. At least, it’s close enough that I
can believe the random number generator is working.

11.11 A single-pass solution

Although this code works, it is not as efficient as it could be. Every time it
invokes in bucket, it traverses the entire array. As the number of buckets
increases, that gets to be a lot of traversals.

It would be better to make a single pass through the array, and for each value,
compute which bucket it falls in. Then we could increment the appropriate
counter.

In the previous section, we took an index, i, and multiplied it by the
bucket width in order to find the lower bound of a given bucket. Now we
want to take a value in the range 0.0 to 1.0, and find the index of the bucket
where it falls.

Since this problem is the inverse of the previous problem we might guess
that we should divide by the bucket width instead of multiplying. That guess
is correct.

Remember that since bucket width = 1.0 / num buckets, dividing by
bucket width is the same as multiplying by num buckets. If we take a number
in the range 0.0 to 1.0 and multiply by num buckets, we get a number in the
range from 0.0 to num buckets. If we round that number to the next lower
integer and add 1, we get exactly what we are looking for—the index of the
appropriate bucket.



104 CHAPTER 11. ARRAYS

lvars num_buckets = 8;
lvars buckets = initv(num_buckets);
lvars i;

for i from 1 to num_buckets do
0 -> buckets(i);

endfor;

for i from 1 to num_values do
lvars index = 1 + intof(a(i) * num_buckets);
buckets(index) + 1 -> buckets(index);

endfor;

Here I am using the intof to round the value down to the next integer and
convert it to integer at the same time.

Is it possible for this calculation to produce an index that is out of range
(either negative or greater than length(a))? If so, how would you fix it?

An array like buckets, that contains counts of the number of values in each
range, is called a histogram. As an exercise, write a function called histogram
that takes an array and a number of buckets as parameters, and that returns a
histogram with the given number of buckets.

11.12 Glossary

array: A named collection of values, where each value is identified by an index.

collection: Any data structure that contains a set of items or elements.

element: One of the values in an array. The () operator selects elements of
an array.

index: An integer variable or value used to indicate an element of an array.

deterministic: A program that does the same thing every time it is invoked.

pseudorandom: A sequence of numbers that appear to be random, but which
are actually the product of a deterministic computation.

histogram: An array of integers where each integer counts the number of values
that fall into a certain range.



Chapter 12

Arrays of Objects

12.1 Composition

By now we have seen several examples of composition (the ability to combine
language features in a variety of arrangements). One of the first examples we
saw was using a function invocation as part of an expression. Another example
is the nested structure of statements: you can put an if statement within a
while loop, or within another if statement, etc.

Having seen this pattern, and having learned about arrays and objects, you
should not be surprised to learn that you can have arrays of objects. In fact,
you can also have objects that contain arrays (as instance variables); you can
have arrays that contain arrays; you can have objects that contain objects, and
so on.

In the next two chapters we will look at some examples of these combinations,
using Card objects as an example.

12.2 Card objects

If you are not familiar with common playing cards, now would be a good time to
get a deck, or else this chapter might not make much sense. There are 52 cards
in a deck, each of which belongs to one of four suits and one of 13 ranks. The
suits are Spades, Hearts, Diamonds and Clubs (in descending order in Bridge).
The ranks are Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen and King. Depending
on what game you are playing, the rank of the Ace may be higher than King or
lower than 2.

If we want to define a new object to represent a playing card, it is pretty
obvious what the instance variables should be: rank and suit. It is not as
obvious what values to store in the instance variables. One possibility is words,
usings things like "Spade" for suits and "Queen" for ranks. One problem with
this implementation is that it would not be easy to compare cards to see which
had higher rank or suit.

105



106 CHAPTER 12. ARRAYS OF OBJECTS

An alternative is to use integers to encode the ranks and suits. By “encode,”
I do not mean what some people think, which is to encrypt, or translate into
a secret code. What a computer scientist means by “encode” is something like
“define a mapping between a sequence of numbers and the things I want to
represent.” For example,

Spades 7→ 4
Hearts 7→ 3
Diamonds 7→ 2
Clubs 7→ 1

The symbol 7→ is mathematical notation for “maps to.” The obvious feature
of this mapping is that the suits map to integers in order, so we can compare
suits by comparing integers. The mapping for ranks is fairly obvious; each of
the numerical ranks maps to the corresponding integer, and for face cards:

Jack 7→ 11
Queen 7→ 12
King 7→ 13

The reason I am using mathematical notation for these mappings is that
they are not part of the Pop11 program. They are part of the program design,
but they never appear explicitly in the code. The class definition for the Card
type looks like this:

define :class Card;
slot suit = 1;
slot rank = 1;

enddefine;

As usual, we get two constructors, one of which takes a parameter for each
instance variable and the other of which takes no parameters.

To create an object that represents the 3 of Clubs, we would use the
consCard command:

lvars threeOfClubs = consCard (1, 3);

The first argument, 1 represents the suit Clubs.

12.3 The print card function

When you create a new class, the first step is usually to declare the instance
variables and write constructors. The second step is often to write the standard
functions that every object should have, including one that prints the object,
and one or two that compare objects. I will start with print card.

In order to print Card objects in a way that humans can read easily, we want
to map the integer codes onto words. A natural way to do that is with an array
of words. You can create an array of words the same way you create an array
of other primitive types:



12.3. THE PRINT CARD FUNCTION 107

lvars suits = initv(4);

Then we can set the values of the elements of the array.

"Clubs" -> suits(1);
"Diamonds" -> suits(2);
"Hearts" -> suits(3);
"Spades" -> suits(4);

Creating an array and initializing the elements is such a common operation that
Pop11 provides a special syntax for it:

lvars suits = { Clubs Diamonds Hearts Spades };

The effect of this statement is identical to that of the separate declaration,
allocation, and assignment. A state diagram of this array might look like:

suits

"Clubs"

"Spades"

"Diamonds"

"Hearts"

Now, all we need is another array to decode the ranks:

lvars ranks = { Ace 2 3 4 5 6 7 8 9 10 Jack Queen King };

This time, for convenience, we mixed words with integers.
Using these arrays, we can select the appropriate value to print by using the

suit and rank as indices. In the function print card,

define print_card(c);
lvars suits = { Clubs Diamonds Hearts Spades };
lvars ranks = { Ace 2 3 4 5 6 7 8 9 10 Jack Queen King };
printf(ranks(rank(c)) >< ’ of ’ >< suits(suit(c)), ’%p\n’);

enddefine;

the expression suits(suit(c)) means “use the instance variable suit from the
object c as an index into the array named suits, and select the appropriate
value.” The output of this code

lvars card = consCard (2, 11);
print_card (card);

is Jack of Diamonds.



108 CHAPTER 12. ARRAYS OF OBJECTS

12.4 Comparing Cards

The word “same” is one of those things that occur in natural language that
seem perfectly clear until you give it some thought, and then you realize there
is more to it than you expected.

For example, if I say “Chris and I have the same car,” I mean that his car
and mine are the same make and model, but they are two different cars. If I say
“Chris and I have the same mother,” I mean that his mother and mine are one
and the same. So the idea of “sameness” is different depending on the context.

When you talk about objects, there is a similar ambiguity. For example, if
two Cards are the same, does that mean they contain the same data (rank and
suit), or they are actually the same Card object?

To see if two references refer to the same object, we can use the == operator.
For example:

lvars card1 = consCard (1, 11);
lvars card2 = card1;
if card1 == card2 then

printf(’card1 and card2 are the same object.\n’);
endif;

This type of equality is called shallow equality because it only compares the
references, not the contents of the objects.

To compare the contents of the objects—deep equality— we use = operator.
Now, we create two different objects that contain the same data, we can use

= to see if they represent the same card:

lvars card1 = consCard (2, 11);
lvars card2 = consCard (2, 11);

if card1 = card2 then
printf(’card1 and card2 are the same card.\n’);

endif;

In this case, card1 and card2 are two different objects that contain the same
data

card1

11rank:

suit: 2

11rank:

suit: 2

card2

so the condition is true. What does the state diagram look like when card1
== card2 is true?



12.5. THE COMPARE CARD FUNCTION 109

In Section 7.13 I said that you should never use the == operator on strings
because it does not do what you expect. Instead of comparing the contents of
the stings (deep equality), it checks whether the two strings are the same object
(shallow equality).

12.5 The compare card function

For (real) numbers, there are conditional operators that compare values and
determine when one is greater or less than another. These operators (< and
> and the others) don’t work for other types. For stringss there is a built-in
alphabefore function. For Cards we have to write our own, which we will call
compare card. Later, we will use this function to sort a deck of cards.

Some sets are completely ordered, which means that you can compare any
two elements and tell which is bigger. For example, the integers and the floating-
point numbers are totally ordered. Some sets are unordered, which means that
there is no meaningful way to say that one element is bigger than another. For
example, the fruits are unordered, which is why we cannot compare apples and
oranges. In Pop11, the boolean type is unordered; we cannot say that true is
greater than false.

The set of playing cards is partially ordered, which means that sometimes
we can compare cards and sometimes not. For example, I know that the 3 of
Clubs is higher than the 2 of Clubs, and the 3 of Diamonds is higher than the
3 of Clubs. But which is better, the 3 of Clubs or the 2 of Diamonds? One has
a higher rank, but the other has a higher suit.

In order to make cards comparable, we have to decide which is more impor-
tant, rank or suit. To be honest, the choice is completely arbitrary. For the
sake of choosing, I will say that suit is more important, because when you buy
a new deck of cards, it comes sorted with all the Clubs together, followed by all
the Diamonds, and so on.

With that decided, we can write compare card. It will take two Cards as
parameters and return 1 if the first card wins, -1 if the second card wins, and
0 if they tie (indicating deep equality). It is sometimes confusing to keep those
return values straight, but they are pretty standard for comparison functions.

First we compare the suits:

if suit(c1) > suit(c2) then
return (1);

endif;
if suit(c1) < suit(c2) then

return (-1);
endif;

If neither statement is true, then the suits must be equal, and we have to
compare ranks:

if rank(c1) > rank(c2) then



110 CHAPTER 12. ARRAYS OF OBJECTS

return(1);
endif;
if rank(c1) < rank(c2) then

return(-1);
endif;

If neither of these is true, the ranks must be equal, so we return 0. In this
ordering, aces will appear lower than deuces (2s).

As an exercise, fix it so that aces are ranked higher than Kings, and encap-
sulate this code in a function.

12.6 Arrays of cards

The reason I chose Cards as the objects for this chapter is that there is an
obvious use for an array of cards—a deck. Here is some code that creates a new
deck of 52 cards:

lvars deck = initv(52);

Here is the state diagram for this object:

deck 1 2 3 4 52

The important thing to see here is that the array contains only references to
objects; it does not contain any Card objects. The values of the array elements
are initialized to the word undef. You can access the elements of the array in
the usual way:

if deck(3) == "undef" then
printf (’No cards yet!\n’);

endif;

But if you try to access the instance variables of the non-existent Cards, you
will get a Method "rank" failed mishap.

rank(deck(3)); ;;; Method "rank" failed

Nevertheless, that is the correct syntax for accessing the rank of the third card
in the deck. This is another example of composition, the combination of the
syntax for accessing an element of an array and an instance variable of an object.

The easiest way to populate the deck with Card objects is to write a nested
loop:

lvars index = 1;
lvars suit, rank;



12.7. THE PRINT DECK FUNCTION 111

for suit from 1 to 4 do
for rank from 1 to 13 do

consCard(suit, rank) -> deck(index);
index + 1 -> index;

endfor;
endfor;

The outer loop enumerates the suits, from 1 to 4. For each suit, the inner loop
enumerates the ranks, from 1 to 13. Since the outer loop iterates 4 times, and
the inner loop iterates 13 times, the total number of times the body is executed
is 52 (13 times 4).

I used the variable index to keep track of where in the deck the next card
should go. The following state diagram shows what the deck looks like after the
first two cards have been allocated:

deck 1 2 3 4 52

rank:

suit: 1

1 rank:

suit: 1

2

As an exercise, encapsulate this deck-building code in a function called
build deck that takes no parameters and that returns a fully-populated ar-
ray of Cards.

12.7 The print deck function

Whenever you are working with arrays, it is convenient to have a function that
will print the contents of the array. We have seen the pattern for traversing an
array several times, so the following function should be familiar:

define print_deck(deck);
lvars i;
for i from 1 to length(deck) do

print_card(deck(i));
endfor;

enddefine;



112 CHAPTER 12. ARRAYS OF OBJECTS

12.8 Searching

The next function I want to write is find card, which searches through an array
of Cards to see whether it contains a certain card. It may not be obvious why
this function would be useful, but it gives me a chance to demonstrate two ways
to go searching for things, a linear search and a bisection search.

Linear search is the more obvious of the two; it involves traversing the deck
and comparing each card to the one we are looking for. If we find it we return
the index where the card appears. If it is not in the deck, we return -1.

define find_card (deck, card);
lvars i;
for i from 1 to length(deck) do

if deck(i) = card then
return(i);

endif;
endfor;
return -1;

enddefine;

The arguments of find card are named card and deck. It might seem odd to
have a variable with the same name as a type (the card variable has type Card).
This is legal and common, although it can sometimes make code hard to read.
In this case, though, I think it works.

The function returns as soon as it discovers the card, which means that we
do not have to traverse the entire deck if we find the card we are looking for.
If the loop terminates without finding the card, we know the card is not in the
deck and return -1.

If the cards in the deck are not in order, there is no way to search that is
faster than this. We have to look at every card, since otherwise there is no way
to be certain the card we want is not there.

But when you look for a word in a dictionary, you don’t search linearly
through every word. The reason is that the words are in alphabetical order. As
a result, you probably use an algorithm that is similar to a bisection search:

1. Start in the middle somewhere.

2. Choose a word on the page and compare it to the word you are looking
for.

3. If you found the word you are looking for, stop.

4. If the word you are looking for comes after the word on the page, flip to
somewhere later in the dictionary and go to step 2.

5. If the word you are looking for comes before the word on the page, flip to
somewhere earlier in the dictionary and go to step 2.



12.8. SEARCHING 113

If you ever get to the point where there are two adjacent words on the page
and your word comes between them, you can conclude that your word is not in
the dictionary. The only alternative is that your word has been misfiled some-
where, but that contradicts our assumption that the words are in alphabetical
order.

In the case of a deck of cards, if we know that the cards are in order, we
can write a version of find card that is much faster. The best way to write
a bisection search is with a recursive function. That’s because bisection is
naturally recursive.

The trick is to write a function called find bisect that takes two indices
as parameters, low and high, indicating the segment of the array that should
be searched (including both low and high).

1. To search the array, choose an index between low and high (call it mid)
and compare it to the card you are looking for.

2. If you found it, stop.

3. If the card at mid is higher than your card, search in the range from low
to mid-1.

4. If the card at mid is lower than your card, search in the range from mid+1
to high.

Steps 3 and 4 look suspiciously like recursive invocations. Here’s what this all
looks like translated into Pop11 code:

define find_bisect(deck, card, low, high);
lvars mid = (high + low) div 2;
lvars comp = compare_card (deck(mid), card);

if comp = 0 then
return(mid);

elseif comp > 0 then
return(find_bisect (deck, card, low, mid-1));

else
return(find_bisect (deck, card, mid+1, high));

endif;
enddefine;

Rather than call compare card three times, I called it once and stored the result.
Although this code contains the kernel of a bisection search, it is still missing

a piece. As it is currently written, if the card is not in the deck, it will recurse
forever. We need a way to detect this condition and deal with it properly (by
returning -1).

The easiest way to tell that your card is not in the deck is if there are no
cards in the deck, which is the case if high is less than low. Well, there are still



114 CHAPTER 12. ARRAYS OF OBJECTS

cards in the deck, of course, but what I mean is that there are no cards in the
segment of the deck indicated by low and high.

With that instruction added, the function works correctly:

define find_bisect(deck, card, low, high);
printf(low >< ’, ’ >< high, ’%p\n’);

if high < low then
return(-1);

endif;

lvars mid = (high + low) div 2;
lvars comp = compare_card (deck(mid), card);

if comp = 0 then
return(mid);

elseif comp > 0 then
return(find_bisect (deck, card, low, mid - 1));

else
return(find_bisect (deck, card, mid + 1, high));

endif;
enddefine;

I added a print statement at the beginning so I could watch the sequence of
recursive calls and convince myself that it would eventually reach the base case.
I tried out the following code:

lvars card1 = consCard (2, 11);
printf (find_bisect (deck, card1, 1, 52), ’%p\n’);

And got the following output:

1, 52
1, 25
14, 25
20, 25
23, 25
24

Then I made up a card that is not in the deck (the 15 of Diamonds), and tried
to find it. I got the following:

1, 52
27, 52
27, 38
27, 31
27, 28
27, 26
-1



12.9. DECKS AND SUBDECKS 115

These tests don’t prove that this program is correct. In fact, no amount of
testing can prove that a program is correct. On the other hand, by looking at
a few cases and examining the code, you might be able to convince yourself.

The number of recursive calls is fairly small, typically 6 or 7. That means
we only had to invoke compareCard 6 or 7 times, compared to up to 52 times if
we did a linear search. In general, bisection is much faster than a linear search,
especially for large arrays.

Two common errors in recusive programs are forgetting to include a base
case and writing the recursive call so that the base case is never reached. Either
error will cause an infinite recursion, in which case Pop11 will (eventually) a
stack overflow mishap.

12.9 Decks and subdecks

Looking at the arguments to find bisect

find_bisect (deck, card, low, high)

it might make sense to treat three of the parameters, deck, low and high, as a
single parameter that specifies a subdeck.

This kind of thing is quite common, and I sometimes think of it as an
abstract parameter. What I mean by “abstract,” is something that is not lit-
erally part of the program text, but which describes the function of the program
at a higher level.

For example, when you invoke a function and pass an array and the bounds
low and high, there is nothing that prevents the invoked function from accessing
parts of the array that are out of bounds. So you are not literally sending a
subset of the deck; you are really sending the whole deck. But as long as the
recipient plays by the rules, it makes sense to think of it, abstractly, as a subdeck.

There is one other example of this kind of abstraction that you might have
noticed in Section 10.5, when I referred to an “empty” data structure. The
reason I put “empty” in quotation marks was to suggest that it is not literally
accurate. All variables have values all the time. When you create them, they
are given default values. So there is no such thing as an empty object.

But if the program guarantees that the current value of a variable is never
read before it is written, then the current value is irrelevant. Abstractly, it
makes sense to think of such a variable as “empty.”

This kind of thinking, in which a program comes to take on meaning beyond
what is literally encoded, is a very important part of thinking like a computer
scientist. Sometimes, the word “abstract” gets used so often and in so many
contexts that it comes to lose its meaning. Nevertheless, abstraction is a central
idea in computer science (as well as many other fields).

A more general definition of “abstraction” is “The process of modeling a
complex system with a simplified description in order to suppress unnecessary
details while capturing relevant behavior.”



116 CHAPTER 12. ARRAYS OF OBJECTS

12.10 Glossary

encode: To represent one set of values using another set of values, by con-
structing a mapping between them.

shallow equality: Equality of references. Two references that point to the
same object.

deep equality: Equality of values. Two references that point to objects that
have the same value.

abstract parameter: A set of parameters that act together as a single param-
eter.

abstraction: The process of interpreting a program (or anything else) at a
higher level than what is literally represented by the code.



Chapter 13

Objects of Arrays

In the previous chapter, we worked with an array of objects, but I also men-
tioned that it is possible to have an object that contains an array as an instance
variable. In this chapter I am going to create a new object, called a Deck, that
contains an array of Cards as an instance variable.

The class definition looks like this

define :class Deck;
slot cards = [];

enddefine;

To create a new Deck we need extra constructor function

define make_Deck(n);
lvars result = newDeck();
initv(n) -> cards(result);
return(result);

enddefine;

The name of the instance variable is cards to help distinguish the Deck object
from the array of Cards that it contains. Here is a state diagram showing what
a Deck object looks like with no cards allocated:

deck cards:

As usual, the constructor initializes the instance variable, but in this case
it uses the initv command to create the array of cards. It doesn’t create any
cards to go in it, though. For that we could write another constructor that
creates a standard 52-card deck and populates it with Card objects:

117



118 CHAPTER 13. OBJECTS OF ARRAYS

define make_full_Deck();
lvars result = newDeck();
lvars deck = initv(52);
deck -> cards(result);

lvars index = 1;
lvars suit, rank;
for suit from 1 to 4 do

for rank from 1 to 13 do
consCard(suit, rank) -> deck(index);
index + 1 -> index;

endfor;
endfor;
return(result);

enddefine;

Notice how similar this function is to build deck, except that we had to create
empty Deck in the first line. Now we invoke it,

lvars deck = make_full_Deck ();

Now that we have a Deck class, it makes sense to change all the functions that
pertain to Decks so that they acceps Decks as arguments. Looking at the func-
tions we have written so far, one obvious candidate is print deck (Section 12.7).
Here’s how it looks, rewritten to work with a Deck object:

define print_deck(deck);
lvars i;
for i from 1 to length(cards(deck)) do

print_card(cards(deck)(i));
endfor;

enddefine;

The first change is that we can no longer use length(deck) to get the length of
the array, because deck is a Deck object now, not an array. It contains an array,
but it is not, itself, an array. Therefore, we have to write length(cards(deck))
to extract the array from the Deck object and get the length of the array.

For the same reason, we have to use cards(deck)(i) to access an element
of the array, rather than just deck(i).

To say the truth, Pop11 gives me enough tools that I could make Deck to
behave like an array, but I do not want to do so – the whole point of defining
Deck is to distinguish it from plain array!

13.1 Shuffling

For most card games you need to be able to shuffle the deck; that is, put the
cards in a random order. In Section 11.6 we saw how to generate random
numbers, but it is not obvious how to use them to shuffle a deck.



13.2. SORTING 119

One possibility is to model the way humans shuffle, which is usually by
dividing the deck in two and then reassembling the deck by choosing alternately
from each deck. Since humans usually don’t shuffle perfectly, after about 7
iterations the order of the deck is pretty well randomized. But a computer
program would have the annoying property of doing a perfect shuffle every
time, which is not really very random. In fact, after 8 perfect shuffles, you
would find the deck back in the same order you started in. For a discussion
of that claim, see http://www.wiskit.com/marilyn/craig.html or do a web
search with the keywords “perfect shuffle.”

A better shuffling algorithm is to traverse the deck one card at a time, and
at each iteration choose two cards and swap them.

Here is an outline of how this algorithm works. To sketch the program, I am
using a combination of Pop11 statements and English words that is sometimes
called pseudocode:

for i from 1 to length(cards(deck)) do
;;; choose a random number between i and deck.cards.length
;;; swap the ith card and the randomly-chosen card

endfor;

The nice thing about using pseudocode is that it often makes it clear what func-
tions you are going to need. In this case, we need something like random int,
which chooses a random integer between the parameters low and high, and
swap cards which takes two indices and switches the cards at the indicated
positions.

You can probably figure out how to write random int by looking at Sec-
tion 11.6, although you will have to be careful about possibly generating indices
that are out of range.

You can also figure out swap cards yourself. The only tricky thing is to
decide whether to swap just the references to the cards or the contents of the
cards. Does it matter which one you choose? Which is faster?

I will leave the remaining implementation of these functions as an exercise
to the reader.

13.2 Sorting

Now that we have messed up the deck, we need a way to put it back in order.
Ironically, there is an algorithm for sorting that is very similar to the algorithm
for shuffling. This algorithm is sometimes called selection sort because it
works by traversing the array repeatedly and selecting the lowest remaining
card each time.

During the first iteration we find the lowest card and swap it with the card
in the 0th position. During the ith, we find the lowest card to the right of i
and swap it with the ith card.

Here is pseudocode for selection sort:



120 CHAPTER 13. OBJECTS OF ARRAYS

for i from 1 to length(cards(deck)) do
;;; find the lowest card at or to the right of i
;;; swap the ith card and the lowest card

endfor;

Again, the pseudocode helps with the design of the helper functions. In
this case we can use swap cards again, so we only need one new one, called
find lowest card, that takes an array of cards and an index where it should
start looking.

Once again, I am going to leave the implementation up to the reader.

13.3 Subdecks

How should we represent a hand or some other subset of a full deck? One good
choice is to make a Deck object that has fewer than 52 cards.

We might want a function, subdeck, that takes an array of cards and a range
of indices, and that returns a new array of cards that contains the specified
subset of the deck:

define subdeck(deck, low, high);
lvars sub = make_Deck(high - low + 1);
lvars i;
for i from 1 to length(cards(sub)) do

cards(deck)(low + i - 1) -> cards(sub)(i);
endfor;
return(sub);

enddefine;

The length of the subdeck is high-low+1 because both the low card and high
card are included. Similarly, we use low + i - 1 as an index to cards(deck)
because i starts at 1. This sort of computation can be confusing, and lead to
“off-by-one” errors. Drawing a picture is usually the best way to avoid them.

The make Deck contructor only allocates the array and doesn’t allocate any
cards. Inside the for loop, the subdeck gets populated with copies of the refer-
ences from the deck.

The following is a state diagram of a subdeck being created with the param-
eters low=4 and high=8. The result is a hand with 5 cards that are shared with
the original deck; i.e. they are aliased.



13.4. SHUFFLING AND DEALING 121

521 2 3 4 5 6 7 8 9 10

1 2 3 4 5

deck
cards:

cards:

sub

I have suggested that aliasing is not generally a good idea, since changes in
one subdeck will be reflected in others, which is not the behavior you would
expect from real cards and decks. But if the objects in question are immutable,
then aliasing can be a reasonable choice. In this case, there is probably no
reason ever to change the rank or suit of a card. Instead we will create each
card once and then treat it as an immutable object. So for Cards aliasing is a
reasonable choice.

As an exercise, write a version of find bisect that takes a subdeck as an
argument, rather than a deck and an index range. Which version is more error-
prone? Which version do you think is more efficient?

13.4 Shuffling and dealing

In Section 13.1 I wrote pseudocode for a shuffling algorithm. Assuming that
we have a function called shufflei deck that takes a deck as an argument and
shuffles it, we can create and shuffle a deck:

lvars deck = make_full_Deck ();
shuffle_deck (deck);

Then, to deal out several hands, we can use subdeck:

lvars hand1 = subdeck (deck, 1, 5);
lvars hand2 = subdeck (deck, 6, 10);
lvars pack = subdeck (deck, 11, 52);

This code puts the first 5 cards in one hand, the next 5 cards in the other, and
the rest into the pack.



122 CHAPTER 13. OBJECTS OF ARRAYS

When you thought about dealing, did you think we should give out one card
at a time to each player in the round-robin style that is common in real card
games? I thought about it, but then realized that it is unnecessary for a com-
puter program. The round-robin convention is intended to mitigate imperfect
shuffling and make it more difficult for the dealer to cheat. Neither of these is
an issue for a computer.

This example is a useful reminder of one of the dangers of engineering
metaphors: sometimes we impose restrictions on computers that are unnec-
essary, or expect capabilities that are lacking, because we unthinkingly extend
a metaphor past its breaking point. Beware of misleading analogies.

13.5 Mergesort

In Section 13.2, we saw a simple sorting algorithm that turns out not to be very
efficient. In order to sort n items, it has to traverse the array n times, and each
traversal takes an amount of time that is proportional to n. The total time,
therefore, is proportional to n2.

In this section I will sketch a more efficient algorithm called mergesort.
To sort n items, mergesort takes time proportional to n log n. That may not
seem impressive, but as n gets big, the difference between n2 and n log n can be
enormous. Try out a few values of n and see.

The basic idea behind mergesort is this: if you have two subdecks, each of
which has been sorted, it is easy (and fast) to merge them into a single, sorted
deck. Try this out with a deck of cards:

1. Form two subdecks with about 10 cards each and sort them so that when
they are face up the lowest cards are on top. Place both decks face up in
front of you.

2. Compare the top card from each deck and choose the lower one. Flip it
over and add it to the merged deck.

3. Repeat step two until one of the decks is empty. Then take the remaining
cards and add them to the merged deck.

The result should be a single sorted deck. Here’s what this looks like in
pseudocode:

define merge(d1, d2);
;;; create a new deck big enough for all the cards
lvars result = make_Deck (length(cards(d1)) + length(cards(d2)));

;;; use the index i to keep track of where we are in
;;; the first deck, and the index j for the second deck
lvars i = 0;
lvars j = 0;



13.5. MERGESORT 123

;;; the index k traverses the result deck
lvars k;
for k from 0 to length(cards(result)) do

;;; if d1 is empty, d2 wins; if d2 is empty, d1 wins;
;;; otherwise, compare the two cards

;;; add the winner to the new deck
endfor;
return(result);

enddefine;

The best way to test merge is to build and shuffle a deck, use subdeck to form
two (small) hands, and then use the sort routine from the previous chapter to
sort the two halves. Then you can pass the two halves to merge to see if it
works.

If you can get that working, try a simple implementation of merge sort:

define merge_sort(deck);
;;; find the midpoint of the deck
;;; divide the deck into two subdecks
;;; sort the subdecks using sort_deck
;;; merge the two halves and return the result

enddefine;

Then, if you get that working, the real fun begins! The magical thing about
mergesort is that it is recursive. At the point where you sort the subdecks, why
should you invoke the old, slow version of sort? Why not invoke the spiffy new
merge sort you are in the process of writing?

Not only is that a good idea, it is necessary in order to achieve the perfor-
mance advantage I promised. In order to make it work, though, you have to add
a base case so that it doesn’t recurse forever. A simple base case is a subdeck
with 0 or 1 cards. If merge sort receives such a small subdeck, it can return it
unmodified, since it is already sorted.

The recursive version of merge sort should look something like this:

define merge_sort (deck);
;;; if the deck is 0 or 1 cards, return it
;;; find the midpoint of the deck
;;; divide the deck into two subdecks
;;; sort the subdecks using mergesort
;;; merge the two halves and return the result

enddefine;

As usual, there are two ways to think about recursive programs: you can think
through the entire flow of execution, or you can make the “leap of faith.” I



124 CHAPTER 13. OBJECTS OF ARRAYS

have deliberately constructed this example to encourage you to make the leap
of faith.

When you were using sort deck to sort the subdecks, you didn’t feel com-
pelled to follow the flow of execution, right? You just assumed that the
sort deck function would work because you already debugged it. Well, all you
did to make merge sort recursive was replace one sort algorithm with another.
There is no reason to read the program differently.

Well, actually you have to give some thought to getting the base case right
and making sure that you reach it eventually, but other than that, writing the
recursive version should be no problem. Good luck!

13.6 Glossary

pseudocode: A way of designing programs by writing rough drafts in a com-
bination of English and Pop11.

helper function: Often a small function that does not do anything enormously
useful by itself, but which helps another, more useful, function.



Chapter 14

Object-oriented
programming – incomplete
chapter

14.1 Programming languages and styles

There are many programming languages in the world, and almost as many pro-
gramming styles (sometimes called paradigms). Three styles that have appeared
in this book are procedural, functional, and object-oriented. Pop11 is a multi-
paradigm languages, it is natural to write Pop11 programs in any style. The
style I have demonstrated in this book is pretty much procedural. Existing
Pop11 programs and the built-in Pop11 packages are written in a mixture of all
three styles.

It’s not easy to define what object-oriented programming is, but here are
some of its characteristics:

• Object definitions (classes) usually correspond to relevant real-world ob-
jects. For example, in Chapter 13, the creation of the Deck class was a
step toward object-oriented programming.

• The majority of functions are generic functions (methods) rather than or-
dinary functions. Unlike ordinary functions you may have different meth-
ods of the same name. When you invoke a method the actual method to
use is determined ay runtime depending on classes of arguments. So far
all the functions we have written have been ordinary functions. In this
chapter we will write some methods.

• The language feature most associated with object-oriented programming
is inheritance. I will cover inheritance later in this chapter.

125



126CHAPTER 14. OBJECT-ORIENTED PROGRAMMING – INCOMPLETE CHAPTER

Recently object-oriented programming has become quite popular, and there
are people who claim that it is superior to other styles in various ways. I hope
that by exposing you to a variety of styles I have given you the tools you need
to understand and evaluate these claims.

14.2 Ordinary functions and methods

Anything that can be written as a method can also be written as an ordinary
function, and vice versa. Sometimes it is just more natural to use one or the
other. For reasons that will be clear soon, methods are often shorter than the
corresponding ordinary functions.

14.3 The print instance method

There are two methods that are common to many object types: print instance
and = instance. print instance converts the object to some reasonable string
representation and prints it (print instance is also used to convert object to
string). = instance is used to compare objects.

When you print an object using printf or print arrow, Pop11 checks to
see whether you have provided an object method named print instance, and
if so it invokes it. If not, it invokes a default version of print instance that
produces the output described in Section 10.4.

Whenever you pass an object to printf, Pop11 invokes the print instance
method on that object.

You can also convert object to string using >< operator— Pop11 converts
object to string by printing it and collecting characters that would otherwise go
to the screen.

lvars str = ’’ >< x;

14.4 The = instance method

When you use the == operator to compare two objects, what you are really
asking is, “Are these two things the same object?” That is, do both objects
refer to the same location in memory.

The = opertator by default recursively compares components — for many
types, this is appropriate definition of equality. For example, two complex
numbers are equal if their real parts are equal and their imaginary parts are
equal. However, for some classes you need special definition of equality.

When you create a new object type, you can provide your own definition of
equality by providing a method called = instance.

The documentation of = instance provides some guidelines you should keep
in mind when you make up your own definition of equality:

The = instance method implements an equivalence relation:



14.5. INVOKING ONE METHOD FROM ANOTHER 127

• It is reflexive: for any reference value x, x = x should return
true.

• It is symmetric: for any reference values x and y, x = y should
return true if and only if y = x returns true.

• It is transitive: for any reference values x, y, and z, if x = y
returns true and y = z returns true, then x = z should return
true.

• It is consistent: for any reference values x and y, multiple invo-
cations of x = y consistently return true or consistently return
false.

14.5 Invoking one method from another

As you might expect, it is legal and common to invoke one method from another.

14.6 Oddities and errors

14.7 Inheritance

The language feature that is most often associated with object-oriented pro-
gramming is inheritance. Inheritance is the ability to define a new class that
is a modified version of a previously-defined class (including built-in classes).

The primary advantage of this feature is that you can add new methods or
instance variables to an existing class without modifying the existing class. This
is particularly useful for built-in classes, since sometimes you can’t modify them
even if you want to.

The reason inheritance is called “inheritance” is that the new class inherits
all the instance variables and methods of the existing class. Extending this
metaphor, the existing class is sometimes called the parent class.

14.8 The class hierarchies

14.9 Object-oriented design

Inheritance is a powerful feature. Some programs that would be complicated
without inheritance can be written concisely and simply with it. Also, inheri-
tance can facilitate code reuse, since you can customize the behavior of build-in
classes without having to modify them.

On the other hand, inheritance can make programs difficult to read, since it
is sometimes not clear, when a method is invoked, where to find the definition.

Also, many of the things that can be done using inheritance can be done
almost as elegantly (or more so) without it.



128CHAPTER 14. OBJECT-ORIENTED PROGRAMMING – INCOMPLETE CHAPTER

14.10 Glossary

method: A function that has multiple versions, which version is used depends
on argument types (classes).



Chapter 15

Linked lists

15.1 References in objects

In the last chapter we saw that the instance variables of an object can be arrays,
and I mentioned that they can be objects, too.

One of the more interesting possibilities is that an object can contain a
reference to another object of the same type. There is a common data structure,
the list, that takes advantage of this feature.

Lists are made up of nodes, where each node contains a reference to the
next node in the list. In addition, each node usually contains a unit of data
called the cargo. In our first example, the cargo will be a single integer, but
later we will write a generic list that can contain objects of any type.

Pop11 has a builtin list type – in many situations builtin lists are more
convenient. However, we want to show here object oriented approach to lists.
Moreover, the techniques we present generalize to more complicated problems,
where builtin Pop11 data structures are not sufficient.

15.2 The Node class

As usual when we write a new class, we’ll start with the instance variables. We
also define print instance method.

define :class Node;
slot cargo = 0;
slot next = [];

enddefine;

define :method print_instance(x : Node);
printf(cargo, ’%p’);

enddefine;

The declarations of the instance variables follow naturally from the specification.

129



130 CHAPTER 15. LINKED LISTS

To test the implementation so far, we use something like this:

lvars node = consNode (1, []);
printf(node, ’%p’);

The result is simply

1

To make it interesting, we need a list with more than one node!

lvars node1 = consNode (1, []);
lvars node2 = consNode (2, []);
lvars node3 = consNode (3, []);

This code creates three nodes, but we don’t have a list yet because the nodes
are not linked. The state diagram looks like this:

1 2 3

node1

next:

cargo:

next:

cargo:

node3

next:

cargo:

node2

To link up the nodes, we have to make the first node refer to the second and
the second node refer to the third.

node2 -> next(node1);
node3 -> next(node2);
[] -> next(node3);

The reference of the third node is [], which indicates that it is the end of the
list. Now the state diagram looks like:

1 2 3

node1

next:

cargo:

next:

cargo:

node3

next:

cargo:

node2

Now we know how to create nodes and link them into lists. What might be
less clear at this point is why.



15.3. LISTS AS COLLECTIONS 131

15.3 Lists as collections

The thing that makes lists useful is that they are a way of assembling multiple
objects into a single entity, sometimes called a collection. In the example, the
first node of the list serves as a reference to the entire list.

If we want to pass the list as a parameter, all we have to pass is a reference
to the first node. For example, the method print list takes a single node as
an argument. Starting with the head of the list, it prints each node until it gets
to the end (indicated by the []).

define print_list(list);
lvars node = list;
while node /= [] do

printf(node, ’%p’);
next(node) -> node;

endwhile;
printf(’\n’);

enddefine;

To invoke this method we just have to pass a reference to the first node:

print_list(node1);

Inside print list we have a reference to the first node of the list, but there is
no variable that refers to the other nodes. We have to use the next value from
each node to get to the next node.

This diagram shows the value of list and the values that node takes on:

1 2 3

next:

cargo:

next:

cargo:

next:

cargo:

node

list

This way of moving through a list is called a traversal, just like the similar
pattern of moving through the elements of an array. It is common to use a loop
variable like node to refer to each of the nodes in the list in succession.

The output of this function is



132 CHAPTER 15. LINKED LISTS

123

Better way to print list is to print them in parentheses with commas between
the elements, as in (1, 2, 3). As an exercise, modify print list so that it
generates output in this format.

15.4 Lists and recursion

Recursion and lists go together like fava beans and a nice Chianti. For example,
here is a recursive algorithm for printing a list backwards:

1. Separate the list into two pieces: the first node (called the head) and the
rest (called the tail).

2. Print the tail backwards.

3. Print the head.

Of course, Step 2, the recursive call, assumes that we have a way of printing
a list backwards. But if we assume that the recursive call works—the leap of
faith—then we can convince ourselves that this algorithm works.

All we need is a base case, and a way of proving that for any list we will
eventually get to the base case. A natural choice for the base case is a list with a
single element, but an even better choice is the empty list, represented by null.

define print_backward (list);
if list == [] then

return;
endif;

lvars head = list;
lvars tail = next(list);

print_backward (tail);
printf(head, ’%p’);

enddefine;

The first line handles the base case by doing nothing. The next two lines split
the list into head and tail. The last two lines print the list.

We invoke this method exactly as we invoked print list:

print_backward (node1);

The result is a backwards list.
Can we prove that this method will always terminate? In other words, will

it always reach the base case? In fact, the answer is no. There are some lists
that will make this method crash.



15.5. INFINITE LISTS 133

15.5 Infinite lists

There is nothing to prevent a node from referring back to an earlier node in the
list, including itself. For example, this figure shows a list with two nodes, one
of which refers to itself.

1 2

next:

cargo:

next:

cargo:

list

If we invoke print list on this list, it will loop forever. If we invoke
print backward it will recurse infinitely. This sort of behavior makes infinite
lists difficult to work with.

Nevertheless, they are occasionally useful. For example, we might represent
a number as a list of digits and use an infinite list to represent a repeating
fraction.

Regardless, it is problematic that we cannot prove that print list and
print backward terminate. The best we can do is the hypothetical statement,
“If the list contains no loops, then these methods will terminate.” This sort of
claim is called a precondition. It imposes a constraint on one of the parameters
and describes the behavior of the method if the constraint is satisfied. We will
see more examples soon.

15.6 The fundamental ambiguity theorem

There is a part of print backward that might have raised an eyebrow:

lvars head = list;
lvars tail = next(list);

After the first assignment, head and list have the same value. So why did I
create a new variable?

The reason is that the two variables play different roles. We think of head
as a reference to a single node, and we think of list as a reference to the first
node of a list. These “roles” are not part of the program; they are in the mind
of the programmer.



134 CHAPTER 15. LINKED LISTS

The second assignment creates a new reference to the second node in the
list, but in this case we think of it as a list. So, head and tail play different
roles.

This ambiguity is useful, but it can make programs with lists difficult to
read. I often use variable names like node and list to document how I intend
to use a variable, and sometimes I create additional variables to disambiguate.

I could have written print backward without head and tail, but I think it
makes it harder to understand:

define print_backward (list);
if list == [] then

return;
endif;

print_backward (next(list));
printf(list, ’%p’);

enddefine;

Looking at the two function calls, we have to remember that print backward
treats its argument as a list and print treats its argument as a single object.

Always keep in mind the fundamental ambiguity theorem:

A variable that refers to a node might treat the node as a single
object or as the first in a list of nodes.

15.7 Object methods for nodes

You might have wondered why print list and print backward are not meth-
ods. I have made the claim that anything that can be done with functions can
also be done with object methods; it’s just a question of which form is cleaner.

In this case there is a legitimate reason to choose functions. It is works to
send [] as an argument to a function, but [] is not an instance of class Node.
So, if we change print list to a method working on Nodes we need a separate
method to handle [].

Before we do that we need to declare extra class:

define :mixin EmptyList;
enddefine;

Now we say that empty list is a member of this new class:

define :extant nil is EmptyList;
enddefine;

Finally, we can define print list:



15.8. MODIFYING LISTS 135

define :method print_list(list : EmptyList);
printf(’()’);

enddefine;

This limitation makes it awkward to write list-manipulating code in a clean,
object-oriented style. A little later we will see a way to get around this, though.

As a less clean alternative we can define print list and print backward
as methods which are not specific to any class – just add the keyword :method
the the definition:

define :metod print_backward (list);
if list == [] then

return;
endif;

print_backward (next(list));
printf(list, ’%p’);

enddefine;

This definition will be used for all classes that do not have their own
print backward method. Of course, if a class has its own print backward
it will use its own method.

15.8 Modifying lists

Obviously one way to modify a list is to change the cargo of one on the nodes,
but the more interesting operations are the ones that add, remove, or reorder
the nodes.

As an example, we’ll write a method that removes the second node in the
list and returns a reference to the removed node.

define remove_second(list);
lvars first = list;
lvars second = next(node);

;;; make the first node refer to the third
next(second) -> next(first);

;;; separate the second node from the rest of the list
[] -> next(second);
return(second);

enddefine;

Again, I am using temporary variables to make the code more readable. Here
is how to use this method.



136 CHAPTER 15. LINKED LISTS

print_list (node1);
lvars removed = remove_second (node1);
print_list (removed);
print_list (node1);

The output is

(1, 2, 3) the original list
(2) the removed node
(1, 3) the modified list

Here is a state diagram showing the effect of this operation.

1 2 3

next:

cargo:

next:

cargo:

next:

cargo:

secondlist

What happens if we invoke this method and pass a list with only one element
(a singleton)? What happens if we pass the empty list as an argument? Is
there a precondition for this method?

15.9 Wrappers and helpers

For some list operations it is useful to divide the labor into two methods.
For example, to print a list backwards in the conventional list format, (3,
2, 1) we can use the print backwards method to print 3, 2, but we need
a separate method to print the parentheses and the first node. We’ll call it
print backward nicely.

define print_backward_nicely(list);
printf(’(’);
if list /== [] then

lvars head = list;
lvars tail = next(list);
print_backward (tail);
printf(head, ’%p’);



15.10. THE LINKEDLIST CLASS 137

endif;
printf(’)\n’);

Again, it is a good idea to check methods like this to see if they work with
special cases like an empty list or a singleton.

Elsewhere in the program, when we use this method, we will invoke
print backward nicely directly and it will invoke print backward on our be-
half. In that sense, print backward nicely acts as a wrapper, and it uses
print backward as a helper.

15.10 The LinkedList class

There are a number of subtle problems with the way we have been implementing
lists. In a reversal of cause and effect, I will propose an alternative implemen-
tation first and then explain what problems it solves.

First, we will create a new class called LinkedList. Its instance variables
are an integer that contains the length of the list and a reference to the first
node in the list. LinkedList objects serve as handles for manipulating lists of
Node objects.

define :class LinkedList;
slot length = 0;
slot head = [];

enddefine;

One nice thing about the LinkedList class is that it gives us a natural place
to put wrapper functions like printBackwardNicely, which we can make an
object method in the LinkedList class.

define :method print_backward(list : LinkedList);
printf(’(’);
if head(list) /== [] then

lvars tail = next(head(list));
print_backward (tail);
printf(head(list), ’%p’);

endif;
printf(’)\n’);

enddefine;

Just to make things confusing, I renamed print backward nicely. Now there
are two methods named print backward: a “catch all” which handles Node
class (the helper) and one in the LinkedList class (the wrapper).

So, one of the benefits of the LinkedList class is that it provides a nice place
to put wrapper functions. Another is that it makes it easier to add or remove
the first element of a list. For example, add first is a method for LinkedLists;
it takes an iitem as an argument and puts it at the beginning of the list.



138 CHAPTER 15. LINKED LISTS

define :method add_first(list : LinkedList, item)
lvars node = consNode (item, head(list));
node -> head(list);
length(list) + 1 -> length(list);

enddefine;

As always, to check code like this it is a good idea to think about the special
cases. For example, what happens if the list is initially empty?

As an excercise write methods named empty, add last and remove first
which respectively test if a LinkedList contains no elements, add an element
at the end of list and removes first element of the list.

15.11 Invariants

Some lists are “well-formed;” others are not. For example, if a list contains a
loop, it will cause many of our methods to crash, so we might want to require
that lists contain no loops. Another requirement is that the length value in the
LinkedList object should be equal to the actual number of nodes in the list.

Requirements like this are called invariants because, ideally, they should
be true of every object all the time. Specifying invariants for objects is a useful
programming practice because it makes it easier to prove the correctness of
code, check the integrity of data structures, and detect errors.

One thing that is sometimes confusing about invariants is that there are some
times when they are violated. For example, in the middle of add first, after
we have added the node, but before we have incremented length, the invariant
is violated. This kind of violation is acceptable; in fact, it is often impossible
to modify an object without violating an invariant for at least a little while.
Normally the requirement is that every method that violates an invariant must
restore the invariant.

If there is any significant stretch of code in which the invariant is violated,
it is important for the comments to make that clear, so that no operations are
performed that depend on the invariant.

15.12 Glossary

list: A data structure that implements a collection using a sequence of linked
nodes.

node: An element of a list, usually implemented as an object that contains a
reference to another object of the same type.

cargo: An item of data contained in a node.

link: An object reference embedded in an object.

generic data structure: A kind of data structure that can contain data of
any type.



15.12. GLOSSARY 139

precondition: An assertion that must be true in order for a method to work
correctly.

invariant: An assertion that should be true of an object at all times (except
maybe while the object is being modified).

wrapper method: A method that acts as a middle-man between a caller and
a helper method, often offering an interface that is cleaner than the helper
method’s.



140 CHAPTER 15. LINKED LISTS



Chapter 16

Stacks

16.1 Abstract data types

The data types we have looked at so far are all concrete, in the sense that we
have completely specified how they are implemented. For example, the Card
class represents a card using two integers. As I discussed at the time, that is not
the only way to represent a card; there are many alternative implementations.

An abstract data type, or ADT, specifies a set of operations (or methods)
and the semantics of the operations (what they do) but it does not not specify
the implementation of the operations. That’s what makes it abstract.

Why is that useful?

• It simplifies the task of specifying an algorithm if you can denote the
operations you need without having to think at the same time about how
the operations are performed.

• Since there are usually many ways to implement an ADT, it might be
useful to write an algorithm that can be used with any of the possible
implementations.

• Well-known ADTs, like the Stack ADT in this chapter, are often imple-
mented in standard libraries so they can be written once and used by
many programmers.

• The operations on ADTs provide a common high-level language for spec-
ifying and talking about algorithms.

When we talk about ADTs, we often distinguish the code that uses the
ADT, called the client code, from the code that implements the ADT, called
provider code because it provides a standard set of services.

141



142 CHAPTER 16. STACKS

16.2 The Stack ADT

In this chapter we will look at one common ADT, the stack. A stack is a
collection, meaning that it is a data structure that contains multiple elements.
Other collections we have seen include arrays and lists.

As I said, an ADT is defined by the operations you can perform on it. Stacks
can perform only the following operations:

constructor: Create a new, empty stack.

push: Add a new item to the stack.

pop: Remove and return an item from the stack. The item that is returned is
always the last one that was added.

empty: Check whether the stack is empty.

A stack is sometimes called a “last in, first out,” or LIFO data structure,
because the last item added is the first to be removed.

16.3 Using the Stack object

We show the implementation of the stack later. Here we assume that the defi-
nitions from the implementation part are loaded (you can propend them at the
beggining of your program). Then the syntax for constructing a new Stack is

lvars stack = make_Stack();

Initially the stack is empty, as we can confirm with the empty method, which
returns a boolean:

printf(empty(stack), ’%p\n’);

A stack is a generic data structure, which means that we can add any type of
item to it.

First, we push an integer

push(stack, 666);

We can remove an element from the stack with the pop method

pop(stack) =>

We see that printed return value 666 is the same as the value we pushed.
For our next example, we’ll will push all items from a list. Let’s start by

creating and printing a short list.

lvars list = [1 2 3];
list =>



16.4. POSTFIX EXPRESSIONS 143

The output is [1, 2, 3].
The following loop traverses the list and pushes all the items from the list

onto the stack:

lvars val;
for val in list do

push(stack, val);
endfor;

The following loop is a common idiom for popping all the elements from a
stack, stopping when it is empty:

while not(empty(stack)) do
lvars val = pop(stack);
printf(val, ’%p ’);

endwhile;

The output is 3 2 1. In other words, we just used a stack to print the elements
of a list backwards! Granted, it’s not the standard format for printing a list,
but using a stack it was remarkably easy to do.

You should compare this code to the implementations of print backward
in the previous chapter. There is a natural parallel between the recursive ver-
sion of print backward and the stack algorithm here. The difference is that
print backward uses the run-time stack to keep track of the nodes while it tra-
verses the list, and then prints them on the way back from the recursion. The
stack algorithm does the same thing, just using a Stack object instead of the
run-time stack.

16.4 Postfix expressions

In most programming languages, mathematical expressions are written with the
operator between the two operands, as in 1+2. This format is called infix. An
alternate format used by some calculators is called postfix. In postfix, the
operator follows the operands, as in 1 2+.

The reason postfix is sometimes useful is that there is a natural way to
evaluate a postfix expression using a stack.

• Starting at the beginning of the expression, get one term (operator or
operand) at a time.

– If the term is an operand, push it on the stack.

– If the term is an operator, pop two operands off the stack, perform
the operation on them, and push the result back on the stack.

• When we get to the end of the expression, there should be exactly one
operand left on the stack. That operand is the result.



144 CHAPTER 16. STACKS

As an exercise, apply this algorithm to the expression 1 2 + 3 *.
This example demonstrates one of the advantages of postfix: there is no need

to use parentheses to control the order of operations. To get the same result
in infix, we would have to write (1 + 2) * 3. As an exercise, write a postfix
expression that is equivalent to 1 + 2 * 3?

16.5 Parsing

In order to implement the algorithm from the previous section, we need to
be able to traverse a string and break it into operands and operators. This
process is an example of parsing, and the results—the individual chunks of the
string—are called tokens.

Pop11 has built-in tokenizer that parses strings and breaks them into tokens.

lvars char_rep = stringin(’Here are five tokens.’);
lvars item_rep = incharitem(char_rep);

The following loop is a standard idiom for extracting the tokens from a item
repeater.

lvars it;
while (itemrep() ->> it) /= termin do

printf (it, ’%p\n’);
endwhile;

The output is

Here
are
four
tokens
.

Builtin itemiser works as we want for our expressions.

lvars char_rep = stringin(’11 22+33*’);

Now the output is

11
22
+
33
*

This is just the stream of tokens we would like for evaluating this expression.



16.6. IMPLEMENTING ADTS 145

16.6 Implementing ADTs

One of the fundamental goals of an ADT is to separate the interests of the
provider, who writes the code that implements the ADT, and the client, who
uses the ADT. The provider only has to worry about whether the implemen-
tation is correct—in accord with the specification of the ADT—and not how it
will be used.

Conversely, the client assumes that the implementation of the ADT is correct
and doesn’t worry about the details. When you are using library classes, you
have the luxury of thinking exclusively as a client.

When you implement an ADT, on the other hand, you also have to write
client code to test it. In that case, you sometimes have to think carefully about
which role you are playing at a given instant.

In the next few sections we will switch gears and look at one way of imple-
menting the Stack ADT, using an array. Start thinking like a provider.

16.7 Array implementation of the Stack ADT

The instance variables for this implementation are a vector, which will contain
the items on the stack, and an integer index which will keep track of the next
available space in the array. Initially, the array is empty and the index is 1.

To add an element to the stack (push), we’ll copy a reference to it onto
the stack and increment the index. To remove an element (pop) we have to
decrement the index first and then copy the element out.

Here is the class definition:

define :class Stack;
slot buffer;
slot index;

enddefine;

define make_Stack();
return(consStack(initv(128), 1));

enddefine;

As usual, once we have chosen the instance variables, it is a mechanical process
to write a constructor. For now, the default size is 128 items. Later we will
consider better ways of handling this.

Checking for an empty stack is trivial.

define :method empty(s : Stack);
return (index(s) = 1);

enddefine;

It it important to remember, though, that the number of elements in the stack
is not the same as the size of the array. Initially the size is 128, but the number
of elements is 0.



146 CHAPTER 16. STACKS

The implementations of push and pop follow naturally from the specification.

define :method push(s : Stack, item);
item ->buffer(s)(index(s));
index(s) + 1 -> index(s);

enddefine;

define :method pop(s : Stack);
index(s) - 1 -> index(s);
return(buffer(s)(index(s)));

enddefine;

To test these methods, we the client code from the first part of this chapter.
If everything goes according to plan, the program should work without any

additional changes. Again, one of the strengths of using an ADT is that you
can change implementations without changing client code.

16.8 Resizing arrays

A weakness of this implementation is that it chooses an arbitrary size for the
array when the Stack is created. If the user pushes more than 128 items onto
the stack, it will cause a BAD SUBSCRIPT FOR INDEXED ACCESS mishap.

An alternative is to let the client code specify the size of the array. This
alleviates the problem, but it requires the client to know ahead of time how
many items are needed, and that is not always possible.

A better solution is to check whether the array is full and make it bigger
when necessary. Since we have no idea how big the array needs to be, it is a
reasonable strategy to start with a small size and double it each time it overflows.

Here’s the improved version of push:

define :method push(s : Stack, item);
if full(s) then

resize(s);
endif;
;;; at this point we can prove that index <= length(buffer)
item ->buffer(s)(index(s));
index(s) + 1 -> index(s);

enddefine;

Before putting the new item in the array, we check if the array is full. If so,
we invoke resize. After the if statement, we know that either (1) there was
room in the array, or (2) the array has been resized and there is room. If full
and resize are correct, then we can prove that index <= array.length, and
therefore the next statement cannot cause an exception.

Now all we have to do is implement full and resize.



16.9. GLOSSARY 147

define full(s);
return (index(s) = length(buffer(s) + 1));

enddefine;

define resize(s);
lvars old_buffer = buffer(s);
lvars buffer_length = length(old_buffer);
lvars new_buffer = initv(buffer_length * 2);

;;; we assume that the old_buffer is full
for i from 1 to buffer_length do

old_buffer(i) -> new_buffer(i);
endfor;
new_buffer -> buffer(s);

enddefine;

We declared full and resize not as methods but as ordinary functions. This is
acceptable, because since there is no reason for client code to use these functions,
so we can hide them in a separate section.

The implementation of full is trivial; it just checks whether the index has
gone beyond the range of valid indices.

The implementation of resize is straightforward, with the caveat that it
assumes that the old array is full. In other words, that assumption is a precon-
dition of this method. It is easy to see that this precondition is satisfied, since
the only way resize is invoked is if full returns true, which can only happen
if index = length(buffer)+1.

At the end of resize, we replace the old array with the new one (causing
the old to be garbage collected). The length of new buffer is twice as big
as the old, and index hasn’t changed, so now it must be true that index <=
length(buffer). This assertion is a postcondition of resize: something that
must be true when the method is complete (as long as its preconditions were
satisfied).

Preconditions, postconditions, and invariants are useful tools for analyzing
programs and demonstrating their correctness. In this example I have demon-
strated a programming style that facilitates program analysis and a style of
documentation that helps demonstrate correctness.

16.9 Glossary

abstract data type (ADT): A data type (usually a collection of objects)
that is defined by a set of operations, but that can be implemented in
a variety of ways.

client: A program that uses an ADT (or the person who wrote the program).

provider: The code that implements an ADT (or the person who wrote it).



148 CHAPTER 16. STACKS

infix: A way of writing mathematical expressions with the operators between
the operands.

postfix: A way of writing mathematical expressions with the operators after
the operands.

parse: To read a string of characters or tokens and analyze their grammatical
structure.

token: A set of characters that are treated as a unit for purposes of parsing,
like the words in a natural language.

delimiter: A character that is used to separate tokens, like the punctuation in
a natural language.

predicate: A mathematical statement that is either true or false.

postcondition: A predicate that must be true at the end of a method (provided
that the preconditions were true at the beginning).



Chapter 17

Queues and Priority Queues

This chapter presents two ADTs: Queues and Priority Queues. In real life a
queue is a line of customers waiting for service of some kind. In most cases, the
first customer in line is the next customer to be served. There are exceptions,
though. For example, at airports customers whose flight is leaving imminently
are sometimes taken from the middle of the queue. Also, at supermarkets a
polite customer might let someone with only a few items go first.

The rule that determines who goes next is called a queueing discipline.
The simplest queueing discipline is called FIFO, for “first-in-first-out.” The
more general queueing discipline is priority queueing, in which each customer
is assigned a priority, and the customer with the highest priority goes first,
regardless of the order of arrival. The reason I say this is more general discipline
is that the priority can be based on anything: what time a flight leaves, how
many groceries the customer has, or how important the customer is. Of course,
not all queueing disciplines are “fair,” but fairness is in the eye of the beholder.

The Queue ADT and the Priority Queue ADT have the same set of opera-
tions and their interfaces are the same. The difference is in the semantics of the
operations: a Queue uses the FIFO policy, and a Priority Queue (as the name
suggests) uses the priority queueing policy.

As with most ADTs, there are a number of ways to implement queues.
Since a queue is a collection of items, we can use any of the basic mechanisms
for storing collections: arrays, lists, or vectors. Our choice among them will be
based in part on their performance— how long it takes to perform the operations
we want to perform— and partly on ease of implementation.

17.1 The queue ADT

The queue ADT is defined by the following operations:

constructor: Create a new, empty queue.

insert: Add a new item to the queue.

149



150 CHAPTER 17. QUEUES AND PRIORITY QUEUES

remove: Remove and return an item from the queue. The item that is returned
is the first one that was added.

empty: Check whether the queue is empty.

One possible queue implementation, take advantage of the Pop11 lists.
As far as our implementation goes, it does not matter what kind of object

is in the Queue, so we can make it generic. Here is what the implementation
looks like.

define :class Queue;
slot list = [];

enddefine;

define :method empty (q : Queue);
return list(q) = [];

enddefine;

define :method insert(q : Queue, item);
list(q) <> [^item] -> list(q);

enddefine;

define :method remove(q : Queue);
lvars l = list(q);
back(l) -> list(q);
return(front(l));

enddefine;

A queue object contains a single instance variable, which is the list that imple-
ments it.

Similar, slightly simpler implementation uses LinkedList class:

define :class Queue;
slot list = newLinkedList();

enddefine;

define :method empty (q : Queue);
return(empty(list(q)));

enddefine;

define :method insert(q : Queue, item);
add_last(list(q), item);

enddefine;

define :method remove(q : Queue);
return(remove_first(list(q)));

enddefine;



17.2. VENEER 151

For each of the methods, all we have to do is invoke one of the methods from
the LinkedList class.

17.2 Veneer

An implementation like this is called a veneer. In real life, veneer is a thin
coating of good quality wood used in furniture-making to hide lower quality
wood underneath. Computer scientists use this metaphor to describe a small
piece of code that hides the details of an implementation and provides a simpler,
or more standard, interface.

This example demonstrates one of the nice things about a veneer, which is
that it is easy to implement, and one of the dangers of using a veneer, which is
the performance hazard!

Normally when we invoke a method we are not concerned with the details
of its implementation. But there is one “detail” we might want to know—the
performance characteristics of the method. How long does it take, as a function
of the number of items in the list?

First let’s look at remove first.

define remove_first(list);
lvars result = head(list);
if head(list) /== [] then

next(head(list)) -> head(list);
length(list) - 1 -> length(list);

endif;
return(result);

enddefine;

There are no loops or nontrival function calls here, so that suggests that the run
time of this method is the same every time. Such a method is called a constant
time operation. In reality, the method might be slightly faster when the list
is empty, since it skips the body of the conditional, but that difference is not
significant.

The performance of add last is very different.

define :method add_last(list : LinkedList, item);
if head(list) == [] then

consNode(item, []) -> head(list);
length(list) + 1 -> length(list);
return;

endif;
lvars last = head(list);
;;; traverse the list to find the last node
while next(last) /== [] do

next(last) -> last;
endwhile;



152 CHAPTER 17. QUEUES AND PRIORITY QUEUES

consNode(item, []) -> next(last);
length(list) + 1 -> length(list);

enddefine;

The first conditional handles the special case of adding a new node to an empty
list. In this case, again, the run time does not depend on the length of the list.
In the general case, though, we have to traverse the list to find the last element
so we can make it refer to the new node.

This traversal takes time proportional to the length of the list. Since the
run time is a linear function of the length, we would say that this method is
linear time. Compared to constant time, that’s very bad.

17.3 Linked Queue

We would like an implementation of the Queue ADT that can perform all oper-
ations in constant time. One way to accomplish that is to implement a linked
queue, which is similar to a linked list in the sense that it is made up of zero or
more linked nodes. For simplicity, we will re-use (nodes of) builtin Pop11 lists.
The difference is that the queue maintains a reference to both the first and the
last node, as shown in the figure.

first: last:

next:

cargo:

next:

cargo:

next:

cargo:

Here’s what a linked Queue implementation looks like:

define :class Queue;
slot first = [];
slot last = [];

enddefine;

define :method empty(q : Queue);
return(first(q) = []);

enddefine;

So far it is straightforward. In an empty queue, both first and last are null.
To check whether a list is empty, we only have to check one of them.



17.4. CIRCULAR BUFFER 153

insert is a little more complicated because we have to deal with several
special cases.

define :method insert(q : Queue, item);
lvars last_node = last(q);
lvars node = cons(item, []);
if last_node /= [] then

node -> back(last_node);
endif;
node -> last(q);
if first(q) = [] then

node -> first(q);
endif;

enddefine;

The first condition checks to make sure that last refers to a node; if it does
then we have to make it refer to the new node.

The second condition deals with the special case where the list was initially
empty. In this case both first and last refer to the new node.

remove also deals with several special cases.

define :method remove(q : Queue);
lvars result = first(q);
if result /= [] then

back(result) -> first(q);
endif;
if first(q) = [] then

[] -> last(q);
endif;
return(result);

enddefine;

The first condition checks whether there were any nodes in the queue. If so, we
have to copy the next node into first. The second condition deals with the
special case that the list is now empty, in which case we have to make last null.

As an exercise, draw diagrams showing both operations in both the normal
case and in the special cases, and convince yourself that they are correct.

Clearly, this implementation is more complicated than the veneer implemen-
tation, and it is more difficult to demonstrate that it is correct. The advantage
is that we have achieved the goal: both insert and remove are constant time.

17.4 Circular buffer

Another common implementation of a queue is a circular buffer. “Buffer” is
a general name for a temporary storage location, although it often refers to an



154 CHAPTER 17. QUEUES AND PRIORITY QUEUES

array, as it does in this case. What it means to say a buffer is “circular” should
become clear in a minute.

The implementation of a circular buffer is similar to the array implementa-
tion of a stack, as in Section 16.7. The queue items are stored in an array, and
we use indices to keep track of where we are in the array. In the stack imple-
mentation, there was a single index that pointed to the next available space. In
the queue implementation, there are two indices: first points to the space in
the array that contains the first customer in line and next points to the next
available space.

The following figure shows a queue with two items (represented by dots).
first next

1 3

first next
There are two ways to think of the variables first and last. Literally,

they are integers, and their values are shown in boxes on the right. Abstractly,
though, they are indices of the array, and so they are often drawn as arrows
pointing to locations in the array. The arrow representation is convenient, but
you should remember that the indices are not references; they are just integers.

Here is an incomplete array implementation of a queue:

define :class Queue;
slot buffer = initv(128);
slot first = 1;
slot next = 1;

enddefine;

define :method empty(q : Queue);
return(first(q) = next(q));

enddefine;

The instance variables are straightforward, and the newQueue constructor is ad-
equate, although again we have the problem that we have to choose an arbitrary
size for the array. Later we will solve that problem, as we did with the stack,
by resizing the array if it gets full.

The implementation of empty is a little surprising. You might have thought
that first = 1 would indicate an empty queue, but that neglects the fact that
the head of the queue is not necessarily at the beginning of the array. Instead,
we know that the queue is empty if head equals next, in which case there are
no items left. Once we see the implementation of insert and remove, that
situation will more more sense.



17.4. CIRCULAR BUFFER 155

define :method insert(q : Queue, item);
item -> buffer(q)(next(q));
next(q) + 1 -> next(q);

enddefine;

define :method remove(q : Queue);
lvars result = buffer(q)(first(q));
first(q) + 1 -> first(q);
return(result);

enddefine;

insert looks very much like push in Section 16.7; it puts the new item in the
next available space and then increments the index.

remove is similar. It takes the first item from the queue and then increments
first so it refers to the new head of the queue. The following figure shows what
the queue looks like after both items have been removed.

first

33

first next

next

It is always true that next points to an available space. If first catches up
with next and points to the same space, then first is referring to an “empty”
location, and the queue is empty. I put “empty” in quotation marks because it
is possible that the location that first points to actually contains a value (we
do nothing to ensure that empty locations contain []); on the other hand, since
we know the queue is empty, we will never read this location, so we can think
of it, abstractly, as empty.

As an exercise, fix remove so that it returns [] if the queue is empty.
The next problem with this implementation is that eventually it will run out

of space. When we add an item we increment next and when we remove an
item we increment first, but we never decrement either. What happens when
we get to the end of the array?

The following figure shows the queue after we add four more items:
first next

3

first

7

next



156 CHAPTER 17. QUEUES AND PRIORITY QUEUES

The array is now full. There is no “next available space,” so there is nowhere
for next to point. One possibility is that we could resize the array, as we did
with the stack implementation. But in that case the array would keep getting
bigger regardless of how many items were actually in queue. A better solution
is to wrap around to the beginning of the array and reuse the spaces there. This
“wrap around” is the reason this implementation is called a circular buffer.

One way to wrap the index around is to add a special case whenever we
increment an index:

next(q) + 1 -> next(q);
if next(q) > length(buffer(q)) then

1 -> next(q);

A fancy alternative is to use the modulus operator:

(next(q) rem length(buffer(q))) + 1 -> next(q);

Either way, we have one last problem to solve. How do we know if the queue
is really full, meaning that we cannot insert another item? The following figure
shows what the queue looks like when it is “full.”

first next

3

first

2

next
There is still one empty space in the array, but the queue is full because

if we insert another item, then we have to increment next such that next ==
first, and in that case it would appear that the queue was empty!

To avoid that, we sacrifice one space in the array. So how can we tell if the
queue is full?

if (next(q) rem length(buffer(q))) + 1 = first(q) then

And what should we do if the array is full? In that case resizing the array is
probably the only option.

As an exercise, put together all the code from this section and write an im-
plementation of a queue using a circular buffer that resizes itself when necessary.

17.5 Priority queue

The Priority Queue ADT has the same interface as the Queue ADT, but different
semantics. The interface is:



17.6. ARRAY IMPLEMENTATION OF PRIORITY QUEUE 157

constructor: Create a new, empty queue.

insert: Add a new item to the queue.

remove: Remove and return an item from the queue. The item that is returned
is the one with the highest priority.

empty: Check whether the queue is empty.

The semantic difference is that the item that is removed from the queue
is not necessarily the first one that was added. Rather, it is whatever item
in the queue has the highest priority. What the priorities are, and how they
compare to each other, are not specified by the Priority Queue implementation.
It depends on what the items are that are in the queue.

For example, if the items in the queue have names, we might choose them
in alphabetical order. If they are bowling scores, we might choose from highest
to lowest, but if they are golf scores, we would go from lowest to highest.

So we face a new problem. We would like an implementation of Priority
Queue that is generic—it should work with any kind of object—but at the
same time the code that implements Priority Queue needs to have the ability
to compare the objects it contains.

The solution is that the order is defined by a method. So, all object that we
store in Priority Queue should have two argument compare method.

17.6 Array implementation of Priority Queue

We start with the class definition

define :class Priority_Queue;
slot buffer = initv(16);
slot index = 1;

enddefine;

As usual, index is the index of the next available location in the array. The
automatilally generated newPriority Queue constructor is again adequate. I
chose the initial size for the array arbitrarily.

empty is similar to what we have seen before.

define :method empty(pq : Priority_Queue);
return(index(pq) = 1);

enddefine;

insert is similar to push:

define :method insert(pq : Priority_Queue, item);
if index(pq) = length(buffer(pq)) + 1 then

resize(pq);



158 CHAPTER 17. QUEUES AND PRIORITY QUEUES

endif;
item ->buffer(pq)(index(pq));
index(pq) + 1 -> index(pq);

enddefine;

I omitted the implementation of resize. The only substantial method in the
class is remove, which has to traverse the array to find and remove the largest
item:

define :method remove(pq : Priority_Queue);
if index(pq) = 1 then

return([]);
endif;
lvars buf = buffer(pq);
lvars max_index = 1;
lvars i;

for i from 2 to index(pq) - 1 do
if compare(buf(i), buf(max_index)) > 0 then

i -> max_index;
endif;

endfor;
lvars result = buf(max_index);

;;; move the last item into the empty slot
index(pq) - 1 -> index(pq);
buf(index(pq)) -> buf(max_index);
return(result);

enddefine;

As we traverse the array, max index keeps track of the index of the largest
element we have seen so far. What it means to be the “largest” is determined
by compare.

17.7 A Priority Queue client

The implementation of Priority Queue is written entirely in terms of compare
function, but compare remains undefined. It is easy to write a special purpose
compare function, but we would like to use Priority Queue with arbitrary classes,
and clearly each such class may need different compare. Then solution is to
make compare a generic function. However, we would like also to store integers
in Priority Queue, so we need a compare method for integers. Pop11 has a
special mechanizm which turns normal data type into a class.

First, we need an auxilary class

define :mixin Integer;
enddefine;



17.8. THE GOLFER CLASS 159

Now we say that integer are member of this new class

define :extant integer is Integer;
enddefine;

define :extant biginteger is Integer;
enddefine;

Now we can define compare method

define :method compare(x : Integer, y : Integer);
if x > y then

return(1);
elseif x = y then

return(0);
else

return(-1);
endif;

enddefine;

Now, we can start using our Priority Queue.

lvars pq = make_Priority_Queue ();
insert(pq, 17);
insert(pq, 12);
insert(pq, 44);

This code creates a new, empty Priority Queue. Then it inserts three integers
into the queue.

To get items out of the queue, we have to reverse the process:

while not(empty(pq)) do
lvars item = remove(pq);
printf (item, ’%p\n’);

endwhile;

This loop removes all the items from the queue and prints them.

17.8 The Golfer class

Finally, let’s looks at how we can make a new class that has compare method.
As an example of something with an unusual definition of “highest” priority,
we’ll use golfers:

define :class Golfer;
slot name;
slot score;

enddefine;



160 CHAPTER 17. QUEUES AND PRIORITY QUEUES

The class definition and the constructor are pretty much the same as always.

define :method compare(x : Golfer, y : Golfer);
lvars a = score(x);
lvars b = score(y);

;;; for golfers, low is good!
if a < b then

return(1);
elseif a > b then

return(-1);
else

return(0);
endif;

enddefine;

Finally, we can create some golfers:

lvars tiger = consGolfer (’Tiger Woods’, 61);
lvars phil = consGolfer (’Phil Mickelson’, 72);
lvars hal = consGolfer (’Hal Sutton’, 69);

And put them in the queue:

insert(pq, tiger);
insert(pq, phil);
insert(pq, hal);

When we pull them out:

while not(empty(pq)) do
lvars golfer = remove(pq);
printf(golfer, ’%p\n’);

endwhile;

They appear in descending order (for golfers):

<Golfer name:Tiger Woods score:61>
<Golfer name:Hal Sutton score:69>
<Golfer name:Phil Mickelson score:72>

When we switched from Integers to Golfers, we didn’t have to make any
changes in Priority Queue at all. So we succeeded in maintaining a barrier be-
tween Priority Queue and the classes that use it, allowing us to reuse the code
without modification. Furthermore, we were able to give the client code control
over the definition of compare, making this implementation of Priority Queue
more versatile.



17.9. THE COMPARABLE CLASS 161

17.9 The Comparable class

Here we discuss one unsatisfactory aspect in our Prority Queue. Namely, we
need compare method for items that we insert into Prority Queue. However, we
can insert any item into Prority Queue. We get runtime error only we we try to
remove item from the Prority Queue and the compare method is undefined. We
would like to get error message where the real error is, that is when we inserted
wrong item.

First, we define a new class

define :mixin Comparable;
enddefine;

The keyword mixin means that Comparable is abstract class—other classes
can inherit from Comparable, but we are not allowed to create object of
Comparable class.

Next, we change first line of the insert method to read

define :method insert(pq : Priority_Queue, item : Comparable);

Now, the second argument to insert must be Comparable
We need to change definition of Integer class

define :mixin Integer is Comparable;
enddefine;

Finally, we need to change first line of definition of Golfer class to

define :class Golfer is Comparable;

Now, let us try to insert something that is not Comparable like a string

insert(pq, ’string is not Comparable’);

We get error message like Method "insert" failed.
However, this is only partial solution, we can still insert integers and Golfers

into the same Prority Queue, but we can not compare an integer with a Golfer.
Note: when it make sense we can easily extend compare, but comparing integers
and Golfers makes no sense.

17.10 Glossary

queue: An ordered set of objects waiting for a service of some kind.

queueing discipline: The rules that determine which member of a queue is
removed next.

FIFO: “first in, first out,” a queueing discipline in which the first member to
arrive is the first to be removed.



162 CHAPTER 17. QUEUES AND PRIORITY QUEUES

priority queue: A queueing discipline in which each member has a priority
determined by external factors. The member with the highest priority is
the first to be removed.

Priority Queue: An ADT that defines the operations one might perform on
a priority queue.

veneer: A class definition that implements an ADT with method definitions
that are invocations of other methods, sometimes with simple transforma-
tions. The veneer does no significant work, but it improves or standardizes
the interface seen by the client.

performance hazard: A danger associated with a veneer that some of the
methods might be implemented inefficiently in a way that is not apparent
to the client.

constant time: An operation whose run time does not depend on the size of
the data structure.

linear time: An operation whose run time is a linear function of the size of
the data structure.

linked queue: An implementation of a queue using a linked list and references
to the first and last nodes.

circular buffer: An implementation of a queue using an array and indices of
the first element and the next available space.

abstract class: A set of classes. The abstract class specification lists the re-
quirements a class must satisfy to be included in the set.



Chapter 18

Trees

This chapter presents a new data structure called a tree, some of its uses and
two ways to implement it.

A possible source of confusion is the distinction between an ADT, a data
structure, and an implementation of an ADT or data structure. There is no
universal answer, because something that is an ADT at one level might in turn
be the implementation of another ADT.

To help keep some of this straight, it is sometimes useful to draw a diagram
showing the relationship between an ADT and its possible implementations.
This figure shows that there are two implementations of a tree:

linked
implementation

array
implementation

Tree

The horizontal line in the figure represents the barrier of abstraction between
the ADT and its implementations.

18.1 A tree node

Like lists, trees are made up of nodes. A common kind of tree is a binary tree,
in which each node contains a reference to two other nodes (possibly null). The
class definition looks like this:

define :class Tree;
slot cargo = [];
slot left = [];
slot right = [];

enddefine;

Like list nodes, tree nodes contain cargo. The other instance variables are
named left and right, in accordance with a standard way to represent trees

163



164 CHAPTER 18. TREES

graphically:

2 3

1

tree

cargo:

left: right:

cargo:

left: right:

cargo:

left: right:

The top of the tree (the node referred to by tree) is called the root. In
keeping with the tree metaphor, the other nodes are called branches and the
nodes at the tips with null references are called leaves. It may seem odd that
we draw the picture with the root at the top and the leaves at the bottom, but
that is not the strangest thing.

To make things worse, computer scientists mix in yet another metaphor: the
family tree. The top node is sometimes called a parent and the nodes it refers
to are its children. Nodes with the same parent are called siblings, and so on.

Finally, there is also a geometric vocabulary for taking about trees. I al-
ready mentioned left and right, but there is also “up” (toward the parent/root)
and down (toward the children/leaves). Also, all the nodes that are the same
distance from the root comprise a level of the tree.

I don’t know why we need three metaphors for talking about trees, but there
it is.

18.2 Building trees

The process of assembling tree nodes is similar to the process of assembling
lists. We have automatically defined consTree constructor for tree nodes that
initializes the instance

We allocate the child nodes first:

lvars left_node = consTree(2, [], []);
lvars right_node = consTree(3, [], []);

We can create the parent node and link it to the children at the same time:



18.3. TRAVERSING TREES 165

lvars tree = consTree(1, left_node, right_node);

This code produces the state shown in the previous figure.

18.3 Traversing trees

By now, any time you see a new data structure, your first question should be,
“How can I traverse it?” The most natural way to traverse a tree is recursively.
For example, to add up all the integers in a tree, we could write this function:

define total(tree);
if tree = [] then

return(0);
else

return (cargo(tree) + total(left(tree)) + total(right(tree)));
endif;

enddefine;

This is not method because we would like to use [] to represent the empty tree,
and make the empty tree the base case of the recursion. If the tree is empty,
the function returns 0. Otherwise it makes two recursive calls to find the total
value of its two children. Finally, it adds in its own cargo and returns the total.

Although this function works, there is some difficulty fitting it into an object-
oriented design. Namely, it should not be part of Tree implementation, because
it requires the cargo to be numeric.

On the other hand, this code accesses the instance variables of the Tree
nodes, so it “knows” more than it should about the implementation of the tree.
If we changed that implementation later (and we will) this code would break.

Later in this chapter we will develop ways to solve this problem, allowing
client code to traverse trees containing any kinds of objects without breaking
the abstraction barrier between the client code and the implementation. Before
we get there, let’s look at an application of trees.

18.4 Expression trees

A tree is a natural way to represent the structure of an expression. Unlike other
notations, it can represent the comptation unambiguously. For example, the
infix expression 1 + 2 * 3 is ambiguous unless we know that the multiplication
happens before the addition.

The following figure represents the same computation:



166 CHAPTER 18. TREES

2

+

1

3

*

cargo:

left: right:

cargo:

left: right:

cargo:

left: right:

cargo:

left: right:

cargo:

left: right:

The nodes can be operands like 1 and 2 or operators like + and *. Operands
are leaf nodes; operator nodes contain references to their operands (all of these
operators are binary, meaning they have exactly two operands).

Looking at this figure, there is no question what the order of operations is:
the multiplication happens first in order to compute the first operand of the
addition.

Expression trees like this have many uses. The example we are going to look
at is translation from one format (postfix) to another (infix). Similar trees are
used inside compilers to parse, optimize and translate programs.

18.5 Traversal

I already pointed out that recursion provides a natural way to traverse a tree.
We can print the contents of an expression tree like this:

define print(tree);
if tree = [] then

return;
endif;
printf(cargo(tree), ’%p ’);
print(left(tree));
print(right(tree));

enddefine;



18.6. ENCAPSULATION 167

In other words, to print a tree, first print the contents of the root, then print the
entire left subtree, then print the entire right subtree. This way of traversing
a tree is called a preorder, because the contents of the root appear before the
contents of the children.

For the example expression the output is + 1 * 2 3. This is different from
both postfix and infix; it is a new notation called prefix, in which the operators
appear before their operands.

You might suspect that if we traverse the tree in a different order we get the
expression in a different notation. For example, if we print the subtrees first,
and then the root node:

define print_postorder(tree);
if tree = [] then

return;
endif;
print_postorder(left(tree));
print_postorder(right(tree));
printf(cargo(tree), ’%p ’);

enddefine;

We get the expression in postfix (1 2 3 * +)! As the name of the previous
method implies, this order of traversal is called postorder. Finally, to traverse
a tree inorder, we print the left tree, then the root, then the right tree:

define print_inorder(tree);
if tree = [] then

return;
endif;
print_inorder(left(tree));
printf(cargo(tree), ’%p ’);
print_inorder(right(tree));

enddefine;

The result is 1 + 2 * 3, which is the expression in infix.
To be fair, I have to point out that I have omitted an important complication.

Sometimes when we write an expression in infix we have to use parentheses to
preserve the order of operations. So an inorder traversal is not quite sufficient
to generate an infix expression.

Nevertheless, with a few improvements, the expression tree and the three
recursive traversals provide a general way to translate expressions from one
format to another.

18.6 Encapsulation

As I mentioned before, there is a problem with the way we have been traversing
trees: it breaks down the barrier between the client code (the application that



168 CHAPTER 18. TREES

uses the tree) and the provider code (the Tree implementation). Ideally, tree
code should be general; it shouldn’t know anything about expression trees.
And the code that generates and traverses the expression tree shouldn’t know
about the implementation of the trees. This design criterion is called object
encapsulation to distinguish it from the encapsulation we saw in Section 6.6,
which we might call method encapsulation.

In the current version, the Tree code knows too much about the client.
Instead, the Tree class should provide the general capability of traversing a tree
in various ways. As it traverses, it should perform operations on each node that
are specified by the client.

18.7 General tree traversal

In Pop11 natural way to separate tree traversal from operations on tree nodes
is by using functional arguments: we simply pass a function which performs
required operation as an argument to the traversal function and the traversal
function applies operation to each node.

define traverse_preorder(tree, action);
if tree == [] then

return;
endif;
action(cargo(tree));
traverse_preorder(left(tree), action);
traverse_preorder(right(tree), action);

enddefine;

To get the same effect as our previous print function we can use the following
function as the action:

define print_action(node);
printf(cargo(node), ’%p ’);

enddefine;

Now traverse preorder(tree, print action) gives the same effect as
print(tree).

18.8 Simplified visitor pattern

There is another solution to the general traveral problem called visitor pat-
tern. In simplified version of visitor pattern we will create a new abstract class,
called Visitable. The items stored in a tree will be required to be visitable,
which means that they define a method named visit that does whatever the
client wants done to each node. That way the Tree can perform the traversal
and the client can perform the node operations.



18.9. DEFINING AN ABSTRACT CLASS 169

Here are the steps we have to perform to wedge an abstract class between a
client and a provider:

1. Define an abstract class that specifies the methods the provider code will
need to invoke on its components.

2. Write the provider code in terms of the new abstract class.

3. Define a concrete class that belongs to the abstract class and that imple-
ments the required methods as appropriate for the client.

4. Write the client code to use the new concrete class.

The next few sections demonstrate these steps.

18.9 Defining an abstract class

An abstract class definition looks a lot like a concrete class definition, except
that it only specifies the interface of each method and not an implementation.
The definition of Visitable is

define :mixin Visitable;
enddefine;

That’s it! The word mixin is Pop11 keyword for an abstract class.

18.10 Implementing an abstract class

If we are using an expression tree to generate infix, then “visiting” a node means
printing its contents. Since the contents of an expression tree are tokens, we’ll
create a new concrete class called Token that implements Visitable

define :class Token is Visitable;
slot name;

enddefine;

define :method visit(t : Token);
printf(str(t), ’%p ’);

enddefine;

The next step is to modify the parser to put Token objects into the tree
instead of Strings. Here is a small example:

lvars char_rep = stingin(’1 2 3 * +’);
lvars item_rep = incharitem(char_rep);

lvars token = itemrep();
lvars tree = consTree (consToken(token), null, null);



170 CHAPTER 18. TREES

This code takes the first token in the string and wraps it in a Token object,
then puts the Token into a tree node. Now a methods can travesing the tree
and invoke visit method on each node.

As an exercise, write a version of printPreorder called visitPreorder that
traverses the tree and invokes visit on each node in preorder.

18.11 General visitor pattern

The simplified vistor pattern has one problem: each tree node has a single visit
method, so can perform only single operation during traversal. In practice, we
may need perform different operations, for example insted of printing nodes to
the screen we may with to print them to disc, or simply count them.

Naive soultion would add multiple method to Visitable class, say
visit print, visit count, etc. But then it looks that we also need multi-
ple travesal functions (one for each visit method). In Pop11 our technique of
passing function as parameter solves this problem: we just pass the method we
need as a parameter. In fact, in Pop11 there is no need to insist that nodes are
Visitable – we only need that nodes are correct arguments to visit method.

However, some languages (like Java) do not allow functions as parameter or
make their use awkward. Then we need different solution: insted of a function
we use objects of special Visitor class. Vistor must have a method for each
kind of node it is going to visit. If parse tree contains tree kinds of tokens:
Numbers, Operators and Variables Visitor need methods visit Number,
visit Operator and visit Variable which take apropriate token as a pa-
rameter (visit Number has a number as parameter).

We also need to modify Visitable: now it has accept method which takes
Vistor object as parameter.

For example accept method for a Number looks like:

define :method accept(self : Number, visitor);
visit_Number(visitor, self);

enddefine;

Now, the tree traversal functions instead of calling visit method call accept
method. Moreover, tree traversal functions take visitor object as a parameter
and pass it to the accept method.

18.12 Array implementation of trees

What does it mean to “implement” a tree? So far we have only seen one
implementation of a tree, a linked data structure similar to a linked list. But
there are other structures we would like to identify as trees. Anything that can
perform the basic set of tree operations should be recognized as a tree.

So what are the tree operation? In other words, how do we define the Tree
ADT?



18.12. ARRAY IMPLEMENTATION OF TREES 171

constructor: Build an empty tree.

empty: Is this tree the empty tree?

left: Return the left child of this node, or an empty tree if there is none.

right: Return the left child of this node, or an empty tree if there is none.

parent: Return the parent of this node, or an empty tree if this node is the
root.

In the implementation we have seen, the empty tree is represented by the
special value []. left and right are performed by accessing the instance
variables of the node. We have not implemented parent yet (you might think
about how to do it).

There is another implementation of trees that uses arrays and indices instead
of objects and references. To see how it works, we will start by looking at a
hybrid implementation that uses both arrays and objects.

This figure shows a tree like the ones we have been looking at, although it is
laid out sideways, with the root at the left and the leaves on the right. At the
bottom there is an array of references that refer to the objects in the trees.

2

3

4

5

6

7

2 3 5 6 7

1

1 40

left:
right:

left:
right:

left:
right:

left:
right:

left:
right:

left:
right:

left:
right:

In this tree the cargo of each node is the same as the array index of the node,
but of course that is not true in general. You might notice that array index 1
refers to the root node and array index 0 is empty. The reason for that will
become clear soon.

So now we have a tree where each node has a unique index. Furthermore,
the indices have been assigned to the nodes according to a deliberate pattern,
in order to achieve the following results:

1. The left child of the node with index i has index 2i.

2. The right child of the node with index i has index 2i + 1.

3. The parent of the node with index i has index i/2 (rounded down).

Using these formulas, we can implement left, right and parent just by
doing arithmetic; we don’t have to use the references at all!



172 CHAPTER 18. TREES

Since we don’t use the references, we can get rid of them, which means that
what used to be a tree node is now just cargo and nothing else. That means we
can implement the tree as an array of cargo objects; we don’t need tree nodes
at all.

Here’s what one implementation looks like:

define :class Tree;
slot buffer;

enddefine;

define make_Tree();
return(consTree(initv(128)));

enddefine;

No surprises so far. The instance variable is a full vector. The constructor
initializes this array with an arbitrary initial size (we can always resize it later).

To check whether a tree is empty, we check whether the root node is unde-
fined. Again, the root node is located at index 1.

define :method empty(t : Tree);
return (buffer(t)(1) == "undef");

enddefine;

The implementation of left, right and parent is just arithmetic:

define :method left(t : Tree, i);
return (2*i);

enddefine;
define :method right(t : Tree, i);

return (2*i + 1);
enddefine;

define :method parent(t : Tree, i);
return (i div 2);

enddefine;

Only one problem remanins. The node “references” we have are not really
references; they are integer indices. To access the cargo itself, we have to get or
set an element of the array. For that kind of operation, it is often a good idea to
provide methods that perform simple error checking before accessing the data
structure.

define :method get_cargo(t : Tree, i);
if i < 1 or i >= length(buffer(t)) then

return([]);
endif;
return(buffer(t)(i));



18.12. ARRAY IMPLEMENTATION OF TREES 173

enddefine;

define :method set_cargo(t : Tree, i, item);
if i < 1 or i >= length(buffer(t)) then

return;
endif;
item -> buffer(t)(i);

enddefine;

Methods like this are often called accessor methods because they provide
access to a data structure (the ability to get and set elements) without letting
the client see the details of the implementation.

Finally we are ready to build a tree. In another class (the client), we would
write

lvars tree = make_Tree();
lvars root = 1;
set_cargo(tree, root, ’cargo for root’);

The constructor builds an empty tree. In this case we assume that the client
knows that the index of the root is 1 although it would be preferable for the
tree implementation to provide that information. Anyway, invoking setCargo
puts the string "cargo for root" into the root node.

To add children to the root node:

set_cargo (tree, left(tree, root), ’cargo for left’);
set_cargo (tree, right(tree, root), ’cargo for right’);

In the tree class we could provide a method that prints the contents of the tree
in preorder.

define :method print_preorder(t : Tree, i)
if get_cargo(t, i) = [] then

return;
endif;
printf(get_cargo(t, i), ’%p\n’);
print_preorder(t, left(t, i));
print_preorder(t, right(t, i));

enddefine;

We invoke this method from the client by passing the root as a parameter.

print_preorder(tree, root);

The output is

cargo for root
cargo for left
cargo for right



174 CHAPTER 18. TREES

This implementation provides the basic operations required to be a tree, but it
leaves a lot to be desired. As I pointed out, we expect the client to have a lot
of information about the implementation, and the interface the client sees, with
indices and all, is not very pretty.

Also, we have the usual problem with array implementations, which is that
the initial size of the array is arbitrary and it might have to be resized.

18.13 Glossary

binary tree: A tree in which each node refers to 0, 1, or 2 dependent nodes.

root: The top-most node in a tree, to which no other nodes refer.

leaf: A bottom-most node in a tree, which refers to no other nodes.

parent: The node that refers to a given node.

child: One of the nodes referred to by a node.

level: The set of nodes equidistant from the root.

prefix notation: A way of writing a mathematical expression with each oper-
ator appearing before its operands.

preorder: A way to traverse a tree, visiting each node before its children.

postorder: A way to traverse a tree, visiting the children of each node before
the node itself.

inorder: A way to traverse a tree, visiting the left subtree, then the root, then
the right subtree.

class variable: A variable (slot) shared by all objects of a class.

binary operator: An operator that takes two operands.

object encapsulation: The design goal of keeping the implementations of two
objects as separate as possible. Neither class should have to know the
details of the implementation of the other.



Chapter 19

Heap

19.1 The Heap

A heap is a special kind of tree that happens to be an efficient implementation of
a priority queue. This figure shows the relationships among the data structures
in this chapter.

linked
implementation

array
implementation

PriorityQueue

Heap

tree

Ordinarily we try to maintain as much distance as possible between an ADT
and its implementation, but in the case of the Heap, this barrier breaks down a
little. The reason is that we are interested in the performance of the operations
we implement. For each implementation there are some operations that are easy
to implement and efficient, and others that are clumsy and slow.

It turns out that the array implementation of a tree works particularly well
as an implementation of a Heap. The operations the array performs well are
exactly the operations we need to implement a Heap.

To understand this relationship, we will proceed in a few steps. First, we
need to develop ways of comparing the performance of various implementations.
Next, we will look at the operations Heaps perform. Finally, we will compare
the Heap implementation of a Priority Queue to the others (arrays and lists)
and see why the Heap is considered particularly efficient.

175



176 CHAPTER 19. HEAP

19.2 Performance analysis

When we compare algorithms, we would like to have a way to tell when one
is faster than another, or takes less space, or uses less of some other resource.
It is hard to answer those questions in detail, because the time and space used
by an algorithm depend on the implementation of the algorithm, the particular
problem being solved, and the hardware the program runs on.

The objective of this section is to develop a way of talking about performance
that is independent of all of those things, and only depends on the algorithm
itself. To start, we will focus on run time; later we will talk about other re-
sources.

Our decisions are guided by a series of constraints:

1. First, the performance of an algorithm depends on the hardware it runs
on, so we usually don’t talk about run time in absolute terms like seconds.
Instead, we usually count the number of abstract operations the algorithm
performs.

2. Second, performance often depends on the particular problem we are try-
ing to solve – some problems are easier than others. To compare algo-
rithms, we usually focus on either the worst-case scenario or an average
(or common) case.

3. Third, performance depends on the size of the problem (usually, but not
always, the number of elements in a collection). We address this depen-
dence explicitly by expressing run time as a function of problem size.

4. Finally, performance depends on details of the implementation like object
allocation overhead and method invocation overhead. We usually ignore
these details because they don’t affect the rate at which the number of
abstract operations increases with problem size.

To make this process more concrete, consider two algorithms we have already
seen for sorting an array of integers. The first is selection sort, which we saw
in Section 13.2. Here is the pseudocode we used there.

define selectionsort (array);
for i from 1 to length(array) do

;;; find the lowest item at or to the right of i
;;; swap the ith item and the lowest item

endfor;
enddefine;

To perform the operations specified in the pseudocode, we wrote helper methods
named find lowest and swap. In pseudocode, find lowest looks like this

;;; find the index of the lowest item between
;;; i and the end of the array



19.2. PERFORMANCE ANALYSIS 177

define find_lowest(array, i);
;;; lowest contains the index of the lowest item so far
lowest = i;
lvars j;
for j from i + 1 to length(array) do

;;; compare the jth item to the lowest item so far
;;; if the jth item is lower, replace lowest with j

endfor;
return(lowest);

enddefine;

And swap looks like this:

define swap (i, j);
;;; store a reference to the ith card in temp
;;; make the ith element of the array refer to the jth card
;;; make the jth element of the array refer to temp

enddefine;

To analyze the performance of this algorithm, the first step is to decide what
operations to count. Obviously, the program does a lot of things: it increments
i, compares it to the length of the deck, it searches for the largest element of
the array, etc. It is not obvious what the right thing is to count.

It turns out that a good choice is the number of times we compare two items.
Many other choices would yield the same result in the end, but this is easy to
do and we will find that it allows us to compare most easily with other sort
algorithms.

The next step is to define the “problem size.” In this case it is natural to
choose the size of the array, which we’ll call n.

Finally, we would like to derive an expression that tells us how many abstract
operations (specifically, comparisons) we have to do, as a function of n.

We start by analyzing the helper methods. swap copies several references,
but it doesn’t perform any comparisons, so we ignore the time spent performing
swaps. findi lowest starts at i and traverses the array, comparing each item
to lowest. The number of items we look at is n − i, so the total number of
comparisons is n− i− 1.

Next we consider how many times findi lowest gets invoked and what the
value of i is each time. The last time it is invoked, i is n − 2 so the number
of comparisons is 1. The previous iteration performs 2 comparisons, and so on.
During the first iteration, i is 0 and the number of comparisons is n− 1.

So the total number of comparisons is 1 + 2 + · · ·+ n− 1. This sum is equal
to n2/2− n/2. To describe this algorithm, we would typically ignore the lower
order term (n/2) and say that the total amount of work is proportional to n2.
Since the leading order term is quadratic, we might also say that this algorithm
is quadratic time.



178 CHAPTER 19. HEAP

19.3 Analysis of mergesort

In Section 13.5 I claimed that mergesort takes time that is proportional to
n log n, but I didn’t explain how or why. Now I will.

Again, we start by looking at pseudocode for the algorithm. For mergesort,
it’s

define merge_sort(array);
;;; find the midpoint of the array
;;; divide the array into two halves
;;; sort the halves recursively
;;; merge the two halves and return the result

enddefine;

At each level of the recursion, we split the array in half, make two recursive
calls, and then merge the halves. Graphically, the process looks like this:

...
...

...
...

...
...

n

2

1

n/2

# merges# arrays
items per comparisons

per mergearray total work

2−1

0

~n

1

2

n

n/2

1

2

n−1

n/2−1

~n

~n

n/2

0

Each line in the diagram is a level of the recursion. At the top, a single array
divides into two halves. At the bottom, n arrays (with one element each) are
merged into n/2 arrays (with 2 elements each).

The first two columns of the table show the number of arrays at each level
and the number of items in each array. The third column shows the number of
merges that take place at each level of recursion. The next column is the one
that takes the most thought: it shows the number of comparisons each merge
performs.

If you look at the pseudocode (or your implementation) of merge, you should
convince yourself that in the worst case it takes m− 1 comparisons, where m is
the total number items being merged.

The next step is to multiply the number of merges at each level by the
amount of work (comparisons) per merge. The result is the total work at each
level. At this point we take advantage of a small trick. We know that in the
end we are only interested in the leading-order term in the result, so we can go
ahead and ignore the −1 term in the comparisons per merge. If we do that,
then the total work at each level is simply n.

Next we need to know the number of levels as a function of n. Well, we
start with an array of n items and divide it in half until it gets to 1. That’s the
same as starting at 1 and multiplying by 2 until we get to n. In other words,
we want to know how many times we have to multiply 2 by itself before we get
to n. The answer is that the number of levels, l, is the logarithm, base 2, of n.



19.4. OVERHEAD 179

Finally, we multiply the amount of work per level, n, by the number of levels,
log2 n to get n log2 n, as promised. There isn’t a good name for this functional
form; most of the time people just say, “en log en.”

It might not be obvious at first that n log2 n is better than n2, but for large
values of n, it is. As an exercise, write a program that prints n log2 n and n2

for a range of values of n.

19.4 Overhead

Performance analysis takes a lot of handwaving. First we ignored most of the
operations the program performs and counted only comparisons. Then we de-
cided to consider only worst case performance. During the analysis we took the
liberty of rounding a few things off, and when we finished, we casually discarded
the lower-order terms.

When we interpret the results of this analysis, we have to keep all this hand-
waving in mind. Because mergesort is n log2 n, we consider it a better algorithm
than selection sort, but that doesn’t mean that mergesort is always faster. It
just means that eventually, if we sort bigger and bigger arrays, mergesort will
win.

How long that takes depends on the details of the implementation, including
the additional work, besides the comparisons we counted, that each algorithm
performs. This extra work is sometimes called overhead. It doesn’t affect the
performance analysis, but it does affect the run time of the algorithm.

For example, our implementation of mergesort actually allocates subarrays
before making the recursive calls and then lets them get garbage collected after
they are merged. Looking again at the diagram of mergesort, we can see that
the total amount of space that gets allocated is proportional to n log2 n, and
the total number of objects that get allocated is about 2n. All that allocating
takes time.

Even so, it is most often true that a bad implementation of a good algorithm
is better than a good implementation of a bad algorithm. The reason is that
for large values of n the good algorithm is better and for small values of n it
doesn’t matter because both algorithms are good enough.

As an exercise, write a program that prints values of 1000n log2 n and n2 for
a range of values of n. For what value of n are they equal?

19.5 Priority Queue implementations

In Chapter 17 we looked at an implementation of a Priority Queue based on an
array. The items in the array are unsorted, so it is easy to add a new item (at
the end), but harder to remove an item, because we have to search for the item
with the highest priority.

An alternative is an implementation based on a sorted list. In this case when
we insert a new item we traverse the list and put the new item in the right spot.



180 CHAPTER 19. HEAP

This implementation takes advantage of a property of lists, which is that it is
easy to insert a new node into the middle. Similarly, removing the item with
the highest priority is easy, provided that we keep it at the beginning of the list.

Performance analysis of these operations is straightforward. Adding an item
to the end of an array or removing a node from the beginning of a list takes the
same amount of time regardless of the number of items. So both operations are
constant time.

Any time we traverse an array or list, performing a constant-time operation
on each element, the run time is proportional to the number of items. Thus,
removing something from the array and adding something to the list are both
linear time.

So how long does it take to insert and then remove n items from a Priority
Queue? For the array implementation, n insertions takes time proportional to
n, but the removals take longer. The first removal has to traverse all n items;
the second has to traverse n − 1, and so on, until the last removal, which only
has to look at 1 item. Thus, the total time is 1 + 2 + · · · + n, which is (still)
n2/2−n/2. So the total for the insertions and the removals is the sum of a linear
function and a quadratic function. The leading term of the result is quadratic.

The analysis of the list implementation is similar. The first insertion doesn’t
require any traversal, but after that we have to traverse at least part of the list
each time we insert a new item. In general we don’t know how much of the list
we will have to traverse, since it depends on the data and what order they are
inserted, but we can assume that on average we have to traverse half of the list.
Unfortunately, even traversing half of the list is still a linear operation.

So, once again, to insert and remove n items takes time proportional to n2.
Thus, based on this analysis we cannot say which implementation is better; both
the array and the list yield quadratic run times.

If we implement a Priority Queue using a heap, we can perform both inser-
tions and removals in time proportional to log n. Thus the total time for n items
is n log n, which is better than n2. That’s why, at the beginning of the chapter,
I said that a heap is a particularly efficient implementation of a Priority Queue.

19.6 Definition of a Heap

A heap is a special kind of tree. It has two properties that are not generally
true for other trees:

completeness: The tree is complete, which means that nodes are added from
top to bottom, left to right, without leaving any spaces.

heapness: The item in the tree with the highest priority is at the top of the
tree, and the same is true for every subtree.

Both of these properties bear a little explaining. This figure shows a number
of trees that are considered complete or not complete:



19.6. DEFINITION OF A HEAP 181

Complete trees Not complete trees

An empty tree is also considered complete.
Rigorous definition of completeness is somewhat tricky. Important role has

height of subtrees. Recall that the height of a tree is the number of levels.
Starting at the root, if the tree is complete, then the height of the left subtree

and the height of the right subtree should be equal, or the left subtree may be
taller by one. In any other case, the tree cannot be complete.

One could think that if height of the left subtree and the height of the
right subtree are equal and both subtrees are complete then the tree is complte.
Unfortunatly, this is not the case – correct condition is more complicated.

In the simplest case the bottom level is completly filled. In other words all
leaf elements of the tree are the the same level. We call such tree a full tree.

It is easy to see that in full tree height of the left subtree and the height of
the right subtree are equal. Furthermore, if the tree is full, then both the left
subtree and the right subtree are full. And, the converse is also true – so check
that the tree is full we need to check both conditions.

It is natural to write these rules as a recursive function:

define is_full(tree);
lvars left_height = height(left(tree));
lvars right_height = height(right(tree));

;;; check the root node
if left_height /= right_height then

return(false);
endif;

;;; check the children
if not(is_full(left(tree))) then

return(false);
else

return(is_full(right(tree)));
endif;



182 CHAPTER 19. HEAP

enddefine;

What happens when the bottom level is not completely filled?
One case is when we are adding elements to the right subtree. Than, the

height of the left subtree and the height of the right subtree should be equal,
and the left subtree should be a full tree.

The next case is when the bottom level is filled in half—in this case the both
left and right subtrees are full trees, but the left subtree is taller by one.

Finally, we may be adding elements to the left subtree—in this case the left
subtree is taller by one and the right subtree is a full tree.

Furthermore, both subtrees are again complete trees – we need to check this.
Note that we can slightly simplify the rules: the last two cases are essentially

the same: the left subtree is taller by one, the right subtree is a full tree and the
left subtree is a complete tree. Similarly, in the first case of non-full tree (and
the case of full tree) the height of the left subtree and the height of the right
subtree should be equal, the left subtree should be a full tree, and the right
subtree should be a complete tree.

Again we can write these rules as a recursive function.

define is_complete(tree);
lvars left_height = height(left(tree));
lvars right_height = height(right(tree));

if left_height = right_height then
if not(is_full(left(tree))) then

return(false);
else

return(is_complete(right(tree)));
endif;

elseif eft_height = right_height + 1 then

if not(is_full(right(tree))) then
return(false);

else
return(is_complete(right(tree)));

endif;
endif;

enddefine;

For this example I used the linked implementation of a tree. As an exercise,
write the same function for the array implementation. Also as an exercise, write
the height function. The height of a empty tree ([]) is 0 and the height of a
leaf node is 1.

Finally, our function computes multiple times heights of subtrees. You
should think how to avoid this repeated computation.

The heap property is recursive. In order for a tree to be a heap, the largest
value in the tree has to be at the root, and the same has to be true for each



19.7. HEAP REMOVE 183

subtree. As another exercise, write a method that checks whether a tree has
the heap property.

19.7 Heap remove

It might seem odd that we are going to remove things from the heap before we
insert any, but I think removal is easier to explain.

At first glance, we might think that removing an item from the heap is a
constant time operation, since the item with the highest priority is always at
the root. The problem is that once we remove the root node, we are left with
something that is no longer a heap. Before we can return the result, we have to
restore the heap property. We call this operation reheapify.

The situation is shown in the following figure:

a b

r

Subtree A

a

Subtree B

The root node has priority r and two subtrees, A and B. The value at the
root of Subtree A is a and the value at the root of Subtree B is b.

We assume that before we remove r from the tree, the tree is a heap. That
implies that r is the largest value in the heap and that a and b are the largest
values in their respective subtrees.

Once we remove r, we have to make the resulting tree a heap again. In other
words we need to make sure it has the properties of completeness and heapness.

The best way to ensure completeness is to remove the bottom-most, right-
most node, which we’ll call c and put its value at the root. In a general tree
implementation, we would have to traverse the tree to find this node, but in the
array implementation, we can find it in constant time because it is always the
last (non-null) element of the array.

Of course, the chances are that the last value is not the highest, so putting
it at the root breaks the heapness property. Fortunately it is easy to restore.
We know that the largest value in the heap is either a or b. Therefore we can
select whichever is larger and swap it with the value at the root.

Arbitrarily, let’s say that b is larger. Since we know it is the highest value
left in the heap, we can put it at the root and put c at the top of Subtree B.
Now the situation looks like this:



184 CHAPTER 19. HEAP

Subtree A Subtree B

b

a c

Again, c is the value we copied from the last entry in the array and b is the
highest value left in the heap. Since we haven’t changed Subtree A at all, we
know that it is still a heap. The only problem is that we don’t know if Subtree
B is a heap, since we just stuck a (probably low) value at its root.

Wouldn’t it be nice if we had a method that could reheapify Subtree B?
Wait... we do!

19.8 Heap insert

Inserting a new item in a heap is a similar operation, except that instead of
trickling a value down from the top, we trickle it up from the bottom.

Again, to guarantee completeness, we add the new element at the bottom-
most, rightmost position in the tree, which is the next available space in the
array.

Then to restore the heap property, we compare the new value with its neigh-
bors. The situation looks like this:

lb

a

c

The new value is c. We can restore the heap property of this subtree by
comparing c to a. If c is smaller, then the heap property is satisfied. If c is
larger, then we swap c and a. The swap satisfies the heap property because we
know that c must also be bigger than b, because c > a and a > b.



19.9. PERFORMANCE OF HEAPS 185

Now that the subtree is reheapified, we can work our way up the tree until
we reach the root.

19.9 Performance of heaps

For both insert and remove, we perform a constant time operation to do the
actual insertion and removal, but then we have to reheapify the tree. In one
case we start at the root and work our way down, comparing items and then
recursively reheapifying one of the subtrees. In the other case we start at a leaf
and work our way up, again comparing elements at each level of the tree.

As usual, there are several operations we might want to count, like compar-
isons and swaps. Either choice would work; the real issue is the number of levels
of the tree we examine and how much work we do at each level. In both cases
we keep examining levels of the tree until we restore the heap property, which
means we might only visit one, or in the worst case we might have to visit them
all. Let’s consider the worst case.

At each level, we perform only constant time operations like comparisons
and swaps. So the total amount of work is proportional to the number of levels
in the tree, a.k.a. the height.

So we might say that these operations are linear with respect to the height
of the tree, but the “problem size” we are interested in is not height, it’s the
number of items in the heap.

As a function of n, the height of the tree is log2 n. This is not true for all
trees, but it is true for complete trees. To see why, think of the number of
nodes on each level of the tree. The first level contains 1, the second contains 2,
the third contains 4, and so on. The ith level contains 2i nodes, and the total
number in all levels up to i is 2i − 1. In other words, 2h = n, which means that
h = log2 n.

Thus, both insertion and removal take logarithmic time. To insert and
remove n items takes time proportional to n log2 n.

19.10 Heapsort

The result of the previous section suggests yet another algorithm for sorting.
Given n items, we insert them into a Heap and then remove them. Because of
the Heap semantics, they come out in order. We have already shown that this
algorithm, which is called heapsort, takes time proportional to n log2 n, which
is better than selection sort and the same as mergesort.

As the value of n gets large, we expect heapsort to be faster than selection
sort, but performance analysis gives us no way to know whether it will be faster
than mergesort. We would say that the two algorithms have the same order of
growth because they grow with the same functional form. Another way to say
the same thing is that they belong to the same complexity class.



186 CHAPTER 19. HEAP

Complexity classes are sometimes written in “big-O notation”. For example,
O(n2), pronounced “oh of en squared” is the set of all functions that grow no
faster than n2 for large values of n. To say that an algorithm is O(n2) is the
same as saying that it is quadratic. The other complexity classes we have seen,
in decreasing order of performance, are:

O(1) constant time
O(log n) logarithmic
O(n) linear
O(n log n) “en log en”
O(n2) quadratic
O(2n) exponential

So far none of the algorithms we have looked at are exponential. For large
values of n, these algorithms quickly become impractical. Nevertheless, the
phrase “exponential growth” appears frequently in even non-technical language.
It is frequently misused so I wanted to include its technical meaning.

People often use “exponential” to describe any curve that is increasing and
accelerating (that is, one that has positive slope and curvature). Of course, there
are many other curves that fit this description, including quadratic functions
(and higher-order polynomials) and even functions as undramatic as n log n.
Most of these curves do not have the (often detrimental) explosive behavior of
exponentials.

As an exercise, compare the behavior of 1000n2 and 2n as the value of n
increases.

19.11 Glossary

selection sort: The simple sorting algorithm in Section 13.2.

mergesort: A better sorting algorithm from Section 13.5.

heapsort: Yet another sorting algorithm.

complexity class: A set of algorithms whose performance (usually run time)
has the same order of growth.

order of growth: A set of functions with the same leading-order term, and
therefore the same qualitative behavior for large values of n.

overhead: Additional time or resources consumed by a programming perform-
ing operations other than the abstract operations considered in perfor-
mance analysis.



Index

= instance, 126

abstract class, 158, 161, 167
Comparable, 161
defining, 169
implementing, 159, 169
Visitable, 168

abstract data type, see ADT
abstract parameter, 115, 116
Abstract Window Toolkit, see AWT
abstraction, 115, 116
accessor method, 172
ADT, 141, 145, 147, 163, 175

Priority Queue, 149, 156
Queue, 149
Stack, 142
Tree, 170

algorithm, 93, 94
algorithm analysis, 176, 178
aliasing, 80, 83, 108, 121
ambiguity, 7, 108

fundamental theorem, 133
analysis

Heap, 185
heapsort, 185
mergesort, 178
Priority Queue, 179

argument, 20, 25, 27
arithmetic

char, 65
floating-point, 91
integer, 16

array, 95, 104
compared to object, 98
copying, 96
element, 96
length, 98

of Cards, 117
of object, 110
of String, 106
resizing, 146
traverse, 101

ArrayIndexOutOfBounds, 146
assignment, 13, 18, 49
AWT, 76

big-O notation, 185
binary tree, 163, 174
bisection search, 112
body

function, 22
loop, 51
method, 169

boolean, 42, 43, 48
bucket, 102
buffer

circular, 153
bug, 4

Card, 105
cargo, 129, 138, 163
char, 61, 65
Chianti, 96, 132
child node, 164, 174
circular buffer, 153, 161
class, 27, 94

abstract, 158, 161, 167
Card, 105
Golfer, 159
LinkedList, 137
Math, 20
Node, 129
parent, 127
Point, 76

187



188 INDEX

Rectangle, 78
Stack, 142
String, 67
StringTokenizer, 144
Time, 26, 85
Token, 169

class hierarchy, 127
class method, 126, 128
class variable, 174
client, 141, 147, 158, 167
collection, 98, 104, 131, 142, 149
Comparable, 159, 161
comparable, 109
compare card, 109
compareTo, 67
comparison

operator, 29
String, 67

compile, 2, 9
compile-time error, 4
complete ordering, 109
complete tree, 180
complexity class, 185, 186
composition, 17, 18, 21, 41, 105, 110
concatenate, 17, 18
conditional, 29, 35

alternative, 30
chained, 31, 35
nested, 31, 35

conditional operator, 109
constant time, 151, 161, 180, 185
constructor, 85, 94, 106, 117, 120
coordinate, 35
correctness, 115
counter, 64, 68, 101
current object, 128

data structure, 163
generic, 129, 142, 157

dead code, 38, 48
dealing, 121
debugging, 4, 9
deck, 110, 115, 117
declaration, 13, 76
decrement, 64, 68
deep equality, 108, 116

delimiter, 144, 147
deterministic, 99, 104
diagram

implementation, 163, 175
stack, 34, 46
state, 34, 46

distribution, 99
division

floating-point, 52
integer, 16

documentation, 63, 138
dot notation, 77
double (floating-point), 19
double-quote, 62
Doyle, Arthur Conan, 6

efficiency, 122
element, 96, 104
embedded reference, 129, 163
encapsulation, 54, 56, 59, 64, 80,

111, 141, 145, 167, 174
encode, 105, 116
encrypt, 105
equality, 108, 126
equals, 67
error, 9

compile-time, 4
logic, 5
run-time, 5, 63

exception, 5, 9, 68
ArrayIndexOutOfBounds, 146
ArrayOutOfBounds, 96
NullPointer, 82, 110
StackOverflow, 35, 115
StringIndexOutOfBounds, 63

explicit, 128
expression, 15, 17, 18, 20, 21, 96

boolean, 42
expression tree, 165
expressions, 143

factorial, 47
fava beans, 96, 132
FIFO, 149, 161
fill-in function, 90
find bisect, 113



INDEX 189

findCard, 112
floating-point, 19, 27
for, 97
formal language, 6, 9
frabjuous, 44
fruitful function, 37
fruitful functions, 26
function, 27, 55, 88

boolean, 43
constructor, 85
definition, 22
fill-in, 90
fruitful, 26, 37
helper, 120, 124
modifier, 89
multiple parameter, 26
pure function, 88
void, 37

functional programming, 94, 125

garbage collection, 82, 83
generalization, 54, 57, 59, 64, 80, 92
generic, 157
generic data structure, 129, 138, 142
Golfer, 159

Heap, 175
analysis, 185
definition, 180

heap property, 180
heapsort, 185, 186
height, 181
hello world, 8
helper function, 120, 124
helper method, 136, 177
high-level language, 2, 9
histogram, 102, 104
Holmes, Sherlock, 6

identity, 108, 126
implementation

Priority Queue, 157, 179
Queue, 149
Stack, 145
Tree, 163, 170

implicit, 128

import, 76
increment, 64, 68
incremental development, 39, 91
index, 63, 68, 96, 104, 111
indexOf, 63
infinite list, 133
infinite loop, 51, 59
infinite recursion, 35, 115
infix, 143, 147, 165
inheritance, 125, 127
initialization, 20, 42, 48
inorder, 166, 174
instance, 83, 94
instance variable, 77, 83, 85, 117
integer division, 16
interface, 161, 169
interpret, 2, 9
invariant, 138, 147
iteration, 50, 59

keyword, 15, 18

language, 108
complete, 44
formal, 6
high-level, 2
low-level, 2
natural, 6
programming, 1, 125
safe, 5

leaf node, 164, 174
leap of faith, 46, 124, 132
length

array, 98
list, 72
String, 62

level, 164, 174
linear search, 112
linear time, 152, 161, 180, 185
link, 138
linked queue, 152, 161
LinkedList, 137
Linux, 6
list, 129, 138

as parameter, 131
infinite, 133



190 INDEX

length, 72
loop, 133
modifying, 135
printing, 131
printing backwards, 132
traversal, 131
traverse recursively, 132
well-formed, 138

literalness, 7
local variable, 56, 59
logarithm, 52
logarithmic time, 185
logic error, 5
logical operator, 43
loop, 51, 59, 96

body, 51
counting, 64
for, 97
in list, 133
infinite, 51, 59
nested, 110
search, 112

loop variable, 54, 56, 63, 96, 131
looping and counting, 101
low-level language, 2, 9

map to, 105
Math class, 20
mean, 99
mergesort, 122, 178, 186
method

= instance, 126
accessor, 172
class, 126, 127
helper, 136
invoking, 127
object, 61, 126, 127, 134
print instance, 126
private, 147
string, 61
wrapper, 136

modifier, 89, 94
modifying lists, 135
modulus, 29, 35
multiple assignment, 49
mutable, 79

natural language, 6, 9, 108
nested structure, 32, 43, 105
new, 76, 86, 118
newline, 11, 34
node, 129, 138, 163

object method, 134
Node class, 129
nondeterministic, 99
null, 81, 110

Object, 127
object, 68, 75, 87

array of, 110
as parameter, 78
as return type, 79
compared to array, 98
mutable, 79
printing, 86

object invariant, 138
object method, 61, 126, 128
object type, 83
object-oriented design, 127
object-oriented programming, 125
operand, 16, 18
operator, 15, 18

char, 65
comparison, 29
conditional, 48, 109
logical, 43, 48
modulus, 29
object, 87
relational, 29, 42
string, 17

order of growth, 185, 186
order of operations, 16
ordering, 109
overhead, 179, 186
overloading, 41, 48, 120, 127

package, 76
parameter, 25, 27, 78

abstract, 115
multiple, 26

parent class, 127
parent node, 164, 174
parse, 7, 9, 144, 147



INDEX 191

partial ordering, 109
performance analysis, 151, 176
performance hazard, 151, 161
poetry, 7
Point, 76
portable, 2
postcondition, 147
postfix, 143, 147, 165
postorder, 166, 174
precedence, 16
precondition, 133, 138, 147
predicate, 147
prefix, 174
preorder, 166, 174
primitive type, 83
print, 11, 86

array of Cards, 111
Card, 106

print card, 106
print deck, 111
print instance, 126
printDeck, 118
printf, 8
priority queue, 149, 161

ADT, 156
array implementation, 157
sorted list implementation, 179

priority queueing, 149
private method, 147
problem-solving, 9
procedural programming, 125
program development, 39, 59

incremental, 91
planning, 91

programming
functional, 125
object-oriented, 125
procedural, 125

programming language, 1, 125
programming style, 91, 125
prose, 7
prototyping, 91
provider, 141, 147, 167
pseudocode, 119, 124, 178
pseudorandom, 104
pure function, 88, 94

quadratic time, 177, 185
queue, 149, 161

circular buffer implementation,
153

linked implementation, 152
List implementation, 149

Queue ADT, 149
queueing discipline, 149, 161
quote, 62

random number, 99, 119
rank, 105
Rectangle, 78
recursion, 33, 35, 44, 113, 123, 166,

178, 184
infinite, 35, 115

recursive, 34
recursive definition, 182
redundancy, 7
reference, 76, 80, 83, 119, 121, 129

embedded, 129
reheapify, 183
relational operator, 29, 42
return, 32, 37, 79

inside loop, 112
return type, 48
return value, 37, 48
role

variable, 133
root node, 164, 174
rounding, 20
run time, 176
run-time error, 5, 63, 68, 82, 96, 110

safe language, 5
scaffolding, 40, 48
searching, 112
selection sort, 119, 177, 186
semantics, 5, 9, 43
shallow equality, 108, 116
shuffling, 118, 121
singleton, 136, 137
sorting, 119, 122, 177, 178, 185
Stack, 142
stack, 34, 46, 142

array implementation, 145



192 INDEX

state, 76, 83
state diagram, 76, 83, 95, 107, 110,

117
statement, 4, 18

assignment, 13, 49
conditional, 29
declaration, 13, 76
for, 97
import, 76
initialization, 42
new, 76, 86, 118
print, 11, 86
return, 32, 37, 79, 112
while, 50

static, 85, 126
statistics, 99
String, 11, 67, 75

array of, 106
length, 62

String method, 61
string operator, 17
StringTokenizer class, 144
subdeck, 115, 120
suit, 105
swapCards, 119
syntax, 4, 9

table, 52
two-dimensional, 54

temporary variable, 38
testing, 115, 123
theorem

fundamental ambiguity, 133
this, 128
Time, 85
token, 144, 147
Token class, 169
traverse, 62, 68, 73, 112, 131, 132,

165, 166
array, 101
counting, 64

tree, 163, 180
array implementation, 170
complete, 180
empty, 165
expression, 165

linked implementation, 164
traversal, 165, 166

tree node, 163
Turing, Alan, 44
type, 18

array, 95
char, 61, 65
conversion, 32
double, 19
int, 16
object, 83, 126
primitive, 83
String, 11, 75

typecasting, 20, 32

value, 13, 18
char, 62

variable, 13, 18
instance, 77, 85, 117
local, 56, 59
loop, 54, 56, 63, 96
roles, 133
temporary, 38

veneer, 151, 161
Visitable, 168
void, 37, 48, 87

while statement, 50
wrapper, 138
wrapper class, 147
wrapper methods, 136


