
Numerical optimization, lecture 1

W. Hebisch

October 12, 2021

1 Books

• Stephen Boyd, Lieven Vandenberghe, Convex Optimization, available on-
line at http://web.stanford.edu/~boyd/cvxbook/

• David G. Luenberger, Yinyu Ye, Linear and Nonlinear Programming,
Springer 2008

• Yurii Nesterov, Introductory lectures on convex optimization, Springer
2004

• Jorge Nocedal, Stephen J. Wright, Numerical Optimization, Springer 2006

2 Introduction

General optimization problem: given a set S and a function f : S → R �nd
x0 ∈ S such that

f(x0) = max
x∈S

f(x).

In such case we write
x0 = argmax f(x).

Similarly, for minimal value we have min and argmin.

2.1 Why optimization?

Classical: decision making. We want maximal e�ect from given resources. Or
to get desired e�ect at minimal cost.

This studies: most statistical estimation and machine learning uses opti-
mization.

Approximation problem: if y /∈ S we want to �nd best approximation in S.
If d measures quality of approximation we want to �nd

argminx∈S d(y, x).

1

Least square linear regression: given xi ∈ Rk, yi ∈ Rl, i = 1, . . . n we want
to �nd best linear approximation, that is �nd matrix A which minimizes

n∑
i=1

‖yi −Axi‖2.

Regularization of ill posed problems: we want to solve equation

f(x) = y.

When f is not invertible or inverse is badly behaved (for example discontinuous)
natural approach requires some regularity of solution. If P measures regularity
we minimize

d(f(x), y) + P (x).

where d is a distance function in the image. In simplest case we use square of
euclidean norm

d(x, y) = ‖x− y‖2,

P (x) = ‖x‖2.

Important special case: LASSO. Given λ ∈ R, λ > 0, xi ∈ Rk, yi ∈ R for
i = 1, . . . , n �nd

argminb,c
∑
|yi − c− (b, xi)|2 + λ‖b‖1

where b ∈ Rk, c ∈ R and ‖b‖1 =
∑k

j=1 |bj |. Using ‖b‖1 tends to promote sparse
solutions.

Typically there are ready to use implementations of optimization methods,
why we can not just use them?

• di�erent methods have di�erent properties, we need to choose one good
for speci�c problem

• we need understanding to combine/tweak methods in useful ways

• we need understanding for troubleshooting (when creating complex sys-
tems something will go wrong)

• we may need to change inner working to get gain from properties of speci�c
problem (like sparsity)

2.2 Narrowing problem

General optimization problem stated before is too general. For example, let A
be any logical formula on S. Let f(x) = 1 when A(x, y) is true and f(x, y) = 0
otherwise. Clearly maxx f(x, y) = 1 if and only if for given y there exists x such
that A(x, y) is true. In other words, using optimization procedure on f we can
solve validity of formula B(y) = ∃xA(x, y). Such problem may be arbitrarily

2

hard, in particular there is computable A such that B is not computable. Easy
A may lead to NP-complete problem for B.

In the future we will work mostly with rather regular subsets of Rk and
reasonably regular functions. In particular we will assume that functions are
almost everywhere di�erentiable, but we allow nondi�erentiability like |x|.

However, there exists polynomials P and Q with integer coe�cients such
that parametric problem

argminx P (x, y) +Q(x, y)

k∏
i=1

sin2(πxi)

is unsolvable. Above, di�culty appears because ‖x‖ may be huge and there is
no computable bound on ‖x‖. If we limit x to a bounded set one can easily get
NP-hard problem.

Remark. Di�culty above is related to di�culty of �nding integer solutions.
Namely, for given polynomial S we can build polynomial Q such that problem
above with P = S2 for any integer vector y has minimum 0 if and only if
there is integer vector x such that P (x, y) = 0. Yuri Matiyasevich showed that
�nding integer solutions to polynomial equations is uncomputable, so also our
optimization problem is uncomputable.

We can also get NP hard problems.
Example: Let

s1 = x1 + x2 + x3,

s2 = x1x2 + x1x3 + x2x3,

s3 = x1x2x3,

Q = 1− (s21 − 3s2 + s3).

One can check that for x ∈ [0, 1]3 we have 0 ≤ Q ≤ 1 with equality only at
vertices of the cube. Moreover Q(0, 0, 0) = 1 and at other vertices Q = 0.

Consider boolean formulas in variables x1, . . . , xk. Let xi+k be negation of
xi (this is to avoid explicitly writing negations). Given boolean formula

B = (xj1,1 ∨ xj2,1 ∨ xj3,1) ∧ · · · ∧ (xj1,m ∨ xj2,m ∨ xj3,m)

we build polynomial f in y1, . . . , yk as

f = Q(yj1,1 , yj2,1 , yj3,1) + · · ·+Q(yj1,m , yj2,m , yj3,m)

where yi+k = 1 − yi. Let S be unit hypercube, that is set of y such that
0 ≤ yi ≤ 1 for i = 1, . . . , k. One can show that min f on S is zero if and only if
there is substitution of truth values for variables in B which makes B true.

Discrete problem above is usually called 3-SAT. It is NP-complete problem.
However, many instances of 3-SAT are easily solvable. Trying projected gradient
descent (which is one of methods that we will study later) on easily solvable
3-SAT instances sometimes gives correct answer, but frequently converges to
non-optimal point (local minimum).

3

In practice local minimum may be good enough, in particular this is the case
in neural network training.

We need to limit to more special problems. One condition which assures
good properties is convexity. On nonconvex problems there may be di�erence
between local minimum and global minimum and we typically must be satis�ed
with local minimum.

2.3 Desired features of solution method

We need following feature from solution method:

• e�ciently handle problems of high dimension

• in many cases low accuracy solution is good enough

• robust (can cope with errors in input data)

Sometimes we need methods which tolerate points with no derivative.

2.4 Discrete optimization

For optimization on discrete sets we need di�erent methods, most is outside
scope for this course. Some discrete methods are similar to or use continuous
methods. If time permits we will have some examples.

2.5 Equivalent problems

We frequently transfer problems to di�erent, more convenient form in such a
way that we can easily recover solution of original problem from solution of
transformed problem. In such case we say that the two problems (original one
and transformed problem) are equivalent.

For example, problem of maximizing f may be replaced by problem of mini-
mizing −f . More generally, we may replace f by composition with a monotonic
function.

Or we may add extra variables and rewrite problem in terms of new variables.
We do not give precise de�nition of equivalent problems. Any simple de�-

nition risk missing some way of transforming problems or allowing too general
transformations. Rather, we will give several examples of transformations.

3 Linear programming

General form: Minimize or maximize linear function 〈c, x〉 on a set S de�ned
by system of linear equations and inequalities.

Standard form:
argminx∈S〈c, x〉

where S = {x : Ax = b, x ≥ 0}. Here (x1, . . . , xk) ≥ 0 means that xi ≥ 0 for
i = 1, . . . , k.

4

The set S above is called feasible set (or feasible region), elements of S are
called feasible points (or feasible vectors).

For theoretical purposes we can transform any linear programming problem
to standard form.

• if original problem requests maximum we replace c by −c

• we can replace inequality
∑m

i=1 aixi ≤ b by equality
∑m

i=1 aixi+xm+1 = b
introducing extra variable

• when original variable xi has value in R we replace it by pair ti, si putting
in all equation and in goal function ti − si instead of xi

Example of transformation to standard form:

maximize x+ y
subject to −2 ≤ x+ 2y ≤ 7

and x ≥ −1.
First, we change to minimization of −x − y. We have 3 inequalities so we

introduce 3 extra variables z1, z2, z3. We rewrite

−2 ≤ x+ 2y

as
x+ 2y − z1 = −2.

We rewrite
x+ 2y ≤ 7

as
x+ 2y + z2 = 7.

We rewrite
x ≥ −1

as
x− z3 = −1.

This gives problem in form:

minimize −x− y
subject to x+ 2y − z1 = −2

x+ 2y + z2 = 7
x− z3 = −1
and x ∈ R, y ≥ 0, z1 ≥ 0, z2 ≥ 0, z3 ≥ 0

To get standard form we need to replace x by z4 − z5 where z4 and z5 are
new variables. So �nally we get problem in standard form

minimize −z4 + z5 − y
subject to z4 − z5 + 2y − z1 = −2

z4 − z5 + 2y + z2 = 7
z4 − z5 − z3 = −1
and y ≥ 0, z1 ≥ 0, z2 ≥ 0, z3 ≥ 0, z4 ≥ 0, z5 ≥ 0

5

Example: diet problem. x represents various foods (ingredients), matrix A
represent nutritional content of foods, equation Ax = b means that nutritional
requirements are satis�ed. c represent cost of foods and we want to minimize
total cost.

Example: Manufacturing problem. x represents various products. Ax gives
resources needed to make x. Assuming maximal resource use is limited by b we
get inequality Ax ≤ b. c represents prices, we want to maximize total value of
products.

Example: Transportation problem. We have k sources with given capacities
si and l destinations with demands dj and need to move a single product from
sources do destinations. xi,j is amount of product moved from source i to
destination j. Demand should be satis�ed, that is

dj =

k∑
i=1

xi,j .

We should not exhaust source capacity, that is

si ≥
l∑

j=1

xi,j .

ci,j represents cost of moving unit of product from source i to destination j, so

k∑
i=1

l∑
j=1

ci,jxi,j

is total cost that we want to minimize.
In theory we usually assume that feasible set is nonempty (otherwise linear

programming problem has no solution). However, in practice it may happen
that all we need is to know if feasible set is nonempty and possibly �nd some
feasible point. Also �nding out if feasible set is nonempty is essentially as hard
as solving linear programming problem. On the other hand, we can add extra
variables to linear programming problem and modify equations so that for new
problem there is obvious feasible point. By assigning high cost to extra variable
we ensure that new variables are zero in optimal solution.

3.1 Simplex algorithm, basic idea

Lemma 3.1 One of the following holds

• the feasible set S is empty

• the goal function 〈c, x〉 is unbounded from below

• 〈c, x〉 attains minimal value at a boundary point of S

6

Remark: For problem in standard form by de�nition boundary points have
one of coordinates equal to 0.

Example: Let S = {(x, y) : x ≥ 0, y ≥ 0}. When f = 0 then all points in
S are optimal, in particular boundary points. When f = x then all points in S
with x = 0 are optimal. When f = x + y then (0, 0) is unique optimal point.
When f = −x then goal function is unbounded from below.

Remark: proof below is for linear programming problem in standard form,
but transforming problem to standard form we get result in general case.

Proof of the lemma: If goal function is unbounded from below the claim is
true, so we may assume that is is bounded from below. If S is empty or consists
of one point then the claim is clearly true. If goal function is constant, then any
point in S is an optimal solution, so in this case it is enough to show existence
of boundary point. To show existence of boundary point we may replace goal
function by one of coordinates, so we may assume in the sequel that goal function
is not a constant.

Let y and z be two points in S giving di�erent value of goal function. Con-
sider line L passing trough y and z. Clearly for x ∈ L we have Ax = b and
intersection I of L with S is an interval or a hal�ine (it can not be a line because
at least one coordinate must change and it would became negative at some point
of I, which is impossible).

The goal function restricted to I is linear, so since it is bounded from below
it attains minimum at endpoint of I. So we have found boundary point t of S
such that 〈c, t〉 ≤ 〈c, x〉 and one of coordinates of t is zero.

It remains to show that minimal value is attained. We do this by induction
on number of variables. Clearly, if number of variables is small enough then
S is at most one dimensional and then S = I and minimal value is attained.
Otherwise, let Sj = {x ∈ S : xj = 0}. Sj is feasible set of linear programming
problem with smaller number of variables (we remove xj from set of variables),
so by inductive assumption minimal value on Sj is attained, so also minimal

value on H =
⋃k

j=1 Sj is attained. But, by previous part minimal value on H
is also minimal value on S. �

Now, in view of the lemma it is natural to seek solutions so that as many
as possible coordinates of x are zero. Let J ⊂ {1, . . . , k} and card(J) = l =
rank(A). We say that solution to Ax = b is basic solution corresponding to J
if xj 6= 0 implies j ∈ J and columns Aj of A for j ∈ J are linearly independent
(so they form basis of image of A).

Coordinates xj with j ∈ J are called basic coordinates. Note that linear
independence of columns Aj means that in basic solution basic coordinates are
uniquely determined by the equation Ax = b. So, if xj > 0 for j ∈ J we can
not zero any more coordinates without loosing property of having basic solution
corresponding to J .

It may happen that in basic solution corresponding to J for some basic
coordinate is zero. Such basic solution is called degenerate.

7

We say that solution is basic solution if it is basic solution corresponding to
some J .

We say that feasible point x is basic feasible point if it is basic solution.
We say that optimal solution is basic optimal solution if it is it is basic

solution.

Lemma 3.2 If linear programming problem has optimal solution, then it also

has basic optimal solution. If linear programming problem has feasible solution,

then it also has basic feasible solution.

Proof: Let x be feasible solution and let I = {j : xj > 0}. If columns of
A with numbers from I are linearly independent, then x is basic solution cor-
responding to some J ⊃ I, which gives the claim. Otherwise consider a new
problem when we restrict coordinates to I (that is we set all other coordinates
to zero). For the new problem x is not a boundary point of feasible set, so
if x is optimal solution by previous lemma we get new optimal solution such
that more coordinates are zero, that is with smaller I, which gives claim by
induction. When dealing with nonoptimal feasible solution, we can use one of
coordinates as new goal function. Since coordinates of feasible points are non-
negative, new goal function is bounded from below, so new problem a has basic
optimal solution. This solution is basic feasible solution to original problem. �

So, given basic feasible point we would like to check if it is optimal solution
or �nd better feasible point.

Second idea: for given J basic coordinates are uniquely determined by non-
basic coordinates. This allows rewriting goal function so that new function is
equal to old on S and basic coordinates of new c are zero. If all nonbasic co-
ordinates of c are nonnegative, then corresponding basic solution is optimal. If
some nonbasic coordinate cj of c is negative and solution is nondegenerate, then
we can increase xj decreasing goal function till one of basic coordinates becomes
zero. Degeneracy complicates problem, but modi�ed version still works.

8

