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1 Duality

Recall optimization problem with constraints: given a set S of form

S = {x : ∀i∈Egi(x) = 0,∀i∈Igi(x) ≤ 0}

where E is called set of equality constraints, I is called set of inequality con-
straints, we want to minimize f : S → R. We collect all constraints into single
vector valued function g:

g(x) = (g1(x), . . . , gm(x))

and motivated by KKT conditions write

L(x, λ) = f(x) + 〈λ, g(x)〉

where L is called Lagrangian (or Lagrange function).
In terms of Lagrangian we can rewrite KKT conditions as

∂xL(x, λ) = 0

and for i ∈ I we have λi ≥ 0 and λi = 0 if gi(x) < 0.
We de�ne dual function h by formula

h(λ) = inf
x
L(x, λ)

with convention that when L for given λ is unbounded from below as function
of x, then λ is not in domain of h. We would get equivalent results taking −∞
as value of h(λ). Since the dual function is the pointwise in�mum of a family of
a�ne functions of λ it is concave even for non-convex problems. In particular
domain of h is convex.

Note: Above minimization is unconstrained, that is over whole domain,
which usually is bigger than feasible set.

Note: Points where f(x) =∞ (or gi(x) =∞) do not a�ect h(λ), so it does
not matter if we include then in domain of f (respectively gi).
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1.1 Conjugate function

Example: Consider (trivial) problem of minimizing f(x) under constraint x = 0.
Lagrange function is

L(x, λ) = f(x) + 〈x, λ〉

and
h(λ) = inf

x
(f(x) + 〈x, λ〉) = − sup(〈x,−λ〉 − f(x)).

The function
f∗(λ) = sup

x
(〈x, λ〉 − f(x))

is called Legendre transform or conjugate of f . With this notation we have

h(λ) = −f∗(−λ)

To get more explicit example, consider single variable f(x) = x log(x). To
maximize 〈x, λ〉 − f(x) compute derivative

∂x(〈x, λ〉 − f(x)) = λ− log(x)− 1.

Hence, for optimal x we have

log(x) = λ− 1

that is
x = exp(λ− 1).

Now
〈x, λ〉 − f(x) = exp(λ− 1)λ− exp(λ− 1) log(exp(λ− 1))

= exp(λ− 1)λ− exp(λ− 1)(λ− 1) = exp(λ− 1)

so
f∗(λ) = exp(λ− 1)
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Graph of x log(x).
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From the above we see that

h(x) = −f∗(−λ) = − exp(−λ− 1).

Similar, calculation shows that for p > 1 and f(x) = 1
px

p we have

f∗(λ) =
1

q
λq

where q solves 1
p +

1
q = 1, that is q = p

p−1 .
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For f(x) = |x|, when |λ| > 1 the expression

〈x, λ〉 − f(x) = xλ− |x|

is unbounded, so λ is not in domain of f∗. When λ ∈ [−1, 1], then expression
above is non-positive and maximum is attained for x = 0, so f∗(λ) = 0.

For f(x) = 0 with domain [−1, 1], we get

f∗(λ) = sup
x∈[−1,1]

xλ.

When λ ≥ 0 maximum is at x = 1, so f∗(λ) = λ. When λ ≤ 0 maximum is at
x = −1 so f∗(λ) = −λ. In other words

f∗(λ) = |λ|.

Recalling previous example, we get

(f∗)∗ = f.

This in fact is general equality for convex f .
Let B = {x : ‖x‖ ≤ 1} be unit ball in Rn and let f(x) = 0 with domain B.

We have
f∗(λ) = sup

x∈B
〈x, λ〉

Clearly,
〈x, λ〉 ≤ ‖x‖‖λ‖ ≤ ‖λ‖.

For nonzero λ taking x = λ
‖λ‖ we have

〈x, λ〉 = 〈 λ
‖λ‖

, λ〉 = ‖λ‖
2

‖λ‖
= ‖λ‖

so
f∗(λ) = ‖λ‖

(it is easy to check that this equality is also true for λ = 0).
Remark: There is similar equality for balls corresponding to lp norm with

p > 1, however in such case f∗ contains lq norm, where q solves equality 1
p+

1
q =

1. This can be generalized further, for ball corresponding to given norm we get
dual norm.

For quadratic f(x) = 1
2 〈Ax, x〉 with strictly positive de�nite A we have

f∗(λ) =
1

2
〈A−1λ, λ〉.

When A is invertible matrix u(x) = f(Ax), then

u∗(λ) = f∗((AT )−1λ).
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1.2 Examples of dual problems

Example: For linear programming problem in standard form, that is f(x) =
〈c, x〉 with constraints Ax + b = 0, xi ≥ 0 it is useful to write λ as pair (η, θ)
where η corresponds to equality constraints and θ corresponds to inequality
constraints. Then (using g(x) = −x)

L(x, η, θ) = 〈c, x〉+ 〈η,Ax+ b〉 − 〈θ, x〉

= 〈c, x〉+ 〈η, b〉+ 〈AT η, x〉 − 〈θ, x〉

= 〈η, b〉+ 〈c+AT η − θ, x〉

so dual h is
h(η, θ) = inf

x
〈η, b〉+ 〈c+AT η − θ, x〉.

Linear function is bounded from below only when it identically 0.
So we get

h(η, θ) = 〈η, b〉

with domain consisting of pairs (η, θ) such that

c+AT η − θ = 0.

Example: Linear programming problem in inequality form, that is f(x) =
〈c, x〉 with constraints Ax+ b ≥ 0. This time

L(x, λ) = 〈c, x〉 − 〈λ,Ax+ b〉

and calculation as for standard form gives

h(λ) = −〈λ, b〉

with domain consisting of λ such that c−ATλ = 0.
Example: quadratic f(x) = 1

2 〈x, x〉 with constraints Ax+ b = 0. Then

L(x, λ) =
1

2
〈x, x〉+ 〈λ,Ax+ b〉

which is strictly convex quadratic function. We minimize it looking for zero of
derivative with respect to x:

x+ATλ = 0

which gives

h(λ) = L(−ATλ, λ) = −1

2
〈AATλ, λ〉+ 〈λ, b〉.
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1.3 Weak and strong duality

Lemma 1.1 When λi ≥ 0 for i ∈ I, then

h(λ) ≤ inf
x∈S

f(x)

Remark: this is called weak duality.
Proof: If y is feasible point, then

L(y, λ) = f(y) +
∑
i

λigi(y) ≤ f(y).

Namely, when i ∈ E and y ∈ S, then gi(y) = 0 so∑
i∈E

λigi(y) = 0.

When i ∈ I and y ∈ S, then gi(y) ≤ 0 and λi ≥ 0 so∑
i∈I

λigi(y) ≤ 0

which gives inequality above.
Now,

h(λ) = inf
x
L(x, λ) ≤ L(y, λ) ≤ f(y)

so indeed
h(λ) ≤ inf

x∈S
f(x).

Given lemma about weak duality it is natural to seek best possible lower
bound, that is put

C = {λ : ∀i∈Iλi ≥ 0}

and maximize h(λ) over C. This is called dual problem. Dual problem is
convex even if original problem (usually called primal problem) is non-convex.
It is interesting to ask when bound obtained from dual problem is tight.

In general we call di�erence

inf
x∈S

f(x)− sup
λ∈C

h(λ)

duality gap. When duality gap is zero we say that strong duality holds. Duality
gap may be positive. But in important special cases strong duality holds.

Lemma 1.2 If f and gi are convex, and KKT conditions hold for x and λ, then
x is optimal solution to primal problem, λ is optimal solution to dual problem

and

h(λ) = f(x)

that is strong duality holds.
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Proof: Since f and gi are convex Lagrangian L is convex as function of x.
KKT conditions mean that

∂xL(x, λ) = 0.

Since L is convex with respect to x, this means that

L(x, λ) = inf
y
L(y, λ) = h(λ).

However, in KKT conditions gi(x) = 0 when λi 6= 0, so λigi(x) = 0 and

L(x, λ) = f(x) +
∑

λigi(x) = f(x)

so
f(x) = h(λ).

Since h(λ) is lower bound on optimal solution, f(x) is optimal value for primal
problem and x is solution to primal problem. Similarly λ is solution to dual
problem.

Remark: In general, when f(x) = h(λ), then x is optimal solution to primal
problem and λ is optimal solution to dual problem.

Lemma 1.3 When f is convex di�erentiable and all gi are a�ne, then KKT

conditions for optimal solution and consequently strong duality hold. In particu-

lar strong duality holds for linear programming problems and quadratic problems.

Proof: Recall tangent cone TSx. v ∈ TSx if and only if

lim
t→0+

d(x+ tv, S)

t
= 0.

We know that if v ∈ TSx for active inequality constraints we have

〈∇gi(x), v〉 ≤ 0.

But for a�ne gi we have

gi(x+ tv) = gi(x) + t〈∇gi(x), v〉

so gi(x+ tv) ≤ 0.
For equality constraints we have 〈∇gi(x), v〉 = 0 and similar to above gi(x+

tv) = 0.
For inactive constraints when t is small enough we have gi(x+ tv) ≤ 0.
Together, when 〈∇gi(x), v〉 = 0 for equality constraints, and 〈∇gi(x), v〉 ≤ 0

for all active inequality constraints, then x+ tv ∈ S for small enough t ≥ 0, that
is v ∈ TSx. In other words

TSx = {v : ∀i∈E〈∇gi(x), v〉 = 0, ∀i∈J〈∇gi(x), v〉 ≤ 0}

where J is set of active inequality constraints at x.
But this equality was all that we needed to obtain KKT conditions.
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Example: For linear programming problem: minimize 〈c, x〉 with constraints
Ax+ b = 0, x ≥ 0 we get as dual problem: maximize (η, b) with domain domain
consisting of pairs (η, θ) such that

c+AT η + θ = 0.

under constraint θ ≥ 0. Formally this is not a linear programming problem,
but we can treat equality AT η + θ + c = 0 as constraint, so dual problem is
equivalent to linear programming problem. Note that conditions θ ≥ 0 and
AT η + θ + c = 0 are equivalent to AT η + c ≤ 0. So we can write dual problem
as

maximize 〈η, b〉
subject to AT η + c ≤ 0

In linear programming solution solution to dual problem gives optimal value
for primal problem. Moreover, from solution to dual problem we get set of active
constraints which gives basic set corresponding to optimal solution of primal
problem. Knowing basic set we can �nd optimal solution of primal problem by
solving linear equations. When dual problem is solved using simplex method
such approach is called dual simplex method.

1.4 Interior point methods

Simplex method solves linear programming problem by moving trough boundary
points of feasible set. We already mentioned that interior point methods �nd
sequence of point in the interior of feasible set that converges to optimal solution.
In particular we will look at barrier methods (which are now dominant form of
interior point methods). For linear constraints it is usual to use logarithmic
barrier. More precisely, we replace inequality constraints x ≥ 0 by barrier

φ(x) = −
m∑
i=1

log(xi)

Equality constraints remain (and must be treated separately). For λ > 0 we get
problem of minimizing

f(x) + λφ(x)

This is equivalent to minimizing

1

λ
f(x) + φ(x)

Since f is a�ne (as we have linear programming problem), function above is
self-concordant, so we have good convergence properties for Newton method.
Changing a bit notation we write

uθ(x) = θf(x) + φ(x)
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and consider problem of minimizing uθ under equality constraints Ax + b = 0.
For θ ≥ 0 denote by xθ optimal solution of the problem above (we assume that
solution exists). xθ is called central path.

When θ goes to in�nity, then under mild regularity conditions xθ goes to
x∞, where x∞ is optimal solution of original problem.

For uθ Lagrangian is

Lθ(x, λ) = θf(x) + φ(x) + 〈Ax+ b, λ〉

= θf(x) + φ(x) + 〈b, λ〉+ 〈ATλ, x〉

so KKT conditions are

θ∇f(xθ) +∇φ(xθ) +ATλ = 0

Now put ψ(x) = 〈∇φ(xθ), x〉. By equality above KKT conditions at xθ are
satis�ed for θf(x) + ψ(x) so

θf(x∞) + ψ(x∞) ≥ θf(xθ) + ψ(xθ)

But coordinates of ∇φ(x) are negative so ψ(x) ≤ 0.
Since (∇φ(x))i = −1

xi
we have

ψ(xθ) = 〈∇φ(xθ), xθ〉 = −n

so
θf(x∞) ≥ θf(xθ)− n

that is
f(xθ)− f(x∞) ≤ n

θ

so we can easily estimate how far f(xθ) is from optimal value. In particular, to
be at most ε from optimal value we need θ ≥ n

ε .
Remark: Our use of KKT conditions in deriving estimate above is equivalent

to using feasible point of dual problem, but is much more direct.
Our error estimate suggest that we could take θ ≥ n

ε and use Newton method
on equality constrained problem to �nd xθ. But far from optimal point Newton
method may be relatively slow.

So better approach is to start from relatively small θ. For such θ corre-
sponding xθ is well inside interior of feasible set and we can expect reasonably
fast convergence. Then we successively multiply θ by a constant and solve new
problem using approximate solution of previous one as a starting point. In
pseudocode, using x0 as initial approximation:

1. take i = 0 and θ0 = 1

2. approximately minimize uθi = θif(x) + φ(x) using xi as starting point.
Call the result xi+1

3. put θi+1 = aθi
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4. increase i by 1 and go to step 2

It remains to choose parameter a. Theoretically best result are obtained
when a − 1 is small fraction of 1√

n
. We can explain idea in case when there

are no equality constraints. Newton method depends on ∇2uθ. Since our f is
a�ne second derivative is independent of θ and we get ∇2uθ = ∇2φ and we
have formula

(∇2φ(x))i,i =
1

x2i

while elements outside diagonal are 0. Due to KKT conditions

θ∇f(xθ) +∇φ(xθ) = 0

so
θ∇f(xθ) = −∇φ(xθ)

In terms of coordinates

θ(∇f(xθ))i =
1

(xθ)i

which means that

〈(∇2φ(xθ))
−1θ∇f(xθ), θ∇f(xθ)〉 = n

Now, due to KKT conditions

∇uaθ(xθ) = (a− 1)θ∇f(xθ).

Recall that for convergence of Newton method applied to f critical quantity
is

λ(f, x) = 〈(∇2f(x))−1∇f(x),∇f(x)〉1/2

And we had estimate after single step:

λ(f, xi+1) ≤ 2λ(f, xi)
2.

In our case λ(uaθ, xθ) is

λ(uaθ, xθ) = 〈(∇2uaθ(xθ))
−1∇uaθ(xθ),∇uaθ(xθ)〉1/2

= |a− 1|〈(∇φ)(xθ))−1θ∇f(xθ), θ∇f(xθ)〉1/2 = |a− 1|
√
n

So, when |a − 1|
√
n ≤ 1

4 then one step of damped Newton method at least
halves λ(uaθ, x), so single step on damped Newton method per increase of θ is
enough. Rigorous proof must take into account that we start each step only
at approximate xθ and handle constraints, but this can be done with slightly
smaller a.

So one can prove that O(
√
n log( 1ε )) iterations is enough to get accuracy ε.

This is somewhat pessimistic and in practice using a between 2 and 10 one gets
much faster convergence.
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Intuitively, this can be understood forgetting about equality constraints.
Since Newton method is a�ne invariant we can rescale coordinates so that
xθ = (1, . . . , 1). Note that rescaling only changes φ by additive constant. Then
due to KKT condition and form of φ we have

∇f(x) = (1, . . . , 1).

Also, 0 is optimal point so for fast convergence we need ∇uaθ(x) to be compa-
rable to ∇f(x). In other words we should rather double θ. And with proper
choice of step size bigger a is better. Alas, with constraints we may be forced
to move in somewhat di�erent direction and it is not clear if argument above
can be made rigorous.

Geometrically we have the following picture:

v

W

1

1

Self-concordant estimate works well only on ball W . v gives direction of
derivative for Newton method. Clearly we would like to move as close to origin
as possible (origin is the optimal point). However distance to origin is larger
than radius of W . On the plane we get factor of

√
2 which does not look bad.

But in high dimension distance to origin is
√
n times bigger than radius of W

and this makes signi�cant di�erence. The a parameter implicitly decides how
far Newton method will go. Conservative choice stays well inside W . a between
2 and 10 moves us much closer to origin.

Remark: This rescaling is for theoretical analysis! Computationally we do
not know where the origin is. In fact, the whole point of computation is to �nd
optimal point which is origin on our picture.

We did not say how to handle equality constraints. Some possibilities are

• parametrize hyperplane Ax + b = 0, that is write x = Fy + w with
appropriate F and w (which can be computed using linear algebra)

• using dual problem may help
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• compute Newton step via equality constrained quadratic optimization
starting from feasible point. This can be done via equation solving (KKT
equations are linear in this case) and leads to feasible points

• like above but starting from infeasible point and trying to get feasible one
(line search may prevent this)

Given linear constraints Ax = b and xn such that Axn = b we want search
direction di such that Adi = 0. In Newton method with equality constraints we
get di solving system of equations(

∇2f(xi) AT

A 0

)(
di
w

)
=

(
−∇f(xi)

0

)
One can show that using di above is equivalent to replacing f by h(x) = f(Jx+s)
where As = b and J is matrix such that AJ = 0 and J has rank equal to
dimension of kernel of A. In other words we could parametrize set of solution
to Ax = b. Since Newton method is a�ne invariant convergence results for
unconstrained case still work.

If initial point is infeasible, that is Ax − b 6= 0 we can use the following
system of equations to �nd di such that xi + di is feasible:(

∇2f(xi) AT

A 0

)(
di
w

)
=

(
−∇f(xi)
Ax− b

)

1.5 Further reading

Stephen Boyd, Lieven Vandenberghe, Convex Optimization, chapters 5 (dual-
ity), 10, 11 (interior point method).

David G. Luenberger, Yinyu Ye, Linear and Nonlinear Programming, chap-
ters 11, 12, 13.

A. Nemirovski, INTERIOR POINT POLYNOMIAL TIME METHODS IN
CONVEX PROGRAMMING, lecture notes, chapters 3 and 4.
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