
Lecture 12

Waldemar Hebisch

January 11, 2022

1 ADMM

1.1 Dual ascent

Let f be a convex function. Consider �rst problem of minimizing

f(x)

under constraint Ax = b. In dual approach we �rst write Lagrangian

L(x, λ) = f(x) + 〈λ,Ax− b〉

and dual function

g(λ) = inf
x
L(x, λ) = −f∗(−ATλ)− 〈λ, b〉

where f∗ is conjugate (Legendre transform) of f . Dual problem is to maximize
g(λ). Assuming that strong duality holds, the optimal values of the primal and
dual problems are the same.

In the dual ascent method, we solve the dual problem using gradient ascent.
Assuming that g is di�erentiable, the gradient∇g(λ) can be evaluated as follows.
We �rst �nd v = argminx L(x, λ), then we have ∇g(λ) = Av − b, which is the
residual for the equality constraint. The dual ascent method consists of iterating
the updates

xi+1 = argminx L(x, λi),

λi+1 = λi + αi(Axi+1 − b)

where αi > 0 is a step size.
Under rather restrictive conditions dual ascent converges to optimal x and

λ.
Important bene�t of the dual ascent method is that it can lead to a decen-

tralized algorithm in some cases. Suppose, for example, that the objective f is
separable (with respect to a partition or splitting of the variable into subvectors),
meaning that

f(x) =
∑
j

fj(xj)

1

where xj are subvectors of x = (x1, . . . , xm). Then x-minimization can be split
into separate minimizations over xj (which can be performed in parallel). This
approach is called dual decomposition.

Remark: Without constraints we could just optimize fj separately. However,
equality constraints introduce implicit dependence. Dual decomposition handles
equality constraints.

1.2 Augmented Lagrangian

To improve robustness we may add penalty term to the Lagrangian, that is
write:

L(x, λ) = f(x) + 〈λ,Ax− b〉+ p

2
‖Ax− b‖2

where p is called penalty parameter (and L is now called augmented Lagrangian).
Variant of dual ascent using augmented Lagrangian above and p as step size is
called method of multipliers and has much better convergence properties than
ordinary dual ascent.

Unfortunately, L above is no longer separable.

1.3 ADMM

ADMM (Alternating Direction Method of Multipliers) is intended to give good
convergence properties of augmented Lagrangian and preserve separability.

Assume that f and g are convex. Consider problem of minimizing

f(x) + g(y)

subject to
Ax+By = c

Augmented Lagrangian is

L(x, y, λ) = f(x) + g(y) + 〈Ax+By − c, λ〉+ p

2
‖Ax+By − c‖2

ADMM consists of the following iterations:

xi+1 = argminx L(x, yi, λi),

yi+1 = argminy L(xi+1, y, λi),

λi+1 = λi + p(Axi+1 +Byi+1 − c).

Note that since xi+1 is computed without using x from previous iteration
state of ADMM consists of yi and λi.

In initial problem x and y play symmetric role, but in ADMM there is slight
asymmetry.

Under rather weak regularity assumptions and assumption that L has saddle
point we have

2

• goal function convergence to optimal value

• residual convergence, that is points converge to a feasible point

• dual variable convergence

There is convergence rate estimate in terms of optimal λ, main point is that
error decreases at least as O(1i).

For ADMM necessary and su�cient condition is primal feasibility

Ax+By − c = 0

and dual feasibility, that is (assuming di�erentiable f and g, in general need to
consider subgradients)

∇f(x) +ATλ = 0

and
∇g(y) +BTλ = 0.

In fact g is minimized in second part of update, so if other conditions hold con-
dition on g will be automatically satis�ed. xi+1 is also obtained by minimization
so

∇f(xi+1) +ATλ+ pAt(Axi+1 +Byk − c) = 0.

Consequently we can treat

B(yi+1 − yi)

as primary residual (measure of error). If this and

Ax+By − c

are small enough we are close to optimum.
Note that when A = I, then x minimization in ADMM is equivalent to

computing proximal operator. If this operator is easy to compute, the that
step will be quick. Similarly when B = I, then y minimization in ADMM is
equivalent to computing proximal operator.

Example: Consensus problem. Minimize:

m∑
j=1

fj(x).

Equivalently, minimize
m∑
j=1

fj(xj)

under constraints xj = xk for all k, j. Let V = {x : ∀k,jxj = xk} and denote by
IV indicator function of V .

3

We can now rewrite problem as minimization of

m∑
j=1

fj(xj) + IV (y)

under constraint x− y = 0. Assuming p = 1 we can write

L(x, y, λ) =

m∑
j=1

fj(xj) + IV (y) + 〈x− y, λ〉+
1

2
‖x− y‖2

=

m∑
j=1

fj(xj) + IV (y) +
1

2
(‖x− y + λ‖2 − ‖λ‖2).

Now, x minimization is just computation of proximal operator and can be done
separately for blocks:

(argminx L(x, y, λ))j = (proxh(x)(y − λ))j = proxfj (yj − λj)

where h(x) = f1(x1) + · · ·+ fm(xm).
The y minimization above is just projection onto V , which is easy to do: for

x in V each xj must be equal to average x. More precisely

(argminy L(x, y, λ))j = ProjV (x+ λ)j = x+ λ.

The λ step is now
(λi+1)j = (λi)j + (xj − (x+ λi)).

Note that after that step we will have λi+1 = 0, so we can just start from λ0
such that λ0 = 0. Then y and λ update simplify to

(yi+1)j = x,

(λi+1)j = (λi)j + (xj − x).

Example: Low rank approximation. Consider problem of minimizing

‖A− S − L‖2HS + c‖S‖1 + d‖L‖∗

where A is known matrix, ‖·‖HS denotes elementwise L2 norm (Hilbert-Schmidt
norm), ‖ · ‖1 denotes elementwise L1 norm and ‖ · ‖∗ is nuclear norm. ‖ · ‖1
encourages sparsity, ‖·‖∗ encourages low rank, so the problem is to approximate
A by sum of sparse matrix and low rank matrix. In other words, when true
matrix has low rank S allows small number of wrong entries (outliers) and ‖ · ‖2
allows for some random noise. to simplify notation we will write ‖ · ‖ instead of
‖ · ‖HS . We can rewrite the above as

‖C‖2 + c‖S‖1 + d‖L‖∗ + g(C, S, L)

where g is indicator function of hyperplane V with equation C+S+L = A and
treat tuple (C, S, L) as x and use constraint x = y.

4

Then, writing y = (C̃, S̃, L̃) we get augmented Lagrangian

L(C, S, L, C̃, S̃, L̃, λ) = ‖C‖2 + c‖S‖1 + d‖L‖∗ + g(C̃, S̃, L̃)

+〈C − C̃, λC〉+ 〈S − S̃, λS〉+ 〈L− L̃, λL〉

+
p

2
(‖C − C̃‖2 + ‖S − S̃‖2 + ‖L− L̃‖2)

where w denote by λC , λS and λL parts of λ corresponding to C, S and L. To
simplify notation in the following we take p = 1.

Like in consensus problem we can simplify Lagrangian

L(C, S, L, C̃, S̃, L̃, λ) = ‖C‖2 + c‖S‖1 + d‖L‖∗ + g(C̃, S̃, L̃)

1

2
(‖C − C̃ + λC‖2 + ‖S − S̃ + λS‖2 + ‖L− L̃+ λL‖2

−(‖λC‖2 + ‖λS‖2 + ‖λL‖2)).

The x minimization then can be done separately for C, S and L and reduces
to proximal operators

argmin(C,S,L) L(C, S, L, C̃, S̃, L̃, λ)

= (prox‖·‖2(C̃ − λC),prox‖·‖1(S̃ − λS),prox‖·‖∗(L̃− λL)).

Next, since g is indicator of hyperplane V , y minimization is just projection
onto V . This projection is easy to compute: just subtract average and add A/3.
Explicitly

C̃ = C + λC − r,

S̃ = S + λS − r,

L̃ = L+ λL − r,

where

r =
1

3
(C + S + L− (λC + λS + λL)−A)

Finally λ update is

λi+1 = λi + ((Ci+1, Si+1, Li+1)− (C̃, S̃, L̃))

= λi + (Ci+1, Si+1, Li+1)− ((Ci+1, Si+1, Li+1) + λi − (r, r, r))

= (r, r, r).

Note that after �rst step λC = λS = λL, so we can assume that it also holds in
initial state and just use single λ. This simpli�es projection onto V , contribution
from λ vanishes.

Now we can rewrite our formulas in simpli�ed form

Ci+1 = prox‖·‖2(C̃i − λi),

5

Si+1 = prox‖·‖1(S̃i − λi),

Li+1 = prox‖·‖∗(L̃i − λi),

r =
1

3
(Ci+1 + Si+1 + Li+1 −A)

C̃i+1 = Ci+1 − r,

S̃i+1 = Si+1 − r,

L̃i+1 = Li+1 − r,

λi+1 = λi + r.

Above x minimization reduces to computation of proximal operators. Prox-
imal operator for L2 norm is trivial. Proximal operator for L1 norm can be
computed quite e�ciently. Proximal operator for nuclear norm needs SVD, so
is more expensive, but moderately so. Other operations are quite cheap.

1.4 Further reading 1

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, Dis-
tributed Optimization and Statistical Learning via the Alternating Direction
Method of Multipliers, Foundations and Trends in Machine Learning Vol. 3,
No. 1 (2010) 1�122

2 Subgradient methods

When goal function is non-di�erentiable then gradient descent may have trouble
at point where derivative does not exist. Worse, even if derivative exists at all
point visited during descent gradient descent with exact line search may converge
to non-optimal point.

Recall special case of example from lecture 4:

f(x) =
1

2
(x21 +

1

2
x22).

Starting from x0 = (12 , 1) all xi stay in sector |x1| ≤ 2x2. Let S = {x : |x1| ≤
4x2}, v1 = (12 ,

1
16), v2 = (− 1

2 ,
1
16). Let

g(x) =
1

8

√
33f(x).

Put h(x) = g(x) for x ∈ S and

h(x) = max(〈v1, x〉, 〈v2, x〉)

otherwise. Note that we glued h from pieces in such way that derivatives agree,
except for x-es on half-line l = {x : x1 = 0, x2 ≤ 0}. Consequently h has
continuous derivative on R2 − l.

6

The following picture shows where we use various de�nitions:

-1

0

1

-1 0 1

g(x1, x2)(v1, x)

(v2, x)

h is convex. To check this we look at restriction of h to lines. On each line
derivative of restriction is non-decreasing. This is clear in neighbourhood of
points not in l (close to such point g is glued from two convex pieces and due
to continuity of derivative we can add increments coming from both pieces). In
neighbourhood of points from l with x2 < 0 our h as maximum of two convex
functions is convex, so also derivative can not decrease. Finally, h restricted to
a line passing trough 0 consists of two linear pieces and one easily checks that
restriction is convex.

Now, for x ∈ S we have

∇h(x) = c
∇f(x)
2
√
cf(x

so derivative of h points in the same direction as derivative of f . Consequently
we do line search for h on the same line as for f and exact line search gives the
same points. So, starting from x0 = (12 , 1) all xi will stay in S and converge
to 0. But h is unbounded from below. Taking maximum of h and appropriate
a�ne function we can produce convex function which agrees with h on S and
attains minimum at some point di�erent from 0.

Problems with gradient descent:

• have trouble at points where derivative does not exist

• with exact line search can converge to nonoptimal point

• with constant step size can diverge

• can not use line search to choose step size

Solution:

7

• use subgradient instead of gradient

• use predetermined step sizes αi which decay to zero when i goes to in�nity.

De�nition: we say that vector v is in subgradient set of f at x when

lim inf
w→0

f(x+ w)− f(x)− 〈v, w〉
‖w‖

≥ 0.

In such case we write v ∈ ∂f(x). If f is di�erentiable at x, then clearly ∂f(x) =
{∇f(x)}.

When f is de�ned on a subset S then in formula above x and x + w are
restricted to elements of S.

Note that in general ∂f(x) is a closed convex set.
We say that f is subdi�erentiable at x if x is in domain of f and ∂f(x) 6= ∅.
Example: Let f(x) = sin(1/x2) + 1 − x2 for x 6= 0 and f(0) = 0 on R. We

have
f(x)− f(0) ≥ −x2.

Consequently

lim inf
w→0

f(0 + w)− f(0)− 0 · w
|w|

≥ lim inf
w→0

−w2

|w|
= 0

so 0 ∈ ∂f(0).
When v > 0 we take wn = ((3/2 + 2n)π)−1/2 we have wn → 0, sin(1/w2

n) =
−1 and f(wn) = −w2

n so

lim inf
f(0 + wn)− f(0)− vwn

|wn|
= lim inf

−w2
n − vwn
wn

= −v < 0.

Consequently v /∈ ∂f(0). Similarly, when v < 0 then v /∈ ∂f(0). So ∂f(0) = {0}.
Example: Let f(x) = sin(1/x2) for x 6= 0 and f(0) = 0. f is not subdi�er-

entiable at 0.

Lemma 2.1 When f is convex and x ∈ dom(f), then v ∈ ∂f(x) if and only if

plane parameterized by φ(y) = 〈v, y − x〉+ f(x) is supporting plane for epi(f).

Proof: When φ parametrizes supporting plane for epi(f) we have

f(x+ w) ≥ f(x) + 〈v, x+ w − x〉 = f(x) + 〈v, w〉

so
f(x+ w)− f(x)− 〈v, w〉

‖w‖
≥ 0

and consequently

lim inf
w→0

f(x+ w)− f(x)− 〈v, w〉
‖w‖

≥ 0,

8

that is v ∈ ∂f(x).
Conversely let v ∈ ∂f(x). Consider u such that ‖u‖ = 1. Let ε > 0. Put

w = tu. Since v ∈ ∂f(x), by de�nition of lim inf there exists δ such that

f(x+ tu)− f(x)− 〈v, tu〉
‖tu‖

≥ −ε

for 0 < t < δ.
That is

f(x+ tu)− f(x)− 〈v, tu〉 ≥ −εt
for 0 < t < δ. Now, by convexity this holds for all t > 0. Since ε > 0 were
arbitrary we get

f(x+ tu)− f(x)− 〈v, tu〉 ≥ 0.

Now, for arbitrary w 6= 0 we put u = w
‖w‖ and write w = tu with t = ‖w‖.

Applying inequality above we get

f(x+ w)− f(x)− 〈v, w〉 ≥ 0.

Equivalently, with w = y − x

f(y) ≥ f(x)− 〈v, y − x〉

But this means that φ parametrizes supporting plane for epi(f). �

Picture showing one of supporting lines for epigraph of |x|:

0

1

2

-1 0 1

|x|

y = 0.5x

Note that lemma implies that for convex f and x ∈ dom(f) set ∂f(x) is
always nonempty.

Example. Let f(y) = |y| and x = 0. Clearly, φ(y) = vy parametrizes
supporting line for epi(f) if and only if v ∈ [−1, 1], so ∂f(0) = [−1, 1]. For
x 6= 0 our f is di�erentiable and ∂f(x) = {sign(x)}.

9

We can formulate optimality condition in terms of subgradient:

Lemma 2.2 If f has local minimum at x ∈ dom(f) then 0 ∈ ∂f(x). Con-

versely, if f is convex and 0 ∈ ∂f(x), then f has global minimum at x.

Proof: If f has local minimum at x then

f(x+ w)− f(x) ≥ 0

for w close enough to 0 which like in previous lemma means 0 ∈ ∂f(x). Converse
for convex functions follows from previous lemma. �

Remark: We have the following property analogous to optimality lemma
used to derive KKT conditions:

Lemma 2.3 If f has local minimum at x ∈ dom(f), then there exists w ∈ ∂f(x)
such that for all v ∈ TSx we have

〈w, v〉 ≥ 0

Namely, w = 0 ∈ ∂f(x) satis�es conclusion above.
This is di�erent than di�erentiable case inside interior of domain of f : if x in

Int(dom(f)) and f is di�erentiable at x then ∂f(x) has one element. However,
if x is a boundary point of dom(f), than ∂f(x) may be bigger, in particular it
may contain both zero vector and a nonzero one.

We mention three properties that we will not use:

Lemma 2.4 Convex and �nite function is almost everywhere di�erentiable.

In other words set of points where convex f is �nite but not di�erentiable is
of Lebesgue measure 0. Consequently, almost everywhere ∂f(x) is a one point
set.

Lemma 2.5 Let f be convex and G be interior of the set where f is �nite. The

subgradient ∂f is upper semicontinuous on G that is for open U set

{x ∈ G : ∂f(x) ⊂ U}

is open. Equivalently, if xi → x ∈ G, wi ∈ ∂f(xi), wi → w, then w ∈ ∂f(x).

Lemma 2.6 Let f be strictly convex and G be interior of the set where f is

�nite. The subgradient ∂f is invertible on G, that is for x1, x2 ∈ G we have

∂f(x1) ∩ ∂f(x2) = ∅

Rules for computation:

• ∂(f + g)(x) = ∂f(x) + ∂g(x)

• when g is di�erentiable then ∂(f ◦ g)(x) = {h · g′(x) : h ∈ ∂f(g(x))}

10

• when g is di�erentiable and nondecreasing, then ∂(g◦f)(x) = {g′(f(x))·h :
h ∈ ∂f(x)}

• when f(x) = max(f1(x), . . . , fn(x)), then

∂f(x) = conv(
⋃

i:f(x)=fi(x)

∂fi(x))

• for supremum there is much more complicated rule, when f(x) = supα fα(x),
then

∂f(x) =
⋂
ε>0

closure(conv(
⋃

α∈I(x,ε)

∂fα(x)))

where I(x, ε) = {α : f(x) < fα(x) + ε}

• when fα(x) is continuous in (x, α) and set of indices is compact for f(x) =
supα fα(x) we have

∂f(x) = closure(conv(
⋃

α:f(x)=fα(x)

∂fα(x)))

Remark: Note that in rule for sum we have addition of sets: A + B =
{x+ y : x ∈ A, y ∈ B}.

Example: |x| = max(x,−x).
Example: Put S(x) = ∂|x|. Then, by the formula for the sum ∂‖x‖1 =∏
S(xi) (since we have sum of terms in disjoint variables sum of sets can be

replaced by cartesian product, as we did).
Note: When −v ∈ ∂f(x), then v need not to be descent direction for f

at x. Let f(x) = x1 + 2|x2|. At x = (1, 0) we have ∂f(x) = 1 × [−2, 2]. In
particular v = (−1, 0) in satis�es −v ∈ ∂f(x) and is a descent direction at x.
But v = (−1,−2) also satis�es −v ∈ ∂f(x) and is not a descent direction at x.

Subgradient algorithm, given N and αi:

• Step 1. Take arbitrary x0. Put ymax = f(x0), xmax = x0.

• Step 2. Take arbitrary v from ∂f(xi). Put xi+1 = xi − αiv.

• Step 3. Increment i by 1.

• Step 4. If f(xi) < ymax, then put ymax = f(xi), xmax = xi.

• Step 5. If i = N , then stop, otherwise go to step 2.

Remark: can also use proximal version when f(x) = g(x) + h(x), v ∈ ∂g(x)
and

xi+1 = proxαih(xi − αiv).

It remains to choose N and αi. To have reasonable chance for convergence
∑
αi

must be divergent.

11

Lemma 2.7 If f is convex and Lipschitz continuous with Lipschitz constant

M , f attains minimum at x∞, then

f(xmax)− f(x∞) ≤
‖x0 − x∞‖2 +M

∑N−1
i=0 α2

i

2
∑N−1
i=0 αi

Consequence: For constant step size we may get only limited accuracy.
When M and f(x∞) are known Polyak have found "optimal" choice of αi,

it the sense that they optimize estimate above. Since usually we want to �nd
f(x∞), Polyak rule is not practical. However αi =

1√
i+1

is a reasonable choice,

not far from Polyak rule. We get

f(xmax)− f(x∞) ≤ ‖x0 − x∞‖
2 +M log(N)√
N

that is we need of order 1
ε2 (up to logarithmic factor) steps to attain accuracy

ε.

2.1 Further reading

Yurii Nesterov, Introductory lectures on convex optimization, Springer 2004,
chapter 3.

12

