
Stochastic gradient methods

Waldemar Hebisch

January 18, 2022

1 Motivation

Motivation:

• Optimizing functions computed by Monte Carlo simulations

• randomness can improve convergence in non-convex case

• large scale machine learning

• noisy input data (treating it as random perturbation of true data)

1.1 Monte Carlo example

Consider simple Monte Carlo integration. We want to optimize

F (x) =

∫
f(x, y)dµ(y)

where µ is a high-dimensional measure such that we can not compute the integral
exactly. Instead we assume that we can generate random yj with distribution
µ. At core of Monte Carlo methods are procedures that can generate such
(pseudo) random points with reasonable e�ciency. This is rather nontrivial but
for several interesting µ we know good methods.

We have

F (x) ≈ 1

N

N∑
j=1

f(x, yi).

Since we only get approximate values of F optimizing it may look quite di�cult.
But we also have

∇F (x) ≈ 1

N

N∑
j=1

∇xf(x, yj)

so we can use approximate value of ∇F in say gradient descent.

1

1.2 Toy non-convex example

Consider f(x) = x2 + sin(Nx)2 where N = 10000. Then f ′(x) = 2x +
2N cos(Nx) sin(Nx) = 2x + N sin(2Nx). From this is easy to see that for
|x| < N/2 distance to closest local minimum is of order 2π. So, once |x| < N/2
gradient descent is likely to converge to closest local minimum giving us value
of goal function of order of N2/4, which is rather large.

How can we improve this? Simple idea: add random number to gradient
of f . That is instead of ∇f(x) use ∇f(x) + r where r is random variable. To
have real e�ect r must be enough, roughly of order N . In such case instead of
convergence to local minima we will get random walk.

With enough randomness we can hope that expectation of ∇f(x) + r will
be close to average of ∇f(x) in a neighbourhood of x which in turn will be
close to gradient of nonoscillatory part, that is x2. Over long intervals average
of gradient of part is 0. For concreteness we can take as r Gaussian random
variable with E(r2) = log(N)N2. To avoid very large random jumps we must
take relatively small learning rate α, say α = N−2. Assuming for simplicity
that expectation of ∇f(x) + r = ∇x2 and using our later result we get

E(f(x[2 log(N)N2])− f(x∞)) ≤ C log(N)

where [·] means integer part.
At �rst the above look quite bad: we need 2 log(N)N2 steps. However,

Lipschitz constant of f ′ is of order N2. Second derivative f ′′ has inde�nite sign,
but regular part is (x2)′′ = 2 which suggests learning rate of order 1/N2. So
using gradient descent we also expect large number of steps.

In one dimension simple alternative strategy is evaluate f at several points
say at distance 1. Such strategy needs N steps for search of critical region |x| <
N/2 and will give error not larger than 2. So in much smaller number of steps
than method with randomized gradient we can get better result. However, we
can build similar function on Rn by formula g(x1, . . . , xn) = f(x1)+ · · ·+f(xn).
Now, number of local minima is of order (N/2π)n, so for n > 2 even naive
randomized gradient works better.

We can substantially reduce number of steps needed in randomized approach
by initially using α of order 1 and decreasing it after substantial decrease of goal
function. Also, we can use variance reduction methods.

1.3 Machine learning

We want to �t model to data. x represent model parameters, y represent input
points, z expected value. f(x, y, z) measures how well model with parameters
x �ts to input y with value z. Given N input, value pairs we want minimize

1

N

N∑
j=1

f(x, yj , zj)

2

More concrete example could be linear regression where A is n by m matrix
y ∈ Rm, z ∈ Rn and

f(A, y, z) = ‖Ay − z‖2 + φ(A)

where φ(A) is penalty for undesired features of A.
For large n and m evaluating Ay − z may be large task. If N is also large,

then single evaluation of f ′ may be quite expensive. Namely, single matrix-
vector product has cost nm, so doing this N times costs nmN operations.
Reasonable values:

• m = 10000 = 104

• n = 1000 = 103

• N = 10000000 = 108

Product nmN = 1015, not small task even for modern machines. And we
may expect several thousands of iterations for convergence, so clearly cheaper
method is desirable.

Actually, when su�cient computing power is available, then much bigger
values of parameters are useful.

Simple-minded savings:

1. use less data, that is smaller N

2. use simpler model, that is smaller m

3. stop optimization early to reduce number of iterations

4. lowering output size n usually is not an option, this is part of requirements

We need enough samples to get reasonable view of data. For noisy data we
want enough samples to reduce error by averaging. So clearly, there is lower
limit onN , such that with smallerN performance will be inadequate. In modern
settings frequently we are able to collect large amount of data, much larger than
minimal N , so we optimize N to make training easier � clearly we do not want
too large N .

Bigger models allow better �t to data. To generalize we want information
stored in the model to be much smaller than training data. So, with given data
there is optimal model size. But with large amount of available data we want
as big models as we can reasonably train.

Stopping optimization early, far from optimal value is frequently used. But
we still may need large number of iterations to get reasonable performance.

Clearly, we would like optimization methods with lower costs for large mod-
els.

3

2 General stochastic gradient

To reduce computational cost we could try to approximate ∇F just using a
sample of yj , zj . In extreme case in single step we just select j at random
and use ∇xf(x, yj , zj). Combined with gradient descent this gives stochastic
gradient descent (SGD):

1. start from arbitrary x0

2. select j randomly with uniform probability

3.
xi+1 = xi − αi∇xf(xi, yj , zj)

4. if not �nished goto step 2

xi produced by SGD are random process, in fact Markov chain. For Markov
chains dependence (or independence) on the past plays signi�cant role. Stochas-
tic gradient method uses unbiased (with respect to past) estimate of gradient:

E(∇xf(x, yj , zj)|x0, . . . , xi−1) =
1

N

N∑
j=1

∇xf(x, yj , zj) = ∇F (x).

Earlier approaches at reducing time used to divide training data into batches,
and/or use sequential passes trough data updating x on the �y during pass.
They have some use but randomness simpli�es theoretical analysis and shows
practical bene�ts.

We present now abstract setup that uni�es analysis for Monte Carlo methods
and machine learning methods like stochastic gradient descent.

Let g(x) be random approximation to ∇F (x). Assume

mI ≤ ∇2F (x) ≤MI

E(‖g(x)‖2) ≤ D + C‖∇F (x)‖2,

E(g(x)) = ∇F (x).

and that g(xi) is independent from previously computed values.

Lemma 2.1 Assume that F attains minimum at x∞ and let x0 be arbitrary.

Under assumptions above, with constant α ≤ 1
MC for iteration

xi+1 = xi − αg(xi)

we have

E(F (xi)− F (x∞)) ≤ αDM

2m
+ (1− αm

M
)i(F (x0)− F (x∞)).

Consequences:

4

• initial convergence comparable to gradient descent

• accuracy limited by variance (MDα
2m term), to get good accuracy we need

small α

• suggest strategy of decreasing α when convergence slows down

Viewing xi as Markov chain we expect convergence to stationary distribution
with variance of order

αDM

2m

and expectation x∞. Natural idea is to average several xi-s to be closer to
optimum.

Averaging turned out to be tricky in practice, combined with diminishing
step sizes of order 1

i it did not give signi�cant improvement.

Simply decreasing step size leads to algorithm with O(1/
√
i) error for large

i in strongly convex case. Using clever averaging scheme and slowly decreasing
step size Polyak and Juditsky reduced asymptotic rate to O(1/i) in strongly
convex case. Without strong convexity they got O(1/

√
i) for convex functions.

In practice averaging may be undesirable and experiments showed that usually
convergence rate without averaging was similar or better than with averaging.
Later Shamir and Zhang showed that small modi�cation to stochastic subgra-
dient method has asymptotic error O(log(i+ 1)/i) in strongly convex case and
O(log(i + 1)/

√
i) for convex functions, so now theoretical arguments for use of

averaging are quite weak (theoretically by averaging we can get rid of log(i+1)
factor.

In short:

• smooth strongly convex F , simply decreasing step: O(1/
√
i)

• smooth strongly convex F , Polyak and Juditsky: O(1/i)

• strongly convex (possibly non-smooth) F : O(1/i) (the same rate as in
smooth case but algorithm and analysis slightly di�erent)

• convex (possibly non-smooth) F : O(1/
√
i)

Asymptotic results would suggest that there nothing more to do: we know
theoretically best method. However, situation in machine learning is di�erent:

• we are interested in relatively small i, where asymptotic rate is irrelevant

• constants hidden in big O notation matter

• we have more information, in principle we have choice of computing ∇f
exactly

• with limited data accuracy is limited by data noise

• with lot of data accuracy is limited by computer time

5

3 Stochatic gradient in machine learning, vari-

ance reduction

Let us now reformulate our model. We assume that F is a sum

F (x) =
1

N

N∑
j=1

fj(x)

This is a bit more general than our previous machine learning example. Namely
when fj(x) = f(x, yj , zj) we get previous version but in principle dependence
of fj on j could be more complicated than change of numeric parameter.

3.1 SAG (Stochastic average gradient)

Stochastic gradient method uses simple unbiased estimate of gradient, the idea
is to �nd (possibly biased) estimate with lower variance. One idea is to compute
all ∇fj at start and remember last computed ∇fj for each j. Denote by t(j, i)
the last i for which we computed ∇fj(xi). We estimate derivative computing
∇fj(xi) for randomly selected j and using remembered values for other j:

g(xi) =
1

N

N∑
j=1

∇fj(xt(j,i))

At �rst glance this requires summing all ∇fj , but we can perform update in-
crementally.

Namely denoting by l value of j selected at step i we have

1

N

N∑
j=1

∇fj(xt(j,i)) =
1

N
(∇fl(xl)−∇fl(xt(j,i−1))) +

1

N

N∑
j=1

∇fj(xt(j,i−1))

so

g(xi) = g(xi−1) +
1

N
(∇fl(xi)−∇fl(xt(j,i−1)))

This leads to SAG (Stochastic average gradient) method:

1. start from arbitrary x0, for j from 1 to N put vj = ∇fj(x0)

2.

g0 =
1

N

∑
vj

3. put x1 = x0 − α0g0

4. select j at random, put
u = ∇fj(xi),

gi = gi−1 +
1

N
(u− vj),

vj = u

xi+1 = xi − αigi

6

5. if not �nished goto step 4

This is biased, that is gi tends to be close to gi−1, but has low variance
which goes to 0 when i goes to in�nity. To see why consider case when each fj
is strongly convex quadratic

fj(x) =
1

2
〈Ajx, x〉+ 〈bj , x〉

Then
∇fj(x)−∇fj(x∞) = Aj(x− x∞)

and

gi =
1

N

N∑
j=1

(∇fj(xt(j,i))−∇fj(x∞)) =
1

N

N∑
j=1

Aj(xt(j,i) − x∞)

where we could introduce −∇fj(x∞) terms because

0 = ∇F (x∞) =
1

N

N∑
j=1

∇fj(x∞)

Now, iterates of Markov chain tend to be weakly correlated so

E(‖gi‖2) ≈ C
1

N

N∑
j=1

E(‖xt(j,i) − x∞‖2)

which tends to 0 when iterates converge to 0.
Note: our reasoning above is circular (to show that E(‖xt(j,i) − x∞‖2) is

small we need to show that E(‖gi‖2) is small), so it is not a proof (actual proof
is more complicated). But our reasoning shows that there are no obstacle to
convergence to 0. Namely, compare to SGD:

gi = ∇fj(xi−1) = Aj(xi − x∞) + cj

The cj terms do not depend on x and when �rst term is very small cj terms
lead to nonzero variance

E(‖gi‖2) ≈ E(‖cj‖2) =
1

N

N∑
j=1

‖cj‖2.

Due to bias, convergence proofs for SAG are complicated, but there are
strong theoretical convergence results and SAG works well in practice.

3.2 SAGA

We can use slightly di�erent update rule to get unbiased gi. Namely, using
formula

gi = (∇fj(xi)−∇fj(xt(j,i−1)) +
1

N

N∑
j=1

∇fj(xt(j,i−1))

7

we get

E(gi|x0, . . . , xi−1) = E(∇fj(xi)−∇fj(xt(j,i−1))|x0, . . . , xi−1)

+
1

N

N∑
j=1

∇fj(xt(j,i−1))

=
1

N

N∑
j=1

∇fj(xi)−
1

N

N∑
j=1

∇fj(xt(j,i−1)) +
1

N

N∑
j=1

∇fj(xt(j,i−1))

=
1

N

N∑
j=1

∇fj(xi) = ∇F (xi).

This leads to SAGA, variation of SAG which is unbiased:

1. start from arbitrary x0, for j from 1 to N put vj = ∇fj(x0)

2.

w0 =
1

N

∑
vj

3. put g0 = w0, x1 = x0 − α0w0

4. select j at random, put
u = ∇fj(xi),

gi = (u− vj) + wi

wi = wi−1 +
1

N
(u− vj),

vj = u

xi+1 = xi − αigi

5. if not �nished goto step 4

Convergence proofs for SAGA are simpler than for SAG. Variance of gi is
higher, but in similar way as for SAG we can argue that variance goes to 0 when
xi is close to optimum. In practice SAGA seem to be comparable to SAG.

Both in theory and in practice convergence of SAG and SAGA strongly
depends on initial point: this is the only point where derivative was computed
exactly. One can usually improve convergence by performing several iterations
of SGD and then switching to SAG or SAGA.

8

3.3 SVRG

Both SAG and SAGA need to store past gradient for each fj . When N is
large this may require too much storage. SVRG (Stochastic Variance Reduced
Gradient), trades a little extra computation to reduce storage use. SVRG works
in stages (epochs). At start of each epoch SVRG computes and remembers full
derivative. In following steps of epoch started at time l SVRG selects j at
random and uses

gi = ∇fj(xi)−∇fj(xl) + gl.

Like SAGA this means that gi gives unbiased estimate of gradient.
To implement SVRG compared to SGD we need extra storage for xl, gl. In

each iteration we need additionally to compute ∇fj(xl), so this is approximately
twice the cost of SGD. Since SVRG recomputes full derivative at start of each
epoch it su�er less than SAG or SAGA from bad initial point. Still, since SGD
is faster per iteration it makes sense to run several iterations of SGD before
switching to SVRG.

3.4 SARAH

Another algorithm is SARAH (Stochastic recursive gradient algorithm). It uses
update rule

gi+1 = gi +∇fj(xi)−∇fj(xi−1)
where j is chosen at random. Like SAG it is biased, but there are convergence
proofs.

3.5 Proximal versions

One can also consider proximal versions of algorithms above, that is assume

F (x) =
1

N

N∑
j=1

fj(x) + h(x)

and use proximal step to compute new xi:

xi+1 = proxαih(xi − αigi).

For SAG and SARAH convergence of proximal version is not clear. For SGD,
SAGA, SVRG proximal versions converge with similar rate as non-proximal
case.

3.6 Acceleration

Since there is lower bound acceleration can not improve asymptotic convergence
rate. For su�ciently regular functions we can hope for faster convergence be-
fore variance starts to play role. Also, acceleration may work to reduce variance
(instead of averaging). At the moment situation is not clear: there are re-
ports that in some cases acceleration gave big improvements, in other cases no
improvement was observed.

9

3.7 Summary

New stochastic method appear regularly and one can combine existing methods
in various ways. For example one can consider variant of SVRG that divides
index set in subsets and remembers derivative for each subset. That would give
faster update at cost of extra storage.

There is also theoretical activity, �nding new properties of existing methods.
So state of the art may change in few years.

4 Stochastic view of gradient descent

Typical convergence bounds we met were of worst case kind: convergence was
warranted for all functions and all initial data satisfying our conditions. How-
ever, in practice we are interested in average cases. Method that is fast in most
cases but may be slow in some exceptional cases may be preferable to method
that consistently gives performance corresponding to worst case. For example,
quicksort algorithm may have quite bad behaviour, heapsort works essentially
as worst case bound predicts. In practice quicksort is usually preferred because
it gives lower average execution time. So it makes sense to look at expected
running time of algorithms that we met.

Today we will present simple average case result for gradient descent. To
simplify analysis we consider only quadratic function

f(x) =
1

2
〈Ax, x〉+ 〈b, x〉+ c

with positive de�nite A.
In theoretical analysis we look at x− x∞, so after shift we have simply

f(x) =
1

2
〈Ax, x〉.

Now consider random initial data. For multidimensional problems it is reason-
able to assume that initial data have normal distribution. The best we can hope
is that expectation will be the same as optimal point x∞. After shift above this
leads to normal distribution with expectation 0.

If no coordinate plays distinguished role it it natural to assume that normal
distribution has covariance matrix which is multiple of identity matrix. By
simple rescaling, which changes numerical values but does not change qualitative
picture we can assume that covariance matrix is identity. Now, positive de�nite
matrix can be diagonalized using orthogonal matrices. Orthogonal matrices
preserve normal distribution with 0 expectation and identity covariance matrix,
so we can consider diagonal A. For concreteness take 1, 2, . . . , n as eigenvalues.

It is an exercise to prove that gradient descent with constant α such that
0 < α < 2

n satis�es:

E(‖xi‖2) =
n∑
j=1

exp(2iβj).

10

where βj = log(|1 − jα|) < 0. Now, βj depend in somewhat complicated way
on α. But

βj < −jα

when 1 − jα ≥ 0 and similar estimate is valid when 1 − jα < 0. So we can
estimate sum of terms with 1− jα ≥ 0 from above by

n∑
j=1

exp(−2ijα)

Assuming for simplicity that |1− nα| ≤ 1−α we can use the same estimate for
terms with 1− jα < 0.

So

E(‖xi‖2) ≤ 2

n∑
j=1

exp(−2ijα)

This sum is a geometric progression and estimating it by in�nite sum we get

E(‖xi‖2) ≤ 2 exp(−2iα) 1

1− exp(−2iα)

Now, for i < n and α of order 1/n we see that exp(−2iα) is of order 1 and
1− exp(−2iα) is of order 2iα so

E(‖xi‖2) = O(
n

i
)

Since E(‖x0‖2) = n we get

E(‖xi‖2) = O(
1

i
) E(‖x0‖2).

It is easy to see that terms with 2ijα < 1/2 give contribution comparable to
the whole sum. For such terms already when i = 1 our upper estimate for βj
has matching lower bound of similar form. Similarly for other estimates that
we did. So the estimate from above we got is unimprovable for i which are
small compared to n. In other words, we can expect that with unfavourable
conditioning our upper bound for gradient descent (the one without assuming
strong convexity) in initial stage is close to optimal.

For 2iα > 1 we can rewrite our estimate as

E(‖xi‖2) ≤ C(1− 2α)n ≤ C(1− 2α)n
1

n
E(‖x0‖2)

so for large i compared to upper estimate we gain factor of 1
n and have slightly

better constant in exponential term.
Remark: Strongly convex estimate for 2iα ≤ 1 is weaker than estimate

without strong convexity. Our estimate for expected value is blend of of estimate
for case without string convexity with improvement for large i.

11

