
Practical aspects

Waldemar Hebisch

January 25, 2022

1 Automatic di�erentiation

Usual continuous optimization methods are based on computing gradient. Gra-
dient requires extra code and sometimes straightforward code to compute gra-
dient may be ine�cient. However, given reasonable procedure for computing f
(say as code in a programming language), there is method to transform such
procedure into procedure computing gradient of f . This method is called "au-
tomatic di�erentiation".

Automatic di�erentiation has interesting property: number of operations
needed to compute f and gradient of f together is about twice as large as
number of operations needed to compute f alone. To present this more precisely
we need notion of straight line programs.

Simple approach to computing derivatives is as follows: we write F as com-
position

F = Gn ◦Gn−1 ◦ · · · ◦G1.

Then
F ′ = G′n ·G′n−1 · · · · ·G′1.

This works, but in multivariate case implied matrix multiplication may be ex-
pensive.

1.1 Straight line programs

Straight line program is a sequence of nodes numbered from 1 to n. When exe-
cuting program each node is assigned a value vi. First m nodes are input nodes,
values a those nodes are input data. For i bigger than m node number i have
associated function fi. fi has ki arguments. There are numbers ji,1, . . . , ji,ki

such that ji,l < i and
vi = fi(vji,1 , . . . , vji,ki

).

In other words, value at node i is computed from values at previous nodes using
fi. In general we designate some nodes (possibly several) as output nodes and
consider vector formed from those values as value computed by straight line
program. In important special case there is single (scalar) value, say value at
last node.

1



We can also embed constants in straight line program, this means that cor-
responding fi has no inputs.

We can visualize straight line program as a directed graph such that there is
arc from j to i when value at node j is used directly to compute value at node
i, that is j ∈ {ji,1, . . . , ji,ki}.

We have formulated de�nition of straight line program is rather abstract way,
but usually functions fi are relatively simple. In fact usually at most nodes we
have multiplications and additions. But we may also have other functions like
divisions by nonzero number or exponential. Our intention is that fi are smooth
easily computable functions. For later use we assume that gradients of fi are
easily computable.

In such setting size of graph corresponding to a straight line program mea-
sures cost of computations. That is we assume that cost is proportional to
number of arcs (sometimes cost is measures using number of nodes, but in our
setting number of arcs may by much larger than number of nodes).

At �rst glance de�nition of straight line program looks quite restrictive:
there are no loops, no conditionals, no functions. However, it is natural and
relevant for numerical computations. Namely, if function is given by exact
formula, than data dependent branches just represent alternative de�nitions.
When computing value in neighbourhood of single point we can just follow on
branch. In fact, without data dependent branches we can follow single execution
path and treat it as straight line program. So, for theoretical analysis we can
treat large proportion of numerical programs as straight line programs.

We want to show that given straight line program computing single scalar
function F we can compute ∇F with comparable e�ort, that is there exist
straight line program computing ∇F with size comparable to straight line pro-
gram computing F . Clearly, it would be false if fi had many arguments and
gradient of fi required a lot of e�ort to compute. To avoid this di�culty we as-
sume that gradients of fi are easy to compute. This is true for typical functions
of single variable like exponential. Also, gradients of functions like multiargu-
ment sum, linear combination or product are easy to compute. Actually, it is
not obvious that gradient of multiargument product is easy to compute, but
we can replace multiargument product by tree of two argument products: this
increases number of nodes but preserves number of arcs.

We represent our assumption about gradient of fi by introducing single
node for each coordinate of gradient of fi and single arc joining this node with
node i. Gradient normally depends all arguments of fi, so to properly repre-
sent dependence we would need arcs from each coordinate of gradient of fi to
each argument of fi. However, single arc per coordinate of gradient adequately
represent our assumption about cost of computing gradient. In practice, we
frequently compute gradient of fi together with fi.

Lemma 1.1 Assume that f can be computed by straight line program having N
arcs. With assumption about gradients of fi as above we can compute gradient

of F using straight line program having at most 5N arcs.

2



Proof: By assumption we have straight line program P computing F . With-
out loss of generality we may assume that output of F is from last node n (oth-
erwise we can drop nodes after output node decreasing N). We build straight
line program for computing ∇F is the following way: �rst we take all nodes
and arcs from P . Next, for each i we add nodes corresponding to coordinates
of gradient of gi and add arc joining this node with i. Assuming that j < i
is among arguments of fi we will denote by gj,i corresponding coordinate of
gradient of fi. Next, for each node i of original program P we introduce new
node for value di (we will give formula later). For each gj,i we add extra node
and two arcs: value hj,i at new node is product of gj,i and di (so one of new arcs
joins gj,i with hj,i, the other joins di with hj,i. Value at dn (where node n is
output node of P ) is 1. For j 6= n value dj is sum of hj,i over all i. This means
that for each hj,i we have arc from hj,i to dj . Finally, output of our program is
vector (d1, . . . , dm) (recall that 1, . . . ,m correspond to input nodes).

To satisfy condition of our de�nition of straight line program we need to
renumber nodes so that value at given node depends only on values at nodes
with smaller node number. It is relatively easy, we keep numbering of nodes of
P . After that we allocate (in arbitrary order) numbers for gj,i. We need to put
di in opposite order compared to P . We need to put hj,i after di and before dj
this is clearly possible.

Now, concerning number of arcs: we have arcs from P and added arcs. For
each arc (j, i) from P we added 4 new arcs: one for coordinate of gradient joining
i with gj,i. Two for product hj,i and one from product to dj . So together we
have 5N arcs.

It remains to prove that our program computes gradient. Before this let us
note that dj is given by the following formulas: dn = 1 and

dj =
∑
i>j

gj,idi

for j < n.
Now, we prove our claim by induction over N . For N = 0 claim is obvious:

if vn is among input values than n-th coordinate of gradient is 1 and other are
0. But dn = 1 and in formula above for j < n there are no terms in sum, so sum
is 0 so dj = 0. So we have equality in this case. If vn is not among input values,
then it is a constant and gradient is 0. Again relevant dj are 0 and we have
equality. When N > 0 we consider �rst node j such that fj is not a constant.
Let G be function computed by straight line program Q where Q is like P but
without fj so all nodes from 1 to j are input nodes of Q. We have

F (v1, . . . , vm) = G ◦H

where H is vector function such that Hk = vk for k < j and Hj = fj . We have

∂lF =

j∑
k=1

(∂kG)(∂lHk) = ∂lG+ (∂jG)∂lfj .

3



By inductive assumption dj = ∂jG. Also, by inductive assumption for l < j

∂lG =
∑
i>j

gl,idi.

Note that in Q there are no arcs from l to nodes with number smaller or equal
to j so we can write sum in form above. Now

∂lF = ∂lG+ (∂jG)∂lfj =

∑
i>j

gl,idi

+ gl,jdj

∑
i>l

gl,idi = dl

if fj depends on l. Also, when fj does not depend on l we get the same equality.
So

∂lF = dl

which means that P indeed computes gradient. �

Remark: Number 5N looks much larger then N . However, we allow complex
fj while added nodes are quite simple. For example, when fj is exponential then
computing it requires several (say 10) simple machine operations. And when
nodes in original program are simple we can simplify program for derivative.
For exponential we need no extra operations to compute derivative and just
node (two arcs) to compute product with dj and one arcs for sum. When fj is a
sum than coordinate of gradient all are 1 and we could skip corresponding arcs
and multiplication. So for each term of sum we just add one arc to program
computing derivative. For two argument product derivative with respect to
�rst argument is just second argument, so we need no extra nodes and arcs for
coordinates of gradient.

The lemma above is frequently formulated in terms of nodes and assuming
special form of nodes. Then result looks better. But this is really matter of
constant factors and in practice issue of constants is more tricky. Namely, in
many cases it is possible to simplify resulting program computing derivative
lowering number of operations and compute time. On the other hand, to com-
pute derivative we may be forced to store more intermediate values than for
computing F . Consequently, pattern of memory accesses may be less cache
friendly. In principle, pattern of memory accesses may produce constant factor
much larger than 5.

Remark: Lemma above is also called Telagen's transposition principle.
Example: Mutilayer perception (neural network). We have input x0 and

layers xi, i = 1, . . . n where xn is output. Each xi is obtained from xi−1 by
composition of linear transformation Ai with nonlinear function Hi acting sep-
arately on each coordinate:

xi = HiAixi−1,

4



Hi(y)j = hi,j(yj).

Note: in many cases all hi,j are equal, say all are sigmoids. Ai usually are a�ne,
that is contain also additive term. But for theoretical purposes we can assume
that Ai are linear by enlarging Ai and adding to xi−1 extra coordinate equal to
1. In neural network training x0 comes from training set and we try to minimize
error

L(x0, y, A1, . . . , An) = ‖xn − y‖2

where y comes from training set. During training Ai form input to our function
and we need to compute gradient with respect to Ai. Clearly

∇xn
‖xn − y‖2 = 2(xn − y),

∂An
‖xn − y‖2(B) = 〈H ′nBxn−1, 2(xn − y)〉,

∂xn−1
‖xn − y‖2(v) = 〈H ′nAn, 2(xn − y)〉,

and we can compute derivatives with respect to other Ai using similar formulas
and and chain rule. When done in naive way, this leads to product of large
matrices which can be expensive to compute. Our lemma tells us that gradient
can be computed at cost comparable to cost of computing L (assuming that
derivatives of hi,j are no more expensive to compute than hi,j). For gradient
we can write:

∇An‖xn − y‖2 = 2xn−1 ⊗ (H ′n(xn − y))

where v⊗w denotes matrix with entries mi,j = viwj (in general above we would
have transpose of H ′n but we used fact that H ′n is diagonal). Also

∇xn−1‖xn − y‖2 = AT
nH
′
n(2(xn − y)).

Now
∇An−1‖xn − y‖2 = 2xn−2 ⊗

(
Hn−1A

T
nH
′
n(xn − y)

)
.

Note that Hn−1A
T
nH
′
n(xn − y) is just sequence of applications of matrices to

vector so the formula above requires number of operations proportional to sum
of sizes of An and An−1. We have similar formulas for other Ai:

∇xi‖xn − y‖2 = AT
i+1H

′
i+1A

T
i+2H

′
i+2 . . . A

T
nH
′
n(2(xn − y)).

∇Ai
‖xn − y‖2 = 2xi−1 ⊗

(
AT

i+1H
′
i+1A

T
i+2H

′
i+2 . . . A

T
nH
′
n(xn − y)

)
.

We can reuse products for i+ 1 computing gradient with respect to Ai, so cost
is proportional to sum of sizes of all Ai.

Remark: This is backpropagation method which was originally introduced
in somewhat di�erent way. Later it was observed that backpropagation is actu-
ally equivalent to use formulas from automatic di�erentiation. However, vector
formulation above allows use of standard optimized linear algebra routines.

Remark: Main gain is due to correct ordering of products: computing prod-
uct of matrices �rst and then applying it to vector would lead to much larger
execution time.

5



1.2 Sparse matrices

In several optimization problems signi�cant part of cost is due to linear algebra.
In practical problem in many cases there are sparse matrices. Algorithm that
take advantage of sparse matrices in practice may by much faster than more
general ones.

1.3 Remarks about derivative-free methods

There are methods which �nd optimum of f without using derivatives. How-
ever most of such methods implicitly assume existence of derivatives, namely
they only work well for regular functions which have derivatives. For irregular
functions in high dimension currently best methods are subgradient methods.
Derivative-free methods were proposed for case when there is procedure to com-
pute f , but procedure to compute gradient of f is not available. One class of
"derivative-free" methods uses �nite di�erences to approximate gradient. Such
methods may work reasonably well, but usually are less e�cient than alter-
natives. Namely, automatic di�erentiation usually is able to produce e�cient
procedure for computing gradient.

As explained number of operations needed to compute f and gradient of
f together is a constant multiple of number of operations needed to compute
f . Since gradient of f has n coordinates, computing f and �nite di�erence
approximation to gradient of f requires n+1 computations of f . For large n this
is much bigger than number of operations needed by automatic di�erentiation.
Other factors may a�ect execution time, but when automatic di�erentiation is
available it is usually better than �nite di�erence approximations.

There is another possible case where derivative-free methods could be useful.
Namely, sometimes functions are computed using stochastic simulations. Val-
ues obtained via simulations have substantial (pseudo)random error and conse-
quently �nite di�erences tend to produce bad approximation to gradient. Sim-
ilarly, automatic di�erentiation have trouble with random numbers. However,
in such case stochastic gradient methods usually works well.

6


