
Practical aspects

Waldemar Hebisch

January 25, 2022

1 3-SAT

In the �rst lecture we had the following example. Let

s1 = x1 + x2 + x3,

s2 = x1x2 + x1x3 + x2x3,

s3 = x1x2x3,

Q = 1− (s21 − 3s2 + s3).

One can check that for x ∈ [0, 1]3 we have 0 ≤ Q ≤ 1 with equality only at
vertices of the cube. Moreover Q(0, 0, 0) = 1 and at other vertices Q = 0.

Consider boolean formulas in variables x1, . . . , xk. Let xi+k be negation of
xi (this is to avoid explicitly writing negations). Given boolean formula

B = (xj1,1 ∨ xj2,1 ∨ xj3,1) ∧ · · · ∧ (xj1,m ∨ xj2,m ∨ xj3,m)

we build polynomial f in y1, . . . , yk as

f = Q(yj1,1 , yj2,1 , yj3,1) + · · ·+Q(yj1,m , yj2,m , yj3,m)

where yi+k = 1 − yi. Let S be unit hypercube, that is set of y such that
0 ≤ yi ≤ 1 for i = 1, . . . , k. One can show that min f on S is zero if and only if
there is substitution of truth values for variables in B which makes B true.

Discrete problem above is usually called 3-SAT. It is NP-complete problem.
However, random instances of 3-SAT with m < 3k tend to be easily solvable.
So it makes sense to check how our methods work.

Trying projected gradient descent with learning rate α = 0.3 and with ran-
dom starting point in [0, 1]k converges to local minimum in relatively small
nu,mber of iteration: of order 7 when k = 350 and m = 820 growing to about
20 when k = 80000 and m = 150000. But values at local minimum are rather
large and evan large number of trials like 2000 did not give 0 as minimal value.

When we want to solve 3-SAT we can try di�eren function:

P = 1− (s1− s2 + s3).

1

One can show that P for x ∈ [0, 1]3 satis�es 0 ≤ P ≤ 1. Morover P (0, 0, 0) = 1
and at over vertices P = 0. So instead of Q we could try P .

This time convergence needs more iterations, of order 30 when k = 350 and
m = 820 and of order 150 when k = 80000 and m = 150000. But when k = 350
and m = 820 in moderate number of trials we get value 0 (that is satisfying
substitution). Unfortunately, when k = 80000 and m = 150000 we get relatively
small values but probablity of getting 0 seem to be quite small.

The full program is exmaple sat3.c, below is projected gradient part:

float

pgd(struct form * f, float * x, float alpha, int N) {

int m = f->nv;

float * dx = my_malloc(m*sizeof(*dx));

int l;

float res;

for (l=0;l < N; l++) {

res = eval_form(f, x, dx);

int i;

float del2 = 0;

for(i = 0; i < m; i++) {

float nx = x[i] - alpha*dx[i];

/* Compute projection */

nx = (nx < 0)?0:nx;

nx = (nx > 1)?1:nx;

/* Add contribution to norm of projected gradient */

float di = x[i] - nx;

del2 += di*di;

x[i] = nx;

}

if (del2 < 0.00001) {

break;

}

return res;

}

2 Boyd and Vanderberge interior point examples

Boyd and Vanderberge on page 614 and 615 show their result: with µ = 10
interior point methods for linear programming for moderate dimension (100)
needs less than 30 iterations and for larger dimensions number of iterations
grow slowly, up to about 35 for dimension 1000.

2

3 Beck and Teboulle method

Beck and Teboulle method is releated to ADMM and proximal methods. We
want to compute

argminx ‖Ax− b‖2 + 2λ‖x‖TV

where ‖ · ‖ is l2-type norm and ‖ · ‖TV is discrete total-variation seminorm, x is
image to be recovered, b is observed noisy image and A is transformation matrix
representing blurring (in simplest case A = I is identity matrix). For in�nite
grayscale images

‖x‖TV =
∑
i,j

|xi+1,j − xi,j |+ |xi,j+1 − xi,j |.

For �nite images we skip di�erences when one of elements is outside. For color
images we can compute total variation separately for each color component (as
done in example program), or (better) treat each pixel as vector and compute
euclidian norm of di�erence.

Like in ADMM Beck and Teboulle use duality. However, since dual problem
is strongly conves they use accelerated projected gradient method to solve the
dual problem.

Their method converges in small number of iterations. Due to non-smoothness
and high dimensions methods like gradient descent are likely to converge very
slowly (and the same for conjugate gradient). ADMM is likely to work well too,
but Beck and Teboulle method has small per-iteration cost, so it is hard to beat.

3

