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1 Linear programming

We want to solve linear programming problem in standard form:

argminx∈S〈c, x〉

where S = {x : Ax = b, x ≥ 0}. To simplify presentation we will assume that
rows of A are linearly independent. This does not reduce generality. Namely,
we can choose maximal linearly independent set T of rows of A. Such set forms
a basis of space spanned by rows of A, so we can express all other rows as linear
combinations of rows from T . Consequently, we can compute Ax knowing only
coordinates corresponding to rows in T , so equations corresponding to rows not
in T are either redundant (if computed value is the same as right hand side) or
the whole system has no solutions. If system Ax = b has no solutions we can
stop. Otherwise removing from A redundant rows we get system with linearly
independent rows.

1.1 Recall idea of simplex algorithm

Let J ⊂ {1, . . . , k} and card(J) = l = rank(A). We say that solution to Ax = b
is basic solution corresponding to J if xj 6= 0 implies j ∈ J and columns Aj of
A for j ∈ J are linearly independent (so they form basis of image of A).

Lemma 1.1 If linear programming problem has optimal solution, then it also

has basic optimal solution. If linear programming problem has feasible solution,

then it also has basic feasible solution.

Second idea: for given J basic coordinates are uniquely determined by non-
basic coordinates. This allows rewriting goal function so that new function is
equal to old on S and basic coordinates of new c are zero.

1.2 Simplex algorithm

Of course l ≤ k. For convenience we may renumber coordinates so that J =
{1, . . . , l}. Then we can write A in block form A = [B,N ] where B is formed
from �rst l columns of A and N from the other. Similarly we can write arbitrary
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x ∈ Rk as (xB , xN ) where xB gives basic coordinates of x (that is coordinates
with numbers from J) and xN nonbasic. Since rows of A are linearly indepen-
dent, so A has l rows. Also B has l rows. Since B has l linearly independent
columns B is invertible.

Now
Ax = BxB +NxN

so equation Ax = b becomes

BxB +NxN = b.

We multiply this by B−1 and rearrange to get

xB = B−1b−B−1NxN .

Writing c = (cB , cN ) we can rewrite goal function 〈c, x〉 as

〈c, x〉 = 〈cB , xB〉+ 〈cN , xN 〉 = 〈cB , B−1b−B−1NxN 〉+ 〈cN , xN 〉

= h+ 〈r, x〉.

where r = (0, cN − (B−1N)T cB) and h = (cB , B
−1b).

Lemma 1.2 If r ≥ 0, then basic solution corresponding to J is optimal.

Proof: In basic solution the xN part is zero. In any other feasible solution y we
have yN ≥ 0, so

〈c, y〉 − 〈c, x〉 = (h+ 〈r, yN 〉)− (h+ 〈r, xN 〉) = 〈r, yN 〉 ≥ 0.

�

So, if r ≥ 0, then we can stop computation since we found optimal solution.
Assume that i-th coordinate of r is negative. Then 〈r, ei) < 0 where ei is

i-th element of standard basis of Rk. We want to replace xN = 0 by α(ei)N ,
that is we need to replace xB = B−1b by

B−1b− αB−1N(ei)N = xB − αB−1Aei.

That is we replace x by y = x− (αB−1Aei, 0) + αei, so for positive α we have

〈c, y〉 − 〈c, x〉 = 〈r, y〉 = 〈r, αei〉 < 0

so value of goal function is smaller. So we need to �nd maximal α such that
y is feasible, that is y ≥ 0. By construction nonbasic coordinates of y are
nonnegative so we need only to look at basic coordinates, that is we need

xB − αB−1Aei ≥ 0.

Or simpler
xB ≥ αB−1Aei.
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If all coordinates of xB are positive, we just take minimal quotient of coordinates
of xB by corresponding coordinate of B−1Aei (we skip coordinates that would
give division by zero or negative number). If all coordinates of B−1Aei are zero
or negative, then goal function is unbounded from below.

Note that with the choice of α as above one of basic coordinates of y, say
j will be zero. So we can remove j from basic set J and add i instead, that is
replace J by J − {j} ∪ {i}.

Also, columns of A with numbers from new J will be linearly independent,
so y will be basic feasible solution corresponding to new J .

Our assumption above that J = {1, . . . , l} was only to simplify notation. We
can still form matrices B from columns of A in J and N from columns not in J
for arbitrary J . Other calculations above work similarly.

So given feasible basic set J we get the following algorithm

1. Compute B−1, B−1N , x and r corresponding to J

2. Find i such that i-th coordinate of r is negative

3. If no such i then return x as optimal solution

4. Find maximal α such that xB ≥ αB−1Aei, if α can be arbitrarily large
return informing that goal function is unbounded from below

5. If only possible α is zero we have degeneracy, handle this.

6. Otherwise compute xB − αB−1Aei and �nd zero coordinate j of it.

7. Replace J by J − {j} ∪ {i} and goto 1.

1.3 Simplex algorithm, improvement

In practice there is no need to use original matrix A, we can replace it by B−1A
and replace b by B−1b. Also, we can replace c by r. After that once we compute
new set J we can incrementally update B−1A, B−1b and r. More precisely, we
join B−1b to B−1A and add r as an extra row. Since in each step we add only a
single new element to J at each step current B has only one nontrivial column
and is very easy to invert. Moreover, inverse has similar form, so we can reduce
matrix multiplication to multiplication by vector and addition.

1.4 Simplex algorithm, example

Consider the following linear programming problem:

minimize 5x1 + 3x2 + 4x3 + 2x4 + x5

subject to 4x1 − x2 + 2x3 − 3x4 = 12
−2x1 + 3x2 + 2x4 + 3x5 = 9
and x ≥ 0.
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We have

[A, b] =

(
4 −1 2 −3 0 12
−2 3 0 2 3 9

)
Choose initial basic set J = {1, 2}. Then we have

B =

(
4 −1
−2 3

)
, B−1 =

1

10

(
3 1
2 4

)
.

so B−1b is (4.5, 6) ≥ 0 so x = (4.5, 6, 0, 0, 0) is a basic solution corresponding to
basic set J . Next,

B−1[A, b] =

(
1 0 0.6 −0.7 0.3 4.5
0 1 0.4 0.2 1.2 6

)
.

Finally we get cB = (5, 3), cN = (4, 2, 1) and

(B−1N)T =

 0.6 0.4
−0.7 0.2
0.3 1.2


(the last matrix can be read from B−1[A, b]).

Consequently, nonbasic part of r is

cN − (B−1N)T cB = (−0.2, 4.9,−4.1)

We can collect what we computed up to now in table Ã below: 1 0 0.6 −0.7 0.3 4.5
0 1 0.4 0.2 1.2 6
0 0 −0.2 4.9 −4.1

 .

Since most negative element of r has index 5 we chose i = 5. Comparing column
number 5 above, that is (0.3, 1, 2) with column number 6 that is B−1b = (4.5, 6)
we see that maximal possible α is 5, so y = (3, 0, 0, 0, 5), that is as j in the step
6 of simplex algorithm we have to take 2.

Next, we put J2 = {1, 5} and go back to step 1 of second iteration of simplex
algorithm.

Now, we have

B2 =

(
1 0.3
0 1.2

)
.

This matrix has special form: it di�ers from identity matrix only in second
column, so we can immediately write down its inverse:

B−1
2 =

(
1 − 3

12
0 10

12

)
.

Since the inverse di�ers from identity matrix only in second column, we can
simplify computation of (B2)−1 time two �rst rows of Ã and get(

1 − 1
4

1
2 − 3

4 0 3
0 5

6
1
3

1
6 1 5

)
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Note that columns 2, 3 and 4 of matrix above give matrix B−1
2 N2. Basic

part rB of vector r from previous step is (0,−4.1) so computing (B−1
2 N2)T rB

just multiplies second row of B−1
2 N2 by −4.1, so we get (− 41

12 , −
41
30 , −

41
60 ), so

r2 = (0, 41
12 ,

7
6 ,

67
12 , 0). Since all coordinates of r2 are nonnegative, this is optimal

solution.
If it were not the last step, then we could collect what we computed up to

now in table Ã2 below:  1 − 1
4

1
2 − 3

4 0 3
0 5

6
1
3

1
6 1 5

0 41
12

7
6

67
12 0

 .

and proceed to step 4 of second iteration.

1.5 Simplex algorithm, feasible point

In the previous example there were happy coincidence that basic set J = {1, 2}
gave us feasible solution. In general �nding such set is almost as di�cult as
solving linear programming problem. To have obvious basic feasible solution we
can add two extra variables to the problem, extending A by diagonal matrix
having entries form {1,−1}. In the previous example we would get

[A, b] =

(
4 −1 2 −3 0 1 0 12
−2 3 0 2 3 0 1 9

)
(since both 12 and 9 are positive we take positive sign in added matrix). Then
x = (0, 0, 0, 0, 0, 12, 9) is a basic feasible solution corresponding to basic set
{6, 7}.

To eliminate added coordinates we can change goal function. In two phase
method we use auxiliary goal vector ca = (0, 0, 0, 0, 0, 1, 1), that is entries cor-
responding to original coordinates are 0, while entries corresponding to added
coordinates are 1. If original problem have feasible solution, then extending it
with zeros we get feasible solution of new problem giving value 0 for goal func-
tion. Since new goal function is nonnegative this is optimal solution. On the
other hand, if optimal value of new goal function is zero, it means that added
variables in optimal solution have value 0, so by dropping added coordinates we
get feasible solution of original problem.

1.6 Simplex algorithm, termination

Assuming nondegeneracy at each step of simplex algorithm values of goal func-
tion will be strictly decreasing, so all basic feasible points produced by simplex
algorithm will be distinct. There is only �nitely many basic feasible points, less
then 2k (namely at most on basic feasible point for each l-element subset of
[1, . . . , k]). So after �nite number of steps simplex algorithm must terminate at
optimal solution.
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1.7 Simplex algorithm, complexity

Exponential estimate for number of steps is quite bad. However, there are ex-
amples where in exact arithmetic simplex algorithm really performs exponential
number of steps, so in general this estimate can not be improved.

Fortunately, random linear programming problem with high probability re-
quires number of steps linear in dimension of the problem.

In actual machine computations usually rounding error causes behaviour
similar to random problems.

1.8 Simplex algorithm, degeneracy

In case of degeneration parameter α equals 0, so x is unchanged. However, since
one of basic coordinates of x is 0 we can remove it from basic set and add a
new one. This causes recomputation of various quantities like in normal step of
simplex algorithm, in particular we will get new value of r.

When implemented naively, such approach may led to cycles. However, for
careful choice of coordinates one can show that eventually either we will get
r ≥ 0 or we will get positive α (so decrease value of goal function).

1.9 Simplex algorithm, convexity

Linear programming problem is an example of convex optimization problem.
De�nition. Closed line segment joining x and y is set of points of form

tx+ (1− t)y

where t ∈ [0, 1].
De�nition. Set S is a convex set when for all x1, x2 ∈ S closed line segment

joining x1 and x2 is contained in S.
Equivalently set S is a convex set when for all x1, x2 ∈ S and t ∈ [0, 1] also

tx+ (1− t)y ∈ S.

Lemma 1.3 Solution set S of system of linear equations and inequalities is a

convex set.

Proof: Consider equations Ax = a and inequalities Bx ≥ b. Assume x1, x2 ∈
S, that is Ax1 = a, Ax2 = a, Bx1 ≥ b, Bx2 ≥ b. Let t ∈ [0, 1], then also
(1− t) ∈ [0, 1]. Put y = tx1 + (1− t)x2. We have

Ay = tAx1 + (1− t)Ax2 = ta+ (1− t)a = a

and
By = tBx1 + (1− t)bx2 ≥ tb+ (1− t)b = b

so y ∈ S. �
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1.10 Simplex algorithm, geometric view

By previous lemma feasible set of a linear programming problem is a convex set.
This set may be slightly more general than convex polyhedron, it is so called
convex polyhedral set.

For linear programming problem is standard form basic feasible solutions
are exactly vertices of feasible set.

Simplex algorithm moves from given vertex to one of connected vertices
(with lower value of goal function).

1.11 Simplex algorithm, more general version

In practice converting linear programming problem to standard form may signif-
icantly increase size of the problem. So it is preferable to treat directly problems
in nonstandard forms. Form previous discussion it follows that we should look at
vertices of feasible set. Vertices are points where several inequality constraints
turns into equalities such that obtained set of equalities (both original equalities
and equalities obtained from constraints) is of full rank and has unique solu-
tion. So natural generalization replaces basic feasible points by points where
some subset of inequalities is replaced by equations in such a way that resulting
system is of full rank.

2 Further reading 1

Simplex method is described in chapter 3 of book: David G. Luenberger, Yinyu
Ye, Linear and Nonlinear Programming, Springer 2008.

In subchapter 5.2 of book above there is example showing exponential num-
ber of steps for a speci�c variant of simplex method.

3 Convex sets and functions

Recall that set S is convex if and only if for each two points x, y ∈ S line segment
joining x and y is contained in S.

Example: Closed halfspace {x : (a, x) ≤ b}, open halfspace {x : (a, x) < b},
interval [a, b], . . .

Example: One point set {a} where a is a �xed element of Rn.

Lemma 3.1 Let ∆ be an arbitrary family of convex subsets of Rn. Then inter-

section

K =
⋂
S∈∆

S

is a convex set.

Proof: Let x, y ∈ K, t ∈ [0, 1], S ∈ ∆, z = tx + (1 − t)y. Since S is convex
z ∈ S. Since S is arbitrary for all S ∈ ∆ we have z ∈ S. Hence z ∈ K. Since t
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is arbitrary, for all t ∈ [0, 1] we have tx+ (1− t)y ∈ K, so line segment joining
x and y is contained in K, so K is convex. �

Example: intersection of halfspaces is convex. In particular, triangle is con-
vex.

3.1 Convex functions

Function f : S → R∪∞ is convex if and only if for all x, y ∈ S and all t ∈ [0, 1]
point tx+ (1− t)y belongs to S and

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y).

Examples: linear function (a, x), ex, − log(x) on (0,∞), x log(x) on (0,∞),
xa on (0,∞) for a ≤ 0 or a ≥ 1, −xa on (0,∞) for a ∈ [0, 1], (x3 + y3)1/3 on
x, y > 0.

Function f is concave if and only if −f is convex.
Function f is strictly convex if in the inequality above equality holds only

for x = y or t ∈ {0, 1}.

Lemma 3.2 Let fi be convex functions and ti > 0. Then∑
tifi

is convex. Similarly

sup
i
fi

is convex.

Proof: For for �nite sum we get result by adding inequalities. For supremum
write g = supi fi and consider x, y such that g is �nite, t ∈ [0, 1] and index i.
We have

fi(x) ≤ sup
i
fi(x) = g(x),

fi(y) ≤ sup
i
fi(y) = g(y)

so for z = tx+ (1− t)y by convexity of fi we have

fi(z) ≤ tf(x) + (1− t)fi(y) ≤ tg(x) + (1− t)g(y)

hence
g(z) = sup

i
fi(x) ≤ tg(x) + (1− t)g(y)

so g is convex. �

Example. |x| = max(x,−x) is convex.
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Example. f(x) = x2 is convex. Let t ∈ [0, 1]. Put z = tx + (1 − t)y. Write
x = z + α, y = z + β. Since z = tx + (1 − t)y we have tα + (1 − t)β = 0. We
have

f(x) = x2 = (z + α)2 = z2 + 2zα+ α2,

f(y) = z2 + 2zβ + β2

so
tf(x) + (1− t)f(y)

= tz2 + 2ztα+ tα2 + (1− t)z2 + 2z(1− t)β + (1− t)β2

= f(z) + 2z(tα+ (1− t)β) + tα2 + (1− t)β2

= f(z) + tα2 + (1− t)β2

where we used fact that tα+ (1− t)β = 0. Last equality means that

f(z) ≤ tf(x) + (1− t)f(y)

so indeed f is convex.
Example: ‖x‖2 =

∑
x2
i is convex as sum of convex functons.

4 Further reading 2

Stephen Boyd, Lieven Vandenberghe, Convex Optimization, Chapters 2 and 3.
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