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1 Convex sets

Recall that points of form
tx+ (1− t)y

where t ∈ [0, 1] form a (closed) line segment joining x and y.
Set S is convex if and only if for each two points x, y ∈ S line segment joining

x and y is contained in S.

Lemma 1.1 Let ∆ be an arbitrary family of convex subsets of Rn. Then inter-

section

K =
⋂
S∈∆

S

is a convex set.

Now, let F be an arbitrary subset of Rn and let ∆ be family of all convex
subsets of Rn containing F . Then K =

⋂
S∈∆ S is a convex set containing F

and clearly K is smallest such set. K is called convex hull of F and denoted by
conv(K).

We can give more constructive description of convex hull. When x1, . . . , xm ∈
Rn, t1, . . . , tm ∈ [0, 1] and

∑m
i=1 ti = 1, then

m∑
i=1

tixi

is called convex combination of xi.

Lemma 1.2 K is convex if and only if each convex combination of elements of

K belongs to K.

Lemma 1.3 If z1, . . . , zj are convex combinations of x1, . . . xm, then any con-

vex combination of zi is a convex combination of x1, . . . xm.

So, convex hull conv(F ) is just set of all convex combinations of elements of
F .
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If F ⊂ Rn, and z ∈ conv(F ) then there exists x1, . . . , xn+1 such that z is a
convex combination of xi.

If F ⊂ Rn and F is compact, than conv(F ) is compact.
Separating hyperplane:

Lemma 1.4 If A,B ⊂ Rn are convex sets, A ∩ B = ∅, then there exists linear

function φ and b ∈ R such that φ(x) ≤ b for x ∈ A and φ(x) ≥ b for x ∈ B. If

A is open, then φ(x) < b for x ∈ A. If A is closed and B is compact, then we

can choose φ and b so that φ(x) ≤ b for x ∈ A and φ(x) > b for x ∈ B.

Corollary: open (closed) convex set C can be written as intersection of open
(closed) halfspaces. Namely, for each point y /∈ C take H = {x : φ(x) < b}. H
open halfspace such that C ⊂ H and y /∈ H. Single point set is compact, so
by second part of the lemma for closed convex C halfspace H = {x : φ(x) ≤ b}
contains C and y /∈ H.

Remark: Typically intersection above must be in�nite. Set which can be
written as �nite intersection of closed halfspaces is called convex polyhedral set.

Supporting plane:

Lemma 1.5 If A is convex and x belongs to boundary of A, then there exists

linear function φ such that for all y ∈ A

φ(y) ≤ φ(x)

Remark: If F is open or closed and satis�es one of properties above, then F
is convex.

1.1 Convex functions

Function f : S → R∪∞ is convex if and only if for all x, y ∈ S and all t ∈ [0, 1]
point tx+ (1− t)y belongs to S and

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y).

Function f is concave if and only if −f is convex.
Function f is strictly convex if in the inequality above equality holds only

for x = y or t ∈ {0, 1}.
Suppose f is �nite and convex on interval [a, b]. We can write x ∈ [a, b] as

convex combination of a, b:

x =
b− x
b− a

a+
x− a
b− a

b

so by convexity of f

f(x) ≤ b− x
b− a

f(a) +
x− a
b− a

f(b).
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Subtracting f(a) from both sides we get

f(x)− f(a) ≤ x− a
b− a

(f(b)− f(a))

which for x 6= a gives
f(x)− f(a)

x− a
≤ f(b)− f(a)

b− a
Similarly, for x 6= b we have

f(b)− f(a)

b− a
≤ f(b)− f(x)

b− x

For di�erentiable f when x = a+ h inequality

f(x)− f(a)

x− a
≤ f(b)− f(a)

b− a

in the limit gives

f ′(a) ≤ f(b)− f(a)

b− a
.

Similarly
f(b)− f(a)

b− a
≤ f ′(b).

Norms give important example of convex functions. Function usually de-
noted as ‖x‖ on Rn is a norm if and only if it satis�es the following properties

• for all t ∈ R ‖tx‖ = |t|‖x‖

• ‖x+ y‖ ≤ ‖x‖+ ‖y‖

• ‖x‖ = 0 implies x = 0

Norm is convex:

‖tx+ (1− t)y‖ ≤ ‖tx‖+ ‖(1− t)y‖ = t‖x‖+ (1− t)‖y‖.

Example: for p ≥ 1 lp norm

‖x‖lp =

(
n∑

i=1

|x|p
)1/p

.

In particular for p = 2 we get usual euclidean norm.
If function φ satis�es φ(tx) = |t|x and set

B = {x : φ(x) < 1}

is a bounded convex set, then φ is a norm.
Important property: function f is (strictly) convex if and only if its restric-

tion to any line is (strictly) convex.
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Lemma 1.6 Function f is convex if and only if its epigraph

epi(f) = {(x, y) ∈ S × R : f(x) ≤ y}

is a convex set.

Example: If K is a convex set than indicator Ik(x) = 0 for x ∈ K and
Ik(x) =∞ for x /∈ K is convex.

For convex f and all t ∈ R sublevel set {x : f(x) ≤ t} is convex.

1.2 Using properties convex functions

Example: We can use properties above to show that for p ≥ 1 lp norm de�ned
above is really a norm. Namely, it is easy to see that for t ∈ R we have

‖tx‖lp = |t|‖x‖lp

so by properties above it enough to show that

B = {x : ‖x‖lp < 1}

is convex. But we have
B = {x : ‖x‖plp < 1}

which is a sublevel set of ‖x‖plp . So it is enough to show that ‖x‖plp is convex.
But

‖x‖plp =

n∑
i=1

|xi|p.

Sum of convex functions is convex, so it is enough to show that f(y) = |y|p is
convex on real line. But this follows from �rst order criterion of convexity (next
subsection) since for p > 1 out f is di�erentiable and increasing. For p = 1 we
can easily check convexity directly from de�nition.

Remark: In general, when fp is convex and p > 1 there is no reason for f to
be convex. However, in case of lp norm (or more general when f(tx) = |t|f(x))
we can use B to prove that f is a norm (hence convex).

1.3 Back to convex functions

First order criterion of convexity: di�erentiable f is convex if and only if domain
S of f is convex and derivative of f is nondecreasing, that is for all x, y ∈ S we
have

(f ′(y)− f ′(x))(y − x) ≥ 0

Using gradient we can write this as

〈∇f(y)−∇f(x), y − x〉 ≥ 0.

If above for x 6= y we have strict inequality, then f is strictly convex.
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Proof: Both convexity and property above depend only on restriction of f to
lines. So it is enough to prove then for functions of single variable. We already
proved that for convex di�erentiable f derivative is nondecreasing. To prove the
converse assume that derivative of f is nondecreasing. Di�erentiating we get

∂t(f(x+ t)− (f(x) + f ′(x)t)) = f ′(x+ t)− f ′(x)

so nondecreasing derivative implies

∂t(f(x+ t)− (f(x) + f ′(x)t)) ≥ 0

for t ≥ 0, hence
f(x+ t) ≥ f(x) + f ′(x)t

for t ≥ 0. But the same argument works also for t ≤ 0, so the inequality above
is valid for all t. Now, let x = ty + (1− t)z be convex combination of y and z.
We have y = x+ α, z = x+ β and tα+ (1− t)β = 0. Also

f(y) = f(x+ α) ≥ f(x) + f ′(x)α,

f(z) = f(x+ β) ≥ f(x) + f ′(x)β

so

tf(y) + (1− t)f(z) ≥ tf(x) + f ′(x)tα+ (1− t)f(x) + f ′(x)(1− t)β

= f(x) + f ′(x)(tα+ (1− t)β) = f(x)

so indeed f is convex. �

As a corollary we get another �rst order criterion of convexity: di�erentiable
f is convex if and only if domain S of f is convex and for all x, y ∈ S we have

f(y) ≥ f(x) + f ′(x)(y − x)

Last criterion can be weakened in following way: Assume that f is taking
only �nite values, domain S of f is convex, f is continuous and set of points
such that f is di�erentiable and condition above holds is dense in S. Then f is
convex.

On the other hand if S is open and f is convex, then f has property above.
Related properties: if f is convex and f ′(x) = 0 then x is global minimum

of f . Local minimum of convex function is also global minimum. If f is strictly
convex, then there is at most one local minimum.

Second order criterion: f having two derivatives is convex if and only if
domain S of f is convex and second derivative of f is positive de�nite, that is
for each x ∈ S and h ∈ Rn we have

f ′′(x)(h, h) ≥ 0
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Again, if we have strict inequality for h 6= 0, then f is strictly convex.
Remark: Second order criterion of convexity is a consequence of �rst order

criterion and calculus characterization of nondecreasing functions on real line.
Example: most our previous examples can be easily proved convex using

second derivative criterion.
Example: quadratic function (Qx, x) + (b, x) + c is convex if and only if Q

is positive de�nite.

1.4 Operations on convex sets

• image and counterimage of convex set by a�ne function is convex

• in particular scaling and translation of convex set is convex

• cartesian product of convex sets is convex

• intersection of convex sets is convex

• complex sum A+B = {x+ y : x ∈ A, y ∈ B} is convex for convex A and
B

Example: A rectangle, i.e., a set of the form {x ∈ Rn : αi ≤ xi ≤ βi, i =
1, . . . , n} is a convex set. Namely, a rectangle is an intersection of halfspaces
Li = {x : αi ≤ xi} and Ui = {x : xi ≤ βi}. A rectangle is sometimes called a
hyperrectangle when n > 2.

Alternatively, we can treat a rectangle as a cartesian product of intervals.
Example: When A is a �xed linear operator and a is a �xed vector than

{x : Ax = a}

is a convex set as counterimage of one point set.
Example: Set of x ∈ Rn such that x ≥ 0 is a convex set as cartesian product

of convex sets {xi : xi ≥ 0} ⊂ R.
Example: For �xed b ∈ Rn set

{x : x ≥ b}

is convex as translation of set from previous example.
Example: When B is a linear operator, and b is a �xed vector, then set

{x : Bx ≥ b}

is a convex set as counterimage of convex set from previous example.
Example: Solution set of general linear programming problem is a convex

set as intersection of set above and set from example about linear equalities.
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1.5 Operations on convex functions

• nonnegative linear combination of convex functions is convex,

• supremum of family of convex functions is convex

• parametric minimum of convex function: if f(x, y) is convex function and
K is convex set then

g(x) = inf
y∈K

f(x, y)

is a convex function

Remark: Nonnegative linear combination means all coe�cients are nonneg-
ative. Functions may be negative.

Remark: Sum of convex functions is linear combination with all coe�cients
equal to 1, so is covered as nonnegative linear combination.

Example: Assume domain of f is open and f only takes �nite values. f is
convex if and only if domain of f is convex and f is supremum of family of a�ne
functions.

Example: Distance to convex set K:

d(x,K) = inf
y∈K
‖x− y‖.

This follows from parametric minimum property and would be tricky in other
ways.

1.6 Jensen inequality

If K ⊂ Rn is a convex set, f is convex function de�ned on K and µ is probability
measure on K, then

f(

∫
xdµ) ≤

∫
f(x)dµ.

Note: x is vector valued function, we integrate such functions integrating all
coordinates separately.

Alternatively, if X is random variable with values in K, then

f(EX) ≤ E f(X).

In particular, for �nite number of points xi, i = 1, ...,m and weights ti ≥ 0 such
that

∑m
i=1 ti = 1 we have

f(

m∑
i=1

tixi) ≤
m∑
i=1

tif(xi).

Example: − log(x) is convex on (0,∞). Using Jensen inequality for pi, xi > 0
such that

∑
pi = 1 we get∑

pi log(xi) ≤ log(
∑

pixi).
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Passing to exponentials we get∏
xpi

i = exp(
∑

pi log(xi)) ≤
∑

pixi

which is called generalized arithmetic-geometric mean inequality.

1.7 Convex optimization

When gi : Rn → R ∪ {∞} are convex functions, then S = {x : gi(x) ≤ 0} is a
convex set. When f is de�ned and convex on S then problem

minimize f(x)
subject to gi(x) ≤ 0

is called (constrained) convex optimization problem. For linear (or more gen-
erally a�ne) function gi we can use equality constraint gi(x) = 0, namely we
write equality as conjunction of two inequalities gi(x) ≤ 0 and −gi(x) ≥ 0 (for
a�ne gi both gi and −gi is convex, otherwise w could not do this).

Example: linear programming problem, LASSO.
De�nition. We say that x if a local minimum of f if there is a neighborhood

U of x such that
x = argminx∈U f(x),

that is x is a minimum of f restricted to U .
Similarly we de�ne local maximum.

Lemma 1.7 In convex optimization problem local minimum is also global min-

imum.

Proof: If f(y) < f(x), then for all t ∈ (0, 1) by convexity we have

f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y) < (1− t)f(x) + tf(x) = f(x)

But when U is a neighborhood of x, then for t > 0 and small enough we have

(1− t)x+ ty ∈ U

which by previous inequality means that x is not a local minimum. Conse-
quently if x is local minimum then for all y in domain of f we have f(y) ≥ f(x),
so f is global minimum. �

We will look more at convex optimization, but previous lemma shows that
convex optimization problems are easier then general optimization problems.
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1.8 Examples of convex problems

1.8.1 Support vector machines (SVM)

Example: Given sequence of points xi ∈ Rn, i = 1, . . . ,m with classi�cation yi ∈
{−1, 1} we want to �nd optimal separating plane. Optimal means maximizing
oriented distance to both classes. That is, we want to �nd maximalM such that
there is β0 and vector β = (β1, . . . , βn) such that ‖β‖2 = 1 and for i = 1, . . . ,m

yi(〈xi, β〉+ β0) ≥M.

As above, this contains non-convex constraint ‖β‖2 = 1. However, for positive
M dividing β by M we get new problem: minimize ‖β‖2 under constraints

yi(〈xi, β〉+ β0) ≥ 1

which is quadratic problem. When M is non-positive the transformed problem
above is infeasible.

ForM = 0 we get linear problem, for negativeM we get problem of maximiz-
ing ‖β‖2 with constraints like above, but with 1 on the right hand side replaced
by −1. This is non-convex problem, so usually we replace it by problem with
relative slack variables that is for for i = 1, . . . ,m we have

yi(〈xi, β〉+ β0) ≥M(1− ζi)

where ζi ≥ 0 and
∑
ζi is bounded by some constant. Now, dividing by M we

get problem of minimizing ‖β‖2 under constraints

yi(〈xi, β〉+ β0) ≥ (1− ζi),

and ζi ≥ 0,
∑
ζi ≤ C.

1.8.2 Basis pursuit

Example: basis pursuit as linear programming problem. Consider problem of
minimizing ‖x‖1 =

∑n
i=1 |xi| under condition Ax = b. Writing xi = ti − si we

see that instead we can minimize
∑n

i=1(ti + si) under condition A(t − s) = b
which is linear programming problem.

In similar way for LASSO we get quadratic optimization problem.

1.9 Further reading

Stephen Boyd, Lieven Vandenberghe, Convex Optimization, Chapters 2 and 3.

2 Appendix, pathologies and regularity

In some places we had assumptions that convex sets are open or close and some
extra assumptions about regularity of convex functions. Below we show few
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examples showing that without regularity assumptions convex sets or convex
functions may show quite bad behaviour. Those examples are mostly theoretical:
functions coming from real problems typically are regular. However, they play
role in logical structure of theory, showing that we need to be careful formulating
our results. We also give some extra results about regularity.

Bad example: Let B = {(x, y) ∈ R2 : x2 + y2 < 1} be unit disc on the plane.
Let A be arbitrary subset of unit circle C = {(x, y) ∈ R2 : x2 + y2 = 1}. Then
A ∪ B is a convex set. This example shows to convex sets may behave very
badly at boundary.

Bad example: Let B and C be as in previous example. Let h be arbitrary
function on C such that h ≥ 0. Put f(x) = 0 for x ∈ B and f(x) = h(x) for
x ∈ C. Then f is convex on B ∪ C, but f may be quite irregular on C.

Good property: When convex set S has nonempty interior, then S is con-
tained in the closure of interior of S. This essentially means that all bad exam-
ples must be like our A ∪B example: they are sum of interior and some subset
of boundary.

Good property: If S ⊂ Rn is a convex set, f is convex and �nite on S,
then f is continuous in the interior Int(S) of S. In other words, discontinuity
is possible only at boundary of S. Next, f is Lipschitz continuous on compact
subsets of Int(S). f is almost everywhere di�erentiable on Int(S). In particular,
when Int(S) is nonempty, then set of point at which f is di�erentiable is dense
in S.

One can also de�ne generalized derivatives. With assumptions as above f
has two generalized derivatives in Int(S). The second generalized derivative in
general is a measure taking values in positive de�nite matrices.

2.1 Appendix, regular approximation

With notation as before, on Int(S) convex and �nite f is a pointwise limit of
convex and smooth functions. This means that many properties when proven
for convex and smooth functions must hold for arbitrary convex functions.
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