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1 Unconstrained optimization

1.1 Unconstrained optimization, rate of convergence

To say anything about rate of convergence we need extra assumptions. We need
bounds for second derivative. To use similar notation as in following lectures
we introduce here Hessian:

〈∇2f(x)h1, h2〉 = f ′′(x)(h1, h2)

that is for �xed x right hand side is a (symmetric) quadratic form in h, while on
left hand side ∇2f(x) is a linear operator uniqely de�ned by the equality above.

Our assumption from previous lecture can be written as

−MI ≤ ∇2f(x) ≤MI

where inequalite means that di�erence of both sides is a positve de�nite opera-
tor.

As long as f is smooth and domain of f is convex this is equivalent to

‖∇f(y)−∇f(x)‖ ≤M‖y − x‖,

that is Lipschitz continuity of derivative of f .
Comparing f with quadratic function we get inequality

f(y) ≤ f(x) + 〈∇f(x), y − x〉+ M

2
‖y − x‖2.

Taking y = x− α∇f(x), α = 1
M we get

f(y) ≤ f(x)− 1

2M
‖∇f(x)‖2

which we call descent estimate.
Recall that in previous lecture we showed that O( 1

ε2 ) steps is enough to
decrease gradient to magnitude ε.

Now we want to prove better estimate for convex functions. To simplify
arguments we will consider constant step size α ≤ 2

M where as before M is
Lipschitz constant of gradient of f .

First, useful estimate:

1



Lemma 1.1

f(x) + 〈∇f(x), y − x〉+ 2

M
‖∇f(x)−∇f(y)‖2 ≤ f(y),

1

M
‖∇f(y)−∇f(x)‖2 ≤ 〈∇f(y)−∇f(x), y − x〉

Proof: To prove �rst inequality consider φ(y) = f(y) − 〈∇f(x), y − x〉.
∇φ(x) = 0 so φ attains minimal value at x, so

f(x) = φ(x) ≤ φ(y − 1

M
∇φ(y)).

Since gradient of φ has the same Lipschitz constant as f we have descent estimate

φ(y − 1

M
∇φ(y)) ≤ φ(y)− 1

2M
‖∇φ(y)‖2.

Since ∇φ(y) = ∇f(y)−∇f(x) this gives �rst estimate.
Adding �rst estimate for x and y and with reversed order gives second esti-

mate. �

Now, we will prove that under such condition distance to optimal point can
not increase.

Lemma 1.2 With assumptions as above

‖xi+1 − x∞‖ ≤ ‖xi − x∞‖

Proof:
‖xi+1 − x∞‖2 = ‖xi − x∞ − α∇f(xi)‖2

= ‖xi − x∞‖2 − 2α〈∇f(xi), xi − x∞〉+ α2‖∇f(xi)‖2

≤ ‖xi − x∞‖2 − α
2

M
‖∇f(xi)‖2 + α2‖∇f(xi)‖2

≤ ‖xi − x∞‖2

as long as α ≤ 2
M . �

Now, we can prove:

Lemma 1.3 Let f be convex such that gradient of f is Lipschitz continuous

with constant M . Gradient descent using constant step size α = 1
M satis�es

f(xm)− f(x∞) ≤ 2M‖x0 − x∞‖2

m+ 4

where x∞ is a minimizer of f .
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Proof: By convexity

f(x∞)− f(xi) ≥ 〈∇f(xi), x∞ − xi〉 ≥ −‖∇f(xi)‖‖x∞ − xi‖

so

‖∇f(xi)‖ ≥
f(xi)− f(x∞)

‖xi − x∞‖
≥ f(xi)− f(x∞)

‖x0 − x∞‖
Combining this with descent estimate we get

f(xi+1)− f(xi) ≤ −
(f(xi)− f(x∞))2

2M‖x0 − x∞‖2

Writing δi = f(xi)− f(x∞) this means

δi+1 − δi ≤ −
δ2i

2M‖x0 − x∞‖2

so

δi+1 ≤ δi −
δ2i

2M‖x0 − x∞‖2

Now the we get result by induction. It is clearly true for i = 0. The right hand
side is a quadratic in δi, which attains maximal value at δmax =M‖x0− x∞‖2.
By inductive assumption δi ≤ 2M‖x0−x∞‖2

i+4 , which is smaller than δmax, so our
quadratic is increasing for relevant δi and we get estimate from above plugging
in upper estimate for δi.

Consequently

δi+1 ≤
2M‖x0 − x∞‖2

i+ 4
− 2M‖x0 − x∞‖2

(i+ 4)2

= 2M‖x0 − x∞‖2(
1

i+ 4
− 1

(i+ 4)2
)

≤ 2M‖x0 − x∞‖2(
1

i+ 4
− 1

(i+ 4)(i+ 5)
)

=
2M‖x0 − x∞‖2

i+ 5
.

�

Remark. We get similar result for smaller steps. However, when α > 2
M our

proof that ‖xi − x∞‖ is nonincreasing no longer works. For 1
M < α ≤ 2

M we
get worse estimate of descent. In practice larger steps are likely to give faster
convergence, but theory suggests small steps. So there is a discrepancy. We will
see that similar discrepancy appears in di�erent situations.
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Lemma 1.4 With assumptions as above we have

min
m/2≤i<m

‖∇f(xi)‖ ≤
4M‖x0 − x∞‖

m+ 1
.

Proof: Applying our general gradient estimate from previous lecture with x0
replaced by xm0

where m0 = m/2 (rounded up) we get

min
m0≤i<m

‖∇f(xi)‖2 ≤
2M(f(xm0

)− f(x∞))

m−m0 + 1
.

Using estimate for f(xm0
)− f(x∞) this is

≤ 2M(2M‖x0 − x∞‖2)
(m0 + 4)(m−m0 + 1)

≤ (4M‖x0 − x∞‖)2

(m+ 1)2

which gives the claim. �

Clearly, this is better then non-convex gradient estimate.
Now we come to lower bound.
We will say that a method is �rst order method if

xi+1 ∈ x0 + lin{∇f(x0), . . . ,∇f(xi)}.

Intuitively, the condition above means that we use only information obtained
from �rst derivatives to choose direction. Clearly gradient descent is a �rst
order method, but we will see that most methods that we study are �rst order
methods.

Lemma 1.5 For any k, 1 ≤ k ≤ n−1
2 , and any x0 ∈ Rn there exists a con-

vex function f : Rn → R such that gradient of f is Lipschitz continuous with

constant M and for any �rst-order method we have

f(xk)− f(x∞) ≥ 3M‖x0 − x∞‖2

32(k + 1)2
,

‖xk − x∞‖2 ≥
1

8
‖x0 − x∞‖2

where x∞ is the minimum of f .

There is a method (Nesterow acceleration) for which we have corresponding
upper bound.

Proof. To prove the lemma we need to construct appropriate couterexample.
It is enough to do this for x0 = 0.
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For s ∈ Rn we de�ne

f(s) =
1

2

(
s21 + s2n +

n−1∑
i=1

(si+1 − si)2
)
− s1.

Clearly ∇2f is strictly positive de�nite. One can check that ∇f(s) = 0 when

si = 1− i

n+ 1

so optimal value is 1
2 (−1 +

1
n+1 ).

Let Vi be subspace of Rn consisting from vectors such that only �rst i co-
ordinates are nonzero (V0 = {0}). One can check that when xi ∈ Vi, then
∇f(xi) ∈ Vi+1 so for any �rst order method starting at x0 = 0 we have xi ∈ Vi.

At best �rst order metod will give optimal value on Vi. However, f restricted
to Vi looks exactly like f with n = i, so optimal value is 1

2 (−1 + 1
i+1 ) and

therefore error

E(xi) =
1

2
(−1 + 1

i+ 1
)− 1

2
(−1 + 1

n+ 1
)

=
1

2
(

1

i+ 1
− 1

n+ 1
)

and in particular when 2(i+ 1) ≤ n+ 1 then

E(xi) ≥
1

4

1

i+ 1
.

Also, note that

‖xi‖2 =

i∑
j=1

(1− j

i+ 1
)2 =

i∑
j=1

j2

(i+ 1)2

≤
i∑

j=1

(j + 1)3 − j3

3(i+ 1)2
=

(i+ 1)3

3(i+ 1)2
− 1

3(i+ 1)2
≤ i+ 1

3

so

E(xi) ≥ O(
1

(i+ 1)2
)‖x0 − x∞‖2

Moreover,
‖xi − x∞‖2 ≥ c‖x0 − x∞‖2

�

Previous lemma means that even for quite reqular convex functions we can
not expect very fast convergence. In fact, there is already problem with convex
quadratic functions.
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Above we have di�culty because f is convex, but second derviative may be
very small in some directions (and relatively large in other directions). So we
need lower bound on second derivative. Technically it is more elegant to use
following condition.

We say that f is strongly convex with constant m when f −m‖x‖2 is convex.
This condition holds when f is twice di�erentiable and all eigenvalues of

∇2f are bounded from below by m. However, as written above condition does
not require existence of second deriviative.

Lemma 1.6 When f is strongly convex with constant m, that is f −m‖x‖2 is

convex, gradient of f is Lipschitz continuous with constant M , then for gradient

descent with constant step size α = 2
M+m we have

‖xi − x∞‖ ≤ Ci‖x0 − x∞‖

where

C =
M −m
M +m

and x∞ is a minimal point.

Proof: We will represent ∇f using ∇2f (which is possible under our assump-
tions, in particular ∇2f exists almost everywhere):

∇f(xi) = ∇f(xi)−∇f(x∞) =

∫ 1

0

∇2f(x+ thi)hi

where hi = xi − x∞. So

hi+1 = xi+1 − x∞ = xi − x∞ − α∇f(xi)

= (I − α
∫ 1

0

∇2f(x+ thi))hi = Ahi

By assumption mI ≤ ∇2f(x+ thi) ≤MI, so

2m

M +m
I ≤ α∇2f(x+ thi) ≤

2M

M +m
I.

So

−M −m
M +m

I ≤ A ≤ M −m
M +m

I

and since A is symmetric

‖A‖ ≤ M −m
M +m

.

Consequently

‖xi+1 − x∞‖ ≤ ‖A‖‖xi − x∞‖ ≤ C‖xi − x∞‖
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and claim follows by induction. �

Remark: Again, slightly enlarging C we get result for steps smaller than
2

M+m and for slightly larger steps. But the proof breaks down when steps are
much larger.

We also get result for improvement of goal function:

Lemma 1.7 With assumptions as above and step α = 1
M

f(xi+1)− f(x∞) ≤ C(f(xi)− f(x∞))

where C = 1− m
M .

Proof: From decay estimate

f(xi+1) ≤ f(xi)−
1

2M
‖∇f(xi)‖2

so

f(xi+1)− f(x∞) ≤ f(xi)− f(x∞)− 1

2M
‖∇f(xi)‖2

By strong convexity

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ m

2
‖y − x‖2

Computing derivative we see that z = x − 1
m∇f(x) minimizes right hand side

(with �xed x and variable y).
So

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ m

2
‖y − x‖2

≥ f(x) + 〈∇f(x), z − x〉+ m

2
‖z − x‖2

= f(x)− 1

2m
‖∇f(x)‖2

Using y = x∞ and x = xi we get

1

2m
‖∇f(xi)‖2 ≥ f(xi)− f(x∞)

Plugging the above into decay estimate we get

f(xi+1)− f(x∞) ≤ f(xi)− f(x∞)− 1

2M
2m(f(xi)− f(x∞))

= C(f(xi)− f(x∞))

with C = 1− m
M which gives the claim. �
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Remark: clearly exact line search is as good or better than this. Armijo's
rule gives at least fraction of decay of �xed step, so we get similar result with
slightly larger C.

Remark: When m
M is reasonably big this is much better than result without

strong convexity: we need number of steps that grows linearly with accuracy
while 1

ε is exponential in number of bits.
What to do when m

M is very small? It may happen that m
M is small due to

bad scaling, this happened in quadratic example from previous lecture. Simple
diagonal scaling sometimes helps, but rotating bad example we see that in gen-
eral we may need to rescale by arbitrary linear mapping A. In a sense optimal
rescaling would give

‖Ah‖2 = 〈∇2f(x)h, h〉

We can not get this for all x simultaneously, but can do for single point xi.
Namely, we de�ne new scalar product as 〈h, h〉x = 〈∇2f(x)h, h〉. Then steepest
descent direction is given by Newton formula

(∇2f(xi))
−1∇f(xi).

1.2 Newton method

When xi+1 = xi − (∇2f(xi))
−1∇f(xi) we say about pure Newton method.

To derive Newton formula we �nd steepest descent direction at x minimizing

〈∇f(x), h〉
〈h, h〉1/2x

=
〈∇f(x), h〉

〈∇f2(x)h, h〉1/2
.

Computing derivative with respect to h we get

∇f(x)〈∇2f(x)h, h〉1/2 − 〈∇f(x), h〉∇2f(x)h

as numerator. Comparing this to 0 gives equation

〈∇2f(x)h, h〉1/2∇f(x) = 〈∇f(x), h〉∇2f(x)h

that is

h =
〈∇2f(x)h, h〉1/2

〈∇f(x), h〉
(∇2f(x))−1∇f(x).

Note that
〈∇2f(x)h, h〉1/2

〈∇f(x), h〉

is just a negative constant, so in fact we get (∇2f(x))−1∇f(x) as the steepest
descent direction.

Classically, Newton method was obtained looking at quadratic approxima-
tion to f(x+ h):

f(x+ h) = f(x) + 〈∇f(x), h〉+ 1

2
〈∇2f(x)h, h〉+ o(‖h‖2).
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Minimizing quadratic function of h on the right hand side gives

h = −(∇2f(x))−1∇f(x).

So we get iterative algorithm

xi+1 = xi − α(∇2f(x))−1∇f(x).

α = 1 is pure Newton method, when α may be smaller than 1 we have damped
Newton method.

Newton method for optimization is closely related to Newton method for
equation solving, namely Newton method for optimization of f produces the
same approximations as Newton method for solving equation ∇f(x) = 0. When
solving equations it is easy to see that pure Newton method may diverge, that
is approximations converge to a cycle or are chaotic. The same may happen
when using pure Newton method for optimization.

Consider now g(y) = f(Ay + b) where A is an invertible matrix. We have

〈∇g(y), h〉 = 〈∇f(Ay + b), Ah〉,

g′′(y)(h, h) = f ′′(Ay + b)(Ah,Ah)

so
∇g(y) = AT∇f(Ay + b),

∇2g(y)h = AT (∇2f)(Ay + b)Ah

and

(∇2g(y))−1∇g(y) = A−1(∇2f(Ay + b))−1(AT )−1AT∇f(Ay + b)

= A−1∇2f(Ay + b))−1∇f(Ay + b)

Rewriting, we get

A(∇2g(y))−1∇g(y) = (∇2f(Ay + b))−1∇f(Ay + b).

Let yi be approximations produced by Newton method applied to g and let
wi = (∇2g(yi))

−1∇g(yi) be corresponding search directions. Put xi = Ayi + b.
Our result shows that starting Newton method for f at xi we get hi = Awi as
as search direction. Clearly

g(yi + αwi) = f(A(yi + αwi) + b) = f(Ayi + b+ αAwi) = f(xi + αhi)

so we use the same function of α during line search, so we will get the same αi.
Consequently, starting Newton method for f at x0 we will get xi at step i.

In other words, Newton method is invariant under a�ne transformations:
changing variables in a�ne way changes approximations produced by Newton
method in the same way. This is quite di�erent than gradient descent, where
change of variables plays much more role.
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Note: to have true invariance we should have invariant stopping criterion.
Good criterion is given by smallness of step hi using our scalar product

〈hi, hi〉xi = 〈∇2f(xi)hi, hi〉 = −〈∇2f(xi)(∇2f(xi))
−1∇f(xi), hi〉

= −〈∇f(xi), hi〉.

Using our formulas we have

−〈∇g(yi), wi〉 = −〈AT∇f(Ayi + b), A−1hi〉 = −〈∇f(xi), hi〉

so requirement −〈∇f(xi), hi〉 < ε gives invariant stopping criterion.

1.3 Further reading

Stephen Boyd, Lieven Vandenberghe, Convex Optimization, chapter 9.
David G. Luenberger, Yinyu Ye, Linear and Nonlinear Programming, chap-

ters 7 and 8.
Yurii Nesterov, Introductory lectures on convex optimization, Springer 2004,

chapter 1 (despite title more advanced than other texts).
Jorge Nocedal, Stephen J. Wright, Numerical Optimization, chapter 3.
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