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1 Newton method

1.1 Local convergence

To analyze local convergence, we start with Newton method for equation solving.
Let g : Rn → Rn. Given xi we de�ne

xi+1 = xi − g′(xi)−1g(xi)

Assume that x∞ is a solution, that is g(x∞) = 0.
Let Br = {x : ‖x− x∞‖ < r} be ball of radius r around x∞.

Lemma 1.1 Assume that g′ is Lipschitz continuous with constant L on Br and
‖g′−1(x)‖ ≤ m. If xi ∈ Br, then

‖xi+1 − x∞‖ ≤
Lm

2
‖xi − x∞‖2

If additionally rLm ≤ 2, then xi+1 ∈ Br. Also, when rLm ≤ 2, it is enough to

assume that ‖g′−1(x)‖ ≤ m for x ∈ Br.

Proof: Put δi = xi − x∞. We compute

0 = g(x∞) = g(xi)−
∫ 1

0

g′(xi − tδi)δidt

= g(xi)− g′(xi)δi −
∫ 1

0

(g′(xi − tδi)− g′(xi))δidt

so

‖g(xi)− g′(xi)δi‖ ≤ ‖δi‖
∫ 1

0

‖g′(xi − tδi)− g′(xi)‖dt

≤ ‖δi‖
∫ 1

0

L‖δi‖tdt =
L

2
‖δi‖2

Now

xi+1 − x∞ = xi − g′(xi)−1g(xi)− x∞ = g′(xi)
−1(g′(xi)(xi − x∞)− g(xi))
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= g′(xi)
−1(g′(xi)δi − g(xi))

so
‖xi+1 − x∞‖ ≤ ‖g′(xi)−1‖‖g′(xi)δi − g(xi)‖

≤ mL

2
‖δi‖2 =

mL

2
‖xi − x∞‖2

which is the required estimate.
Since xi ∈ Br we have ‖xi−x∞‖ < r and if additional assumption is satis�ed

we have

1 ≥ rmL

2
>
mL‖xi − x∞‖

2
so

‖xi+1 − x∞‖ ≤
mL‖xi − x∞‖

2
‖xi − x∞‖ < ‖xi − x∞‖

and ‖xi+1 − x∞‖ < ‖xi − x∞‖ < r, hence xi+1 ∈ Br.
Finally, we used estimate on ‖g′−1‖ only for x in line segment joining xi and

x∞. When rmL < 2 this line segment is inside Br. �

Assuming that g is regular enough and g′(x∞) is invertible from the lemma
we see that once Newton method is su�ciently close to solution it will con-
verge, moreover, each step approximately doubles accuracy (number of signi�-
cant bits). So, once we are close to solution 5 or 6 steps usually is enough to
get full machine accuracy.

Under reasonable global assumptions it is possible to �nd out if we are close
enough to solution:

Lemma 1.2 Assume that g′ is Lipschitz continuous with constant L and put

m = ‖g′(x0)−1‖. If

‖g(x0)‖ ≤ 3

16Lm2
,

then Newton method starting at x0 converges to x∞ and

‖x0 − x∞‖ ≤
1

4Lm
.

The result remains valid if we only assume that g′ is Lipschitz continuous with

constant L on ball centered at x0 and radius 1
2Lm .

Idea of the proof: let A = g′(x0)−1 and φ(x) = Ag(x). φ′(x) = Ag′(x), so
φ′(x0) = I (identity matrix) and φ′ is Lipschitz continuous with constant Lm.
As long as ‖x− x0‖ ≤ 1

2Lm we have ‖φ′(x)− I‖ ≤ 1
2 , so φ

′(x) is invertible and
‖φ′(x)‖ ≤ 2. If ‖x0 − x∞‖ ≤ 1

4Lm , then by previous lemma Newton method
applied to φ is convergent and

‖x0 − x∞‖ ≤ ‖x0 − x1‖+ ‖x1 − x∞‖ ≤ ‖φ(x0)‖+ Lm‖x0 − x∞‖2

≤ m‖g(x0)‖+
1

4
‖x0 − x∞‖
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so
3

4
‖x0 − x∞‖ ≤ m‖g(x0)‖

and

‖x0 − x∞‖ ≤
4

3
m‖g(x0)‖ ≤ 1

4Lm

To drop assumption ‖x0− x∞‖ ≤ 1
4Lm consider equation φ(x)− tφ(x0) = 0.

For t = 1 this has solution in K = {x : ‖x − x0‖ < 1
4Lm}, namely x0. By

inverse function theorem set of t such that we have solution in K is open. By
compactness set of t such that we have solution in K̄ (closure of K) is closed.
By previous estimate, for t > 0 solution must be in K, so set of t such that we
have solution is K is nonempty open and closed subset of (0, 1], so since interval
is connected it is whole (0, 1]. By compactness for t = 0 we get solution such
that ‖x− x0‖ ≤ 1

4Lm .
We could restate the results for optimization, but we skip details, just plug

in ∇f in place of g. Just note that now we assume Lipschitz continuity of second
derivative.

1.2 Global convergence

Local convergence means that close to solution αi = 1 is good choice of step
size. In fact, assuming regularity there is little motivation to use steps bigger
than 1, but to get global convergence we sometimes need step smaller than 1.
More precisely, when su�cient decay condition is violated we decrease step size.

In fact, local convergence implies that as long as we get decay we also get
global convergence of gradient to zero.

However, there are two di�culties. First, in general (when ∇2f is not pos-
itive de�nite) Newton direction may fail to be decay direction. Second, local
convergence assumes that ∇2f is invertible at stationary points. We can avoid
both di�culties adding to ∇2f multiple of identity to make it positive de�nite.
Unfortunately, it is hard to give some warranty for such method. Instead, we
will assume strong convexity.

Assume that mI ≤ ∇2f(x) ≤ MI and ‖∇2f(x)−∇2f(y)‖ ≤ L. By strong
convexity there is optimal point. Since ∇2f(x) is positive de�nite Newton di-
rection is descent direction and we have global convergence.

For local convergence we have the following results:

Lemma 1.3 If ‖∇f(xi)‖ < 2m2

L , then pure Newton method starting at xi is

convergent and

L

2m2
‖∇f(xi+1)‖ ≤

(
L

2m2
‖∇f(xi)‖

)2

We write hi = −(∇2f(xi))
−1∇f(xi) so ∇2f(xi)hi +∇f(xi) = 0 and

∇f(xi+1) = ∇f(xi + hi)−∇f(xi)−∇2f(xi)hi

=

∫ 1

0

(∇2f(xi + thi)−∇2f(xi))hidt
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so

‖∇f(xi+1)‖ ≤
∫ 1

0

L‖thi‖‖hi‖dt =
L‖hi‖2

2

Since ‖∇2f(xi)
−1‖ ≤ 1

m we have ‖hi‖ ≤ 1
m‖∇f(xi)‖ so

‖∇f(xi+1)‖ ≤ L‖∇f(xi)‖2

2m2

which gives bound on ‖∇f(xi+1)‖. Under assumption this decreases which
proves convergence.

Recall Armijo's rule:

f(xi + αhi)− f(xi) ≤ ρα〈∇f(xi), hi〉.

Lemma 1.4 If ‖∇f(xi)‖ ≤ 3(1−2ρ)m2

L , then α = 1 is acceptable by Armijo's

rule.

Let γ = ρm
ηM2

Lemma 1.5 Assume ρ ≤ 1
2 . If step size α in Newton method is selected starting

from α = 1 and dividing α by η as long as Armijo's condition is violated, then

f(xi+1)− f(xi) ≤ −γ‖∇f(xi)‖2

Proof: Put λ = −〈∇f(xi), hi〉 = 〈∇2f(x)hi, hi〉. By strong convexity
〈hi, hi〉 ≤ 1

mλ. Using ∇
2f(x) ≤MI we have

f(xi + αhi) ≤ f(xi) + α〈∇f(xi), hi〉+
M

2
α2‖hi‖2

≤ f(xi)− αλ+
M

2m
α2λ.

Now we see that α = m
M satis�es Armijo's rule

f(xi + αhi) ≤ f(xi)− αλ+
1

2
αλ

= f(xi)−
1

2
αλ

since ρ ≤ 1
2 . Therefore we choose at least α = m

ηM leading to decay

f(xi+1)− f(xi) ≤ −ραλ

≤ − ρm
ηM

λ

Since λ ≤ 1
M ‖∇f(xi)‖2 this gives

f(xi+1)− f(xi) ≤ −
ρm

ηM2
‖∇f(xi)‖2 = −γ‖∇f(xi)‖2.
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The lemmas together imply global convergence of Newton method with ρ <
1/2: as long as ‖∇f(xi)‖ is big (so that local convergence does not apply) we

get steady decay of value of f , in fact, putting t = min(3(1 − 2ρ), 1)m
2

L in at
most

f(x0)− f(x∞)

γt2

steps ‖∇f(xi)‖ ≥ t. But once ‖∇f(xi)‖ < t local convergence holds and we get
any �xed accuracy in a �xed number of steps.

1.3 Remarks

Let us state some features, assuming classical algorithms

• need O(n2) operations and memory to compute and store ∇2f

• need O(n3) operations to compute (∇2f(x))−1∇f(x)

• convergence independent of choice of variables

• very fast local convergence

Compare gradient descent

• O(n) operations and storage per step

• very sensitive to bad conditioning

This analysis is not entirely satisfactory. First, far from optimum we only
get decay of objective by constant amount. Gradient descent divides objective
by a constant which theoretically may by much better. Second, we still have
m
M and our estimate predicts very slow convergence when this is small. To put
this di�erently, Newton method is invariant under a�ne change of coordinates,
but our analysis depends on coordinates. When coordinates are badly adapted
to the problem, then we will get very pessimistic conclusions.

1.4 Self-concordant functions

We can get better estimates for special classes of functions. We say that convex
f : R→ R is self-concordant when

|f ′′′(x)| ≤ 2f ′′(x)3/2

for all x in domain of f . We say that multivariate f is self-concordant when
restriction of f to any line is self-concordant.

Note: condition above is invariant under translations and dilations which
implies that for functions of single variable self-concordance is a�ne invariant.
But then by de�nition self-concordance is a�ne invariant also for multivariate
functions

Examples:

5



• linear function

• positive de�nite quadratic function

• logarithm

exp(x) on R is not self-concordant.
Let us do calculations for f(x) = − log(x). We have

f ′(x) = − 1

x
,

f ′′(x) =
1

x2
,

f ′′′(x) = −2
1

x3

so

|f ′′′(x)| = 2
1

x3
= 2(

1

x2
)3/2 = 2f ′′(x)3/2

so indeed − log(x) is self-concordant.
Note that we have factor 2 on the right hand side is the de�nition of self-

concordant function because we want − log(x) to be self-concordant. Namely,
− log(x) fails simpler condition

|f ′′′(x)| ≤ f ′′(x)3/2

It is easy to check that −4 log(x) satis�es condition above and more generally,
if f(x) is self-concordant, then 4f(x) satis�es condition above so in principle we
could use condition above and multiply all functions by 4. But having 2 in the
de�nition is more natural and leads to simpler theory.

Important property: when fi are self-concordant and ci ≥ 1 then∑
cifi

is self-concordant. Namely, it is obvious that cifi are self-concordant. We
calculate

|(f1 + f2)′′′(x)| ≤ |f ′′′1 (x)|+ |f ′′′2 (x)| ≤ 2(f ′′1 (x)3/2 + f ′′2 (x)3/2)

≤ 2(f ′′1 (x) + f ′′2 (x))3/2

where in the last step we used subadditivity of L3/2 norm.
Consequently sum of self-concordant functions is self-concordant.
Remark: In general convex combination of self-concordant functions is not

self-concordant. Namely, let fi(x) = − log(xi) for i = 1, 2. Clearly, by our
computation for − log(x) each fi is self-concordant. But

g(x) =
1

2
(f1(x) + f2(x)) =

− log(x1)− log(x2)

2
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is not self-concordant. To see this we restrict g to line x2 = 1, that is consider
h(t) = g((t, 1)) = − log(t)/2. By our computation for − log(x) we see that h(t)
is not self-concordant so also g is not self-concordant.

From the last property we see that

− log(1− x2) = − log((1− x)(1 + x)) = − log(1− x)− log(1 + x)

is self concordant as sum of self concordant functions. Similarly, minus loga-
rithm of any concave quadratic on real line is self concordant. Consequently
also in multidimensional case minus logarithm of any concave quadratic is self
concordant. In particular this applies to − log(1− ‖x‖2).

More complicated example: − log(det(A)) is self-concordant on set of strictly
positive de�nite matrices. Namely, a line going trough this set can be written
as A + tB where A is strictly positive de�nite and B is symmetric. Positive
de�nite matrix has square root so we can write

A+ tB = A1/2(I + tA−1/2BA−1/2)A1/2 = A1/2(I + tC)A1/2

where C = A−1/2BA−1/2 is symmetric. C has real eigenvalues λ1, . . . , λm and
we have

det(I + tC) =

m∏
i=1

(1 + tλi)

so

− log(det(A+ tB)) = − log(det(A))−
m∑
i=1

log(1 + tλi).

Since each of log(1 + tλi) is self-concordant as a function of t the whole sum
is self-concordant, so − log(det(A + tB)) is self-concordant as function of t, so
− log(det(A)) is self-concordant as function of A.

Alternative multivariate de�nition: multivariate f is self-concordant if and
only if for each x and h we have

|f ′′′(x)(h, h, h)| ≤ 2(f ′′(x)(h, h))3/2

This is clear by looking at f on lines of form x+ th.
We have

|f ′′′(x)(h1, h2, h3)| ≤ 2 (f ′′(x)(h1, h1)f ′′(x)(h2, h2)f ′′(x)(h3, h3))
1/3

Remark: Existence of derivatives leads to somewhat tricky theoretical problems.
In practice we work with rather regular functions, so we assume existence of
third derivative and then prove bounds.

1.5 Estimate for symmetric functions

The last inequality follows from general property: when A is a real k-linear
symmetric form then

sup
‖xi‖≤1

|A(x1, x2, . . . , xk)| ≤ sup
‖x‖≤1

|A(x, x, . . . , x)|
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This in turn follows from properties of bilinear forms: if ‖h1‖ = ‖h2‖ = 1 and

|A(h1, h2)| = sup
‖x1‖≤1,‖x2‖≤1

|A(x1, x2)|

then
|A(h1, h2)| = |A(h1, h1)|

Note that it is enough to prove the last claim for two dimensional space (sub-
space spanned by h1, h2).

Symmetric form can then be written as

A(h1, h2) = 〈Bh1, h2〉

where B is real symmetric matrix. B has two real eigenvalues λ1, λ2. When λ1 =
λ2 = λ, then |A(h1, h2)| = |λ||〈h1, h2〉| and the claim follows from properties
of scalar product. When λ1 6= λ2, then h1 and h2 maximizing A(h1, h2) must
be multiple of a single eigenvector and again claim follows. Having claim for
bilinear forms by induction we prove that

sup
‖xi‖≤1

|A(x1, x2, . . . , xk)|

is attained when all xi are equal, which gives claim for multilinear forms.
Note: the estimate above is speci�c to real scalars and euclidean norm ‖ · ‖.

Similar results hold for arbitrary norm and complex scalars, but at the cost of
adding on right hand side a constant bigger than 1.

1.6 Back to self-concordant functions

Recall that we argued that scalar product 〈h1, h2〉x = 〈∇2f(x)h1, h2〉 dependent
on x is probably better adapted to f , than usual scalar product. For self-
concordant functions we can show this in precise way. To avoid trivial di�culties
we will assume that values of self-concordant function f go to in�nity when
arguments go to boundary of the domain. This ensures that self-concordant
function is de�ned on maximal possible domain. Let Wx = {y : ‖y − x‖x < 1}.

1.6.1 Main estimate

Lemma 1.6 Let f be as above. f is de�ned on Wx and for ‖h‖x < 1 we have

f(x) + 〈∇f(x), h〉+ φ(−‖h‖x) ≤ f(x+ h) ≤ f(x) + 〈∇f(x), h〉+ φ(‖h‖x)

where φ(s) = −log(1− s)− s =
∑∞
i=2

si

i . Moreover,

(1 + ‖h‖x)−2∇2f(x) ≤ ∇2f(x+ h) ≤ (1− ‖h‖x)−2∇2f(x).

Lower bounds remain valid as long as x+ h is in domain of f .
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Proof: Let u = h
‖h‖x . Put

ψ(s) = inf{t : f ′′(x+ su) ≤ tf ′′(x)}

Note: In single variable we could use f ′′(x + su)/f ′′(x), but above f ′′ is a
quadratic form, so we need more complicated condition above.

For one variable real function g put

(δ+g)(s) = lim sup
r→0+

g(s+ r)− g(s)

r

Similarly de�ne δ− with lim sup replaced by lim inf. By self-concordance of
f we have

δ+ψ(s) ≤ 2ψ(s)3/2.

Namely, let A(s) = f ′′(x+ su). By self-concordance of f we have

|A′(s)(v, v)| = |f ′′′(x+ su)(v, v, u)|

≤ 2f ′′(x+ su)(v, v)(f ′′(x+ su)(u, u))1/2

By de�nition of ψ we have

f ′′(x+ su)(v, v) ≤ ψ(s)f ′′(x)(v, v)

so
|A′(s)(v, v)| ≤ 2ψ(s)3/2f ′′(x)(v, v)(f ′′(x)(u, u))1/2

But
f ′′(x)(u, u)1/2 = ‖u‖x = 1

so
|A′(s)(v, v)| ≤ 2ψ(s)3/2f ′′(x)(v, v) = 2ψ(s)3/2‖v‖2x.

Now A(s+ t) = A(s) + tA′(s) + o(t) so for t > 0 we have

A(s+ t)(v, v) ≤ A(s)(v, v) + tA′(s)(v, v) + o(t)‖v‖2x

≤ ψ(s)‖v‖2x + 2tψ(s)3/2‖v‖2x + o(t)‖v‖2x
Since ‖v‖2x = f ′′(x)(v, v) this means

A(s+ t)(v, v) ≤ (ψ(s) + 2tψ(s)3/2 + o(t))f ′′(x)(v, v)

that is
A(s+ t) ≤ (ψ(s) + 2tψ(s)3/2 + o(t))f ′′(x).

Consequently
ψ(s+ t) ≤ (ψ(s) + 2tψ(s)3/2 + o(t))

which gives inequality

δ+ψ(s) = lim sup
t→0+

ψ(s+ t)− ψ(s)

t
≤ 2ψ(s)3/2.
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Similarly we get inequality for δ−ψ(s) so

−2ψ(s)3/2 ≤ δ−ψ(s) ≤ δ+ψ(s) ≤ 2ψ(s)3/2

and

δ−ψ(s)−1/2 ≥ − δ+ψ(s)

2ψ(s)3/2
≥ −1.

Since ψ(0) = 1 this implies

ψ(s)−1/2 ≥ 1− s.

Hence
ψ(s) ≤ (1− s)−2

so
f ′′(x+ h) = f ′′(x+ ‖h‖xu) ≤ (1− ‖h‖x)−2f ′′(x)

which gives upper estimate on f ′′(x+ h), when x+ h is in domain of f .
In similar way we prove lower bound on f ′′(x+ h). Integrating twice upper

and lower bounds for f ′′(x + su) we get bounds for f . Since we assume that
f goes to in�nity at boundary of the domain upper bound implies that for
‖h‖x < 1 we have x + h in the domain. This ends the proof when ‖h‖x > 0.
When ‖h‖x = 0 we choose hn so that ‖hn‖x > 0 and h = limhn and get estimate
as a limit.

Remark: φ above is self-concordant so bounds are sharp.

1.6.2 Self-concordant functions, nondegeneracy

In general it may happen that for some nonzero h we have ‖h‖x = 0. Under
assumption of our main estimate it follows that for all y in the domain of f we
have ‖h‖y = 0. In other words, space F = {h : ‖h‖x = 0} is independent of
x. Moreover, f is sum of linear function and function that is invariant under
translations by vectors from F .

We say that f is nondegenerate if the space F = {0}. Under assumption of
main estimate this is always the case when domain of f does not contain any
line. In the sequel we assume that f is nondegenerate.

1.6.3 Newton method, self-concordant functions

Our main estimate means that nondegenerate f is well conditioned on com-
pact subsets of Wx. This implies strong results about convergence of Newton
method for self-concordant functions. In particular this implies uniform speed
of convergence of Newton method (bad conditioning is not a problem).
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