
Lecture 7

W. Hebisch

November 30, 2021

1 Self-concordant functions

Recall from last lecture: we say that convex f : I → R (where I is an interval)
is self-concordant when

|f ′′′(x)| ≤ 2f ′′(x)3/2

for all x in domain of f . We say that convex multivariate f is self-concordant
when restriction of f to any line is self-concordant.

In Newton method we use scalar product 〈h1, h2〉x = 〈∇2f(x)h1, h2〉 depen-
dent on x which is better adapted to f , than usual scalar product. We will
assume that values of self-concordant function f go to in�nity when arguments
go to boundary of the domain. This ensures that self-concordant function is
de�ned on maximal possible domain. Let Wx = {y : ‖y − x‖x < 1}.

1.1 Main estimate

Lemma 1.1 Let f be as above. f is de�ned on Wx and for ‖h‖x < 1 we have

f(x) + 〈∇f(x), h〉+ φ(−‖h‖x) ≤ f(x+ h) ≤ f(x) + 〈∇f(x), h〉+ φ(‖h‖x)

where φ(s) = −log(1− s)− s =
∑∞

i=2
si

i . Moreover,

(1 + ‖h‖x)−2∇2f(x) ≤ ∇2f(x+ h) ≤ (1− ‖h‖x)−2∇2f(x).

Lower bounds remain valid as long as x+ h is in domain of f .

1.2 Newton method for self-concordant functions

Our main estimate means that nondegenerate f is well conditioned on compact
subsets ofWx. In particular this implies uniform speed of convergence of Newton
method. More precisely, recall that gradient of f at x with respect to norm ‖·‖x
is given by

(∇2f(x))−1∇f(x)

Put

λ(f, x) = ‖(∇2f(x))−1∇f(x)‖x = 〈∇2f(x))−1∇f(x),∇f(x)〉1/2.

1

When λ(f, x) is small (say smaller than 1
2) we have fast (quadratic) convergence.

When λ(f, x) is bounded from below, then using step staying in Wx we can still
get some �xed decay of objective function.

To stay in domain of f it is natural to use damped Newton method, that is
put

xi+1 = xi −
1

1 + λ(f, xi)
(∇2f(xi))

−1∇f(xi)

Lemma 1.2 We have

f(xi)− f(xi+1) ≥ λ(f, xi)− log(1 + λ(f, xi))

Note: For λ(f, xi) = 1 this predicts decay approximately by 0.3068, for
λ(f, xi) =

1
2 we get 0.0945.

Example: Let g(x) = −γx − log(1 − x) − x. Comparing derivative of g to
0 we see that g attains minimal value at x = γ/(1 + γ). Also g′(0) = −γ,
g′′(0) = 1, λ(g, 0) = γ and damped Newton method started in x0 = 0 will
get minimal value of g in single step and decay of objective function is exactly
equal to estimate from the lemma. In particular, single step estimate can not
be improved and any other choice of step depending only on λ will lead to worse
estimate.

Proof of the lemma: Lemma essentially follows from example and main esti-
mate. Namely, let w = (∇2f(xi))

−1∇f(xi), u = w/‖w‖xi
. Put γ = 〈∇f(xi), u〉

and g(t) = −γt− log(1− t)− t.
We have

λ(f, xi) = ‖w‖xi = 〈∇f(xi), (∇2f(xi))
−1∇f(xi)〉1/2 = 〈∇f(xi), w〉1/2

so

γ = 〈∇f(xi), u〉 =
〈∇f(xi), w〉
‖w‖xi

=
λ(f, xi)

2

λ(f, xi)
= λ(f, xi).

Hence, λ(g, 0) = γ = ‖w‖xi
= λ(f, xi). By main estimate

f(xi + tu) ≤ f(xi) + g(t).

However, in damped Newton method xi+1 = xi + tu with

t =
‖w‖xi

1 + λ(f, xi)
=

γ

1 + γ

which is the same t as value produced by damped Newton method applied to g.
For local convergence we have:

Lemma 1.3 When xi+1 is given by damped Newton method

λ(f, xi+1) ≤ 2λ(f, xi)
2.

When xi+1 is given by standard Newton method

λ(f, xi+1) ≤
(

λ(f, xi)

1 + λ(f, xi)

)2

2

In particular, damped Newton method has λ(f, xi+1) < λ(f, xi) when λ(f, xi) <
1
2 , while standard Newton when λ(f, xi) <

3−
√
5

2 ≈ 0.3819.
The result are quite satisfactory: when λ(f, xi) is large we get steady decay

of objective function, once λ(f, xi) <
1
2 local convergence takes over. But there

is a little troubling aspect: decrease of objective function is rather small when
say 1

2 < λ(f, xi) < 2. We will see later that this region is particularly interesting
for applications.

We can not get better decay of f , but naively we could hope that small
number of steps will transition from large λ(f, xi) to quadratic convergence.
Below we show by example that this is not the case: we can get many steps
when λ(f, xi) is quite close to 1.

Example: Let f(x) = − log(x) + εx2. It is self-concordant and attains mini-
mum at x∞ = 1√

2ε
. When x0 = 1 we have f ′(x0) = −1 + 2ε, f ′′(x0) = 1 + 2ε.

Easy calculation shows that pure Newton method makes step slightly smaller
than 1. More complicated calculation shows that damped Newton method
makes step slightly smaller than 1

2 . After single step we may rescale our function
so we get problem like original, only with changed ε. So we may get several steps
like above. In case of pure Newton method improvement of objective function is
approximately log(2) ≈ 0.693. In case of damped Newton method improvement
is approximately log(32) ≈ 0.405. So theoretically (with very small ε) we may
have very large number of steps with only moderate improvement in each step.
Practically, we have here numbers of widely varying magnitude and numerical
accuracy will limit number of steps.

This was example in dimension one, but we can add arbitrarily many irrel-
evant variables. If we add quadratic term in extra variables with minimum at
0, we get true multidimensional problem, which however have the same conver-
gence behaviour as our problem in dimension one.

Note that from point of view of classical convergence theory f is very badly
conditioned and our result based on self-concordance is much better.

1.3 What next

Self-concordant functions are rather special, but we will see that they appear
as barrier functions in interior point methods for constrained problems. In
particular we will use the results for interior point method of solving linear
programming problems. Now, interior point methods also work quite well for
several nonlinear problems. However, before constrained optimization we shall
study some di�erent topics, so there will be a little discontinuity here.

1.4 Further reading 1

Stephen Boyd, Lieven Vandenberghe, Convex Optimization, chapter 9.
A. Nemirovski, INTERIOR POINT POLYNOMIAL TIME METHODS IN

CONVEX PROGRAMMING, lecture notes, chapter 2.
Yurii Nesterov, Introductory lectures on convex optimization, Springer 2004,

chapter 4.1.

3

2 Conjugate direction methods

We already know about gradient descent and Newton method.
Gradient descent may require very large number of iterations, but per iter-

ation cost is small.
Newton method typically converges in smaller number of iterations, but

in each iteration we need to solve linear system of equations involving second
derivative.

Conjugate direction methods have per iteration cost slightly larger than
gradient descent, but should converge faster. In this sense are intermediate
between gradient descent and Newton method.

Remark: In practice we care about conjugate gradient method, but theory
is nicer when we make things slightly more general that is consider conjugate
direction methods.

Conjugate direction methods originally were introduced as storage e�cient
method of exact solving of some linear systems. More precisely we know that
for positive A minimization of

1

2
〈Ax, x〉 − 〈b, x〉

is equivalent to solving
Ax = b.

Original conjugate direction methods minimized quadratic form, in at most n
steps reaching exact solution where n is dimension of the problem.

Later it was observed that stopping method earlier one can get approximate
solution and frequently one can get good solution in relatively small number of
steps.

Conjugate direction methods were generalized to nonlinear problem. In such
case method in no longer convergent in �nite number of steps.

Let A be a positive de�nite matrix.
De�nition. We say that a sequence of vectors di is A-orthogonal (conjugate)

if and only if for i 6= j
〈Adi, dj〉 = 0

Recall standard linear algebra:

Lemma 2.1 If vectors di are A-conjugate, then they are linearly independent.

Remark: To better see that this is standard result we can introduce new
scalar product by the formula

〈x, y〉A = 〈Ax, y〉.

Then A-orthogonal simply means orthogonal with respect to this new scalar
product.

A-conjugate vectors help in optimizing f(x) = 1
2 〈Ax, x〉 − 〈b, x〉.

Algorithm:

4

1. Take arbitrary x0.

2. For i starting at 1 repeat: xi = xi−1 + αidi where αi minimizes f on the
line xi−1 + αidi.

First we deal with one dimensional optimization. Put

φ(s) = f(xi−1 + sdi).

We have
φ′(s) = 〈A(xi−1 + sdi)− b, di〉.

Writing ri = Axi−1 − b we have

φ′(s) = 〈ri, di〉+ s〈Adi, di〉

so solving for φ′(αi) = 0 we get

αi =
−〈ri, di〉
〈Adi, di〉

Lemma 2.2 Let x∗ = argminx∈H f(x) where H = x0 + lin{d1, . . . , di}. Then

x∗ = xi.

Proof: For any x ∈ H we have x− x0 =
∑i

j=1 βjdj . By A-orthogonality

〈A(x− x0), dj〉 = βj〈Adj , dj〉

so

〈A(x− x0), x− x0〉 =
i∑

j=1

β2
j 〈Adj , dj〉

Now

f(x) =
1

2
〈A((x− x0) + x0), (x− x0) + x0〉 − 〈b, (x− x0) + x0〉

=
1

2
〈A(x− x0), x− x0〉+ 〈A(x− x0), x0〉 − 〈b, x− x0〉+

1

2
〈Ax0, x0〉 − 〈b, x0〉

=
1

2

 i∑
j=1

β2
j 〈Adj , dj〉

+

i∑
j=1

βj〈Adj , x0〉 −
i∑

j=1

βj〈b, dj〉

+
1

2
〈Ax0, x0〉 − 〈b, x0〉

= c+

i∑
j=1

φj(βj)

5

where c = 1
2 〈Ax0, x0〉 − 〈b, x0〉 and

φj(βj) =
1

2
β2
j 〈Adj , dj〉+ βj(〈Adj , x0〉 − 〈b, dj〉)

so f(x) is sum of functions of separate variables. Clearly for such functions
optimizing in turn with respect to each variable gives optimal point. But this
is exactly what our algorithm is doing.

Lemma 2.3 〈ri+1, dj〉 = 0 for j = 1, . . . , i.

Proof: This follows from optimality of xi on H: derivative of f at xi in
direction of dj is 0. But

∂sf(xi + sdj) = 〈A(xi + sdj), dj〉 − 〈b, dj〉

= 〈Axi − b, dj〉+ s〈Adj , dj〉 = 〈ri+1, dj〉+ s〈Adj , dj〉.

and when s = 0 this gives the claim.

2.1 Gram-Schmidt orthogonalization

Now it remains to �nd sequence of A-orthogonal vectors. There are many such
sequences. General procedure is called Gram-Schmidt orthogonalization and
works as follows:

• start from arbitrary basis {vi}

• take d1 = v1

• iteratively, given d1, . . . , di compute ci+1,j = 〈vi+1, dj〉/〈dj , dj〉 and put

di+1 = vi+1 −
∑i

j=1 cjdj

This is easy to program, but requires rather large number of operations and
large memory.

Remark: In our case we would need to use 〈x, y〉A which signi�cantly in-
creases cost of computation.

2.2 Conjugate gradient method

Fortunately one A-orthogonal sequence of vectors is easy to �nd. Corresponding
algorithm is called conjugate gradient method. We put d1 = −r1 and

di+1 = −ri+1 + βidi

where βi is such that di+1 and di are A-orthogonal, that is

βi =
〈Ari+1, di〉
〈Adi, di〉

.

6

Lemma 2.4 Assume that r1, . . . , ri are nonzero. Then

lin{d1, . . . , di} = lin{r1, Ar1, . . . , Ai−1r1}

and dj, j = 1, . . . , i are A-orthogonal.

Proof: By induction. Denote space on the right hand side above by Vi and
on the left hand side by Wi. Clearly V1 =W1 and sequence consistiong of single
vector is A-orthogonal. So we may assume that claim is valid for i and need to
prove it for i+1. To prove that dj are A-orthogonal it enough to prove that di+1

is A-orthogonal to Wi. By de�nition of di+1 we know that di+1 is A-orthogonal
to di. So it is enough to show that di+1 is A-orthogonal to Wi−1.

Now
di+1 = −ri+1 + βidi

since di is A-orthogonal to Wi−1 it is enough to show that ri+1 is A-orthogonal
to Wi−1. For v ∈Wi−1 we have

〈Ari+1, v〉 = 〈ri+1, Av〉.

However,
Av ∈ AWi−1 = AVi−1 ⊂ Vi =Wi

where we used inductive assumption. Also, by inductive assumption dj , j =
1, . . . , i are A-orthogonal so by previous lemma ri+1 is orthogonal to Wi. Hence

〈ri+1, Av〉 = 0

which shows A-orthogonality of dj , j = 1, . . . , i, i+ 1.
It remains to show equality Vi+1 = Wi+1. Clearly AVi ⊂ Vi+1. We have

xi − x0 ∈Wi, so by inductive assumption xi − x0 ∈ Vi. Hence

ri+1 = Axi − b = A(xi − x0) +Ax0 − b = A(xi − x0) + r1 ∈ Vi+1

and di+1 = −ri+1 + βidi ∈ Vi+1, so Wi+1 ⊂ Vi+1. But we proved that ri+1 is
orthogonal to Wi, so since ri+1 is nonzero we have ri+1 /∈Wi = Vi, so ri+1 and
Vi span Vi+1, so Vi+1 =Wi+1.

A priori single step of conjugate gradient method needs two application of
matrix A to vector: one to compute ri+1 = Axi− b and second to compute Adi.

We can simplify computation of conjugate gradient method as follows: −〈ri, di〉 =
〈ri, ri〉 − βi−1〈ri, di−1〉 = 〈ri, ri〉 so

αi =
〈ri, ri〉
〈Adi, di〉

ri+1 = ri + αiAdi

βi =
〈ri+1, Adi〉
〈Adi, di〉

7

di+1 = −ri+1 + βidi

which needs one multiplication of vector by matrix, 3 scalar products and 2
vector linear combinations.

Recall that we say that a method is �rst order method if

xi ∈ x0 + lin{∇f(x0), . . . ,∇f(xi−1)}.

Lemma 2.5 Assume f is quadratic as above, Vi = lin{r1, Ar1, . . . , Ai−1r1}.
For any �rst order method xi ∈ x0 + Vi.

Proof: We have

∇f(x) = Ax− b = Ax0 − b+A(x− x0) = r1 +A(x− x0).

Now the claim follows by induction, if xi ∈ x0 + Vi, then

∇f(xi) ∈ r1 +AVi ⊂ Vi+1

so
lin{∇f(x0), . . . ,∇f(xi−1)} ⊂ Vi

which gives the claim.
Note: V0 = {0} so x0 ∈ x0 + V0 which gives starting point for induction.
Together with previous lemma this means that for quadratic functions con-

jugate gradient method is the best �rst order method.
Remark: Best here means that we get smallest value of goal function. There

are di�erent criteria, for example smallness of ‖∇f(x)‖ or distance between x
and optimal point x∞.

Now we will explore some consequences. Let

P (t) =

i−1∑
j=0

γjt
j

be a polynomial of degree i− 1. Let

yi = x0 + P (A)r1

Similar to previous argument yi is obtained by in step i of a �rst order method,
so error is at least as big as error of conjugate gradient method, that is

〈A(xi − x∞), xi − x∞〉 ≤ 〈A(yi − x∞), yi − x∞〉.

But r1 = Ax0 − b and b = Ax∞ so we can write

yi − x∞ = x0 + P (A)(Ax0 −Ax∞)− x∞ = (I +AP (A))(x0 − x∞)

so

〈A(xi − x∞), xi − x∞〉 ≤ 〈A(I +AP (A))(x0 − x∞), (I +AP (A))(x0 − x∞)〉.

From this one can derive more speci�c estimate, we skip detail of proof, and
just give the result.

8

Lemma 2.6 Assume that A has n − m eigenvalues in interval [a, b] and re-

maining m eigenvalues are bigger than b. Then

E(xm+1) ≤
(
b− a
b+ a

)2

E(x0)

where

E(x) = 〈A(x− x∞), x− x∞〉

is error at x.

Note that what matters above are distinct eigenvalues. In particular, when
A has only m+ 1 eigenvalues, than we get optimum after m+ 1 steps.

There are cases when A has small number of distinct eigenvalues, but in
general we expect distinct eigenvalues. In fact, in problem 5.2 you should com-
pute eigenvalues of matrix A corresponding to simple di�erential problem. This
matrix has distinct eigenvalues and "spread out". While problem 5.2 is simpli-
�ed so that eigenvalues of A are easily computable similar behaviour appears in
other di�erential problems. Such problems appear in many engineering tasks.

2.3 Preconditioning conjugate gradient

To improve conditioning we can use transformation

x = C−1y

In terms of y convergence depends on eigenvalues of (C−1)TAC−1. When W =
(CTC)−1 is approximate inverse of A, then new problem is well conditioned
(note that WA and (C−1)TAC−1 have the same eigenvalues).

It is important that there is no need to explicitly compute transformed prob-
lem. Namely, denoting by xi = C−1yi and using ′ to denote other transformed
quantities in y variables we have

A′ = (C−1)TAC−1,

b′ = (C−1)T b

r′k = A′yk−1 − b′ = A′Cxk−1 − b′ = (C−1)T (Axk−1 − b).

Writing zk = Axk−1 − b and transforming r′k to x variables we compute

rk = C−1r′k = (CTC)−1(Axk−1 − b) =W (Axk−1 − b) =Wzk.

Next,
〈r′k, r′k〉 = 〈W (Axk−1 − b), (Axk−1 − b)〉 = 〈Wzk, zk〉

so we can compute this in x coordinates. Similarly d1 = C−1d′1 = −C−1r′1 =
−r1 and

di+1 = C−1d′i+1 = −C−1r′i + β′iC
−1d′i = −rk + β′idi,

9

〈A′d′i, d′i〉 = 〈AC−1d′i, C−1d′i〉 = 〈Adi, di〉,

〈r′i+1, A
′d′i〉 = 〈ri+1, Adi〉

so indeed we can compute scalar products giving α′i and β′i in terms of x
variables. Finally

zi+1 = Axi − b = AC−1yi − b = AC−1(yi−1 + α′id
′
i)− b

= α′iAC
−1d′i +AC−1yi−1 − b = α′iAdi +Axi−1 − b

= zi + α′iAdi

so we get whole iteration.
Note that there is no need to explicitly compute W : all we need is ability to

compute Wzk which we can do by solving equations.

2.4 Nonquadratic conjugate gradient methods

When f is not a quadratic function, then there are several possible ways to
generalize conjugate gradient method. First, note that our rj = ∇f(xj−1). As
before we use xi = xi−1+αidi with d1 = −r1 and di+1 = −ri+1+βidi. To choose
search direction, we need rule for βi. Two popular choices are Fletcher-Rieves
formula

βi =
‖∇f(xi)‖2

‖∇f(xi−1)‖2

and Polak-Ribiere formula

βi =
〈∇f(xi),∇f(xi)−∇f(xi−1)〉

‖∇f(xi−1)‖2
.

Both formulas give the same results for quadratic functions, but in practice
Polak-Ribiere formula seem to give better results for nonquadratic ones. To
determine αi we need to perform line search. Backtracking line search would
give bad results for quadratic functions, so we need better one. Evaluating f at
3 points on line and using quadratic interpolation to �nd approximate minimum
gives exact result for quadratic functions and seem to behave well in general.

For nonquadratic functions search directions are no longer orthogonal and
after large number of steps may be quite suboptimal. Usual way to handle this
is to use restarts, that is from time to time take βi = 0.

Close to optimal point one can show that conjugate gradient method with
restarts after n steps (where n is dimension of the space) behaves similar to
Newton method, more precisely n steps of conjugate gradient method do similar
work as one step of Newton method.

This is easy to see at intuitive level: close to optimal point our function
behaves very similar to quadratic function and we could use conjugate gradient
to compute f ′′(xi)

−1∇f(xi). Using f gives slightly di�erent result, but result-
ing convergence as fast as Newton method (but we need n steps of conjugate
gradient to perform one Newton step).

10

When f ′′ is well conditioned, then more frequent restarts lead to faster
convergence: method behaves like Newton method with approximate inverse of
f ′′.

2.5 Quasi-Newton methods

In the next lecture we will look at di�erent approach to methods intermediate
between gradient descent and Newton method, namely at quasi-Newton meth-
ods. We will also look at Nesterov acceleration and momentum. Here we just
remark that conjugate gradient method may be viewed as variant of momentum.

2.6 Further reading 2

David G. Luenberger, Yinyu Ye, Linear and Nonlinear Programming, chapter
9.

Jorge Nocedal, Stephen J. Wright, Numerical Optimization, chapter 5.

11

