
1 Quasi-Newton methods

Last time we said that conjugate direction methods have cost slightly larger than
gradient descent, but should converge faster. They are in this sense intermediate
between gradient descent and Newton method.

Quasi-Newton methods were invented earlier than nonquadratic conjugate
gradient method. Historically they were the �rst approach to construct method
which tried to converge faster than gradient descent but have lower per iteration
cost than Newton method. They try to get good convergence by approximating
second derivative using di�erences of gradients.

Core idea of quasi-Newton methods is to use descent

xi+1 = xi + αidi

in the search direction di given by

di = −Si∇f(xi).

where Si is a strictly positive de�nite matrix. When Si = I, this gives gradient
descent. When Si = (∇2f(xi))

−1, this gives Newton method. Fixed Si gives
preconditioned gradient descent. When Si = (∇2f(x0))

−1 we get modi�ed
Newton method. In general, when Si approximates (∇2f)−1, then we expect
better convergence.

Another view is that we use S−1i as a new metric. Therefore the �rst name
used for such methods was variable metric methods.

Viewing quasi-Newton methods as gradient descent with new metric we can
get convergence estimate. First, since di are descent direction we see that
quasi-Newton methods are descent methods, so values of goal function are non-
increasing. Second, write Si = QTi Qi and A(x) = QTi ∇2f(x)Qi. Now using
〈S−1i x, y〉 = 〈Q−1i x,Q−1i y〉 as a scalar product we see that A(x) gives Hessian
matrix corresponding to this scalar product. So speed of convergence depends
on conditioning of A(x). In particular, when A(x) is well conditioned we get
convergence to stationary point.

More precisely we have the following:

Lemma 1.1 Assume that mI ≤ A(x) ≤ MI, and xi+1 uses step 2
M+m (or

exact line search), then

f(xi+1)− f(x∞) ≤ C(f(xi)− f(x∞))

where C = 1− m
M .

Note: this is lemma from Lecture 5 applied to metric above. Using inexact
line search we get similar result with slightly larger C.

Note: We can compute m and M from eigenvalues of S−1i ∇2f(x). In par-
ticular m and M depend only on Si and f and are independent of Qi.

How to �nd reasonable Sk? Write pi = xi+1−xi, gi = ∇f(xi), qi = gi+1−gi.
For quadratic f we have

qi = ∇2f(xi)pi.
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So reasonable condition is
Si+1qi = pi.

Equivalently when Bi = S−1i :

qi = Bi+1pi.

Those equations are called quasi-Newton equations (or secant equations).

Lemma 1.2 Let A be positive de�nite matrix and f(x) = 1
2 〈Ax, x〉 − 〈b, x〉

be quadratic function. Quasi-Newton method using exact line search with Si
satisfying quasi-Newton equations satis�es

〈Adi+1, di〉 = 0.

Proof: For quadratic f we have qi = Api. By quasi-Newton equations we
have

Si+1Api = Si+1qi = pi.

Since line search is exact we have 〈∇f(xi+1), di〉 = 0.
We have

pi+1 = xi+2 − xi+1 = αi+1di+1

and di+1 = −Si+1∇f(xi+1) so

〈Api+1, pi〉 = −αi+1〈ASi+1∇f(xi+1), pi〉 = −αi+1〈∇f(xi+1), Si+1Api〉

= −αi+1〈∇f(xi+1), pi〉 = αi+1αi〈∇f(xi+1), di〉 = 0.

In other words
〈Adi+1, di〉 = 0.

�

Quasi-Newton equations specify Si only in single direction, so there is in�nite
number of solutions. Other reasonable condition is that Si+1 should be close
to Si. One meaning of close is to require Ui = Si+1 − Si to be of low rank.
It is possible to �nd symmetric Si+1 such that Ui is of rank 1. However, such
rule may produce Si+1 which is not positive de�nite and may lead to numerical
di�culties. Next level of complexity is rank 2 update: we require update Ui to
be of rank at most 2.

Quasi-Newton equations give

pi = Si+1qi = Uiqi + Siqi

so
Uiqi = pi − Siqi

That again admits in�nite number of solutions.
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Quasi-Newton equations involve Siqi and pi. In "general position" Siqi
and pi are linearly independent and it is natural to request that update acts
only in this plane and maps orthogonal complement to zero. Still admits one
dimensional family of solutions. Simplest possibility is

Uk(x) = aSiqi〈Siqi, x〉+ bpi〈pi, x〉

where a and b are numeric parameters. Then

pi − Siqi = aSiqi〈Siqi, qi〉+ bpi〈pi, qi〉

so a = −1
〈Siqi,qi〉 , b =

1
〈pi,qi〉 and

Si+1x = Six−
〈Siqi, x〉
〈Siqi, qi〉

Siqi +
〈pi, x〉
〈pi, qi〉

pi.

This is called Davidon-Fletcher-Powell update or in short DFP update.
In quasi-Newton equations Si and Bi play symmetric role, that is

qi = Bi+1pi.

so alternatively to DFP update we can request update to Bi build from qi
and Bipi. This leads to formula invented independently by Broyden, Fletcher,
Goldfarb and Shanno or in short BFGS update:

Bi+1x = Bix−
〈Bipi, x〉
〈Bipi, pi〉

Bipi +
〈qi, x〉
〈pi, qi〉

qi.

Clearly both DFP and BFGS updates lead to symmetric matrices. If 〈pi, qi〉 > 0,
then both DFP and BFGS updates lead to positive de�nite matrices. Namely,
when 〈pi, qi〉 > 0 then the third term in both equations is positive de�nite.

One may worry that the second term is clearly negative. However, for DFP
update looking at sum of �rst two terms we get〈

Six−
(Siqi, x)

(Siqi, qi)
Siqi, x

〉
= 〈Six, x〉 −

〈Siqi, x〉2

〈Siqi, qi〉

=
1

〈Siqi, qi〉
(
〈Siqi, qi〉〈Six, x〉 − 〈Siqi, x〉2

)
.

If Si is positive de�nite, then term in parentheses is nonnegative due to Schwartz
inequality for the scalar product 〈Six, x〉. Moreover, when Si is strictly positive
de�nite, then we get zero only for multiples of qi. But for multiples of qi the
last term is positive, hence Si+1 is strictly positive de�nite. So, starting from
strictly positive de�nite S0, say S0 = I all subsequent Si are strictly positive
de�nite. Similar argument works for Bi.

Above we needed 〈pi, qi〉 > 0. One can show that when xi is not a stationary
point and Si is strictly positive de�nite, then exact line search gives 〈pi, qi〉 > 0.
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In general, to have strictly positive de�nite Si+1 we need to check if 〈pi, qi〉 > 0
during line search.

We introduced DFP and BFGS updates in somewhat ad-hoc manner, but
one can show that they minimize special norm. For BFGS we can take any
strictly positive de�nite matrix such that Wpi = qi. then Si+1 minimizes

‖W 1/2(S − Si)W 1/2‖HS

where is positive de�nite S satisfying Sqi = pi, W
1/2 is positive de�nite square

root and

‖A‖HS =

n∑
j=1

n∑
l=1

|aj,l|2

is Hilbert-Schmidt (also called Frobenius) norm.
For DFP we need to write condition in term of Bi.
At �rst glance BFGS update requires solving equation Bidi = ∇f(xi) in

each step or inverting Bi to obtain Si. However, we can formulate update to Bi
directly in terms of Si. This uses Sherman-Morrison-Woodbury formula:

Lemma 1.3 Assume A is invertible n by n matrix and U, V are n by k matrices.
A+ UV T is invertible if and only if I + V TA−1U is invertible. Moreover

(A+ UV T )−1 = A−1 −A−1U(I + V TA−1U)−1V TA−1.

Proof: When I + V TA−1U is invertible by direct calculation we check that
formula for inverse holds. In particular, if I + V TA−1U is invertible, then
A+ UV T is invertible.

Write Ã = I, Ũ = V T , Ṽ = (A−1U)T . Next

I + Ṽ T Ã−1Ũ = I +A−1UV T = A−1(A+ UV T )

so by �rst part, when A+ UV T is invertible, then

Ã+ Ũ Ṽ T = I + V TA−1U

is invertible. �

Writing

V T1 (x) =
〈Bipi, x〉
〈Bipi, pi〉

,

V T2 (x) =
〈qi, x〉
〈pi, qi〉

,

UT1 (x) = −〈Bipi, x〉,

UT2 (x) = 〈qi, x〉
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we can rewrite BFGS formula as

Bi+1 = Bi + U1V
T
1 + U2V

T
2

Then direct but tedious calculation using twice Sherman-Morrison-Woodbury
formula gives

Si+1 = Si −
〈Siqi, x〉
〈Siqi, qi〉

Siqi +
〈pi, x〉
〈pi, qi〉

pi + 〈Siqi, qi〉〈vi, x〉vi

where

vi =
pi

〈pi, qi〉
− Siqi
〈Siqi, qi〉

.

Formula that we obtained di�ers from DFP update only by last term. So it is
reasonable to interpolate between the two formulas obtaining so called Broyden
family:

Si+1 = Si −
〈Siqi, x〉
〈Siqi, qi〉

Siqi +
〈pi, x〉
〈pi, qi〉

pi + φ〈Siqi, qi〉〈vi, x〉vi.

When φ = 0 this is DFP update, when φ = 1 this is BFGS update and other
values give intermediate formulas. When φ ≥ 0 the formula above is sum of
DFP update and positive de�nite term, so lead to positive de�nite Si. When
φ < 0 in principle Si may become singular.

Conjugate gradient method have similar goal as quasi-Newton methods so
it is interesting to compare them.

Lemma 1.4 Broyden methods with S0 = I are �rst order methods, that is
xi+1 ∈ x0 + lin{∇f(x0), . . . ,∇f(xi)}.

Proof: Put Wi = lin{∇f(x0), . . . ,∇f(xi)}. We prove by induction

Six ∈ x+Wi

Namely
Si+1x = Six+ aSiqi + bpi

for some a and b. We have pi = −αiSi∇f(xi) and qi = ∇f(xi+1) − ∇f(xi).
Now by inductive assumption

Six ∈ x+Wi,

pi = αiSi∇f(xi) ∈Wi,

Siqi ∈ ∇f(xi+1)−∇f(xi) +Wi ⊂Wi+1

so
Si+1x = x+Wi.

Since xi+1 − xi is multiple of Sif(xi) claim follows by another induction. �
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Lemma 1.5 Let A be positive de�nite matrix and f(x) = 1
2 〈Ax, x〉 − 〈b, x〉 be

quadratic function. Broyden method using exact line search with S0 = I gives
the same points as conjugate gradient method.

Proof: We inductively prove that

〈Api, pj〉 = 0,

SiApj = pj

for j = 0, . . . , i− 1.
Si+1Api = pi by quasi-Newton equation. Using inductive assumption we get

〈pi, Apj〉 = 0

for j < i. Also

〈Siqi, Apj〉 = 〈qi, SiApj〉 = 〈qi, pj〉 = 〈Api, pj〉 = 0

so by formula for Si+1 we see that

Si+1Apj = SiApj = pj .

Note that pi is a multiple of di so it is enough to show that di are A-orthogonal.
We proved that quasi-Newton equations and exact line search imply

〈Adi+1, di〉 = 0.

For j < i we have

〈Adi+1, dj〉 = −〈ASi+1∇f(xi+1), dj〉 = −〈∇f(xi+1), Si+1Adj〉

= −〈∇f(xi+1), dj〉 = −〈qi, dj〉 − 〈∇f(xi), dj〉

For the second term we have

〈∇f(xi), dj〉 = 〈∇f(xi), SiAdj〉 = 〈ASi∇f(xi), dj〉 = −〈Adi, dj〉 = 0.

For the �rst
〈qi, dj〉 = 〈Api, dj〉 = 0

which ends inductive proof. �

Our results imply that with exact line search quasi-Newton methods are
optimal �rst order methods for quadratic functions. However, this changes
dramatically when inexact line search is in use. One can see on example that
quasi-Newton using inexact line search may behave much worse than steepest
descent. This is when f(x) = 1

2 〈Ax, x〉−〈b, x〉 and all eigenvalues of A are large
(or all are small). Quasi-Newton method brings some eigenvalues close to 1, but
other remain large, so SiA becomes badly conditioned. In other words, simple
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rescaling may signi�cantly worsen behaviour of quasi-Newton methods. There
is simple way to correct this problem: one needs to multiply Si by appropriate
scale factor. One can estimate needed factor and in practice method with scaling
behaves much better.

Since Broyden methods are �rst order methods there is lower bound for for
convergence speed as long as number of iterations is less than n/2 where n is
dimension of the problem. However, when number of iterations is larger than
n, then we can get superlinear convergence. We will present one recent result
in this direction. Recall that studying Newton method we used scalar product

〈v, w〉x = 〈(∇2f(x))v, w〉

and norm
‖v‖x = 〈v, v〉x.

We also used
λ(f, x) = ‖((∇2f(x))−1∇f(x)‖x.

We assume that f is strongly convex with Lipschitz continous gradient, that
is there is m > 0 and M such that

mI ≤ ∇2f ≤M

and
∇2f(y)−∇2f(x) ≤ L‖y − x‖z∇2f(w)

for all x, y, z, w.
Note: the condition above is statis�ed when f is strongly convex and ∇2f

is Lipschitz continous with constant C, in such case we can take L = C/m.
We consider quasi-Newton method with DFS and BGFS update and S0 =

I/M . In each step of the method we take constant α = 1.

Lemma 1.6 Let f and Broyden method be a above. Assume that

Lλ(f, x0) ≤
log(3/2)

4

m

M
.

Then

λ(f, xk) ≤ Ck/2(
11nM

mk
)k/2λ(f, x0)

Where C = 1 for BGFS update and C =M/m for DFS update.

Remark: Clearly, estimate for BGFS update is much better.
Some remarks:

• Under reasonable assumptions (like above) quasi-Newton method exhibits
superlinear local convergence

• Quasi-Newton methods avoid cost of computing and inverting second
derivative, but need storage for Si
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• In practice BFGS update behaves better than DFP update

• Quasi-Newton methods are sensitive to numerical errors

BFGS update for Si can be written in di�erent form

Si+1x = RTi SiRix+
〈pi, x〉
〈pi, qi〉

pi

where

Rix = x− 〈pi, x〉
〈pi, qi〉

qi

This means that we can represent Si+1 by sequence of pj and qj , j = 0, . . . , i.
To save memory in LBFGS method we only store m (say 20) most recent pj
and qj .

1.1 Further reading 1

David G. Luenberger, Yinyu Ye, Linear and Nonlinear Programming, chapter
10.

Jorge Nocedal, Stephen J. Wright, Numerical Optimization, chapter 6 and
section 2 of chapter 7.

2 Momentum

We are going to present another improvement on steepest descent. When prob-
lem is badly conditioned steepest descent may abruptly change direction, leading
to slow convergence. Idea: remember previous search direction and combine it
with gradient. Namely:

xi+1 = xi + αidi,

di = −∇f(xi) + βi(xi − xi−1)
Equivalently, with di�erent βi we can write

di = −∇f(xi) + βidi−1.

This is called heavy ball or momentum method. In general this is not a descent
method.

This is similar to conjugate gradient method. Conjugate gradient method
give optimal choice of βi for quadratic functions (and exact line search), but
does not guarantee good behaviour in general.

For analysis we rewrite momentum into another equivalent form

xi+1 = xi + ηi∇f(xi) + θi(xi − xi−1)

We are interested in di�erence to optimum, so put yi = xi − x∞ where x∞ is
optimal point. In terms of yi we have

yi+1 = yi + ηi∇f(yi + x∞) + θi(yi − yi−1).
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Since ∇f(x∞) = 0 we can write

∇f(yi + x∞) = (

∫ 1

0

∇2f(tyi + x∞)dt)yi = Aiyi

where

Ai =

∫ 1

0

∇2f(tyi + x∞)dt.

So
yi+1 = yi + ηiAiyi + θi(yi − yi−1).

When f is a quadratic function, then Ai does not depend on i, that is Ai = A.
Since we do not have y−1 by necessity we take θ0 = 0. Then we can write

yi = P (A)y0

where P is a polynomial of degree i with constant term 1. Of course P depends
on θi and ηi. One can easily prove this by induction. From this we see that
momentum have trouble when A A has eigenvector v corresponding to very
small positive eigenvalue λ. In such case, with y0 = v we have

yi = P (λ)v

and since λ is very close to 0 value of P (λ) is very close to 1.
This is expected, because Nesterov example shows that convergence of yi

may need number of iterations of order n where n is dimension of the space.
More interesting is situation when f is strictly positive de�nite:

Lemma 2.1 Assume that mI ≤ A ≤ MI. Put κ = M
m , γ =

√
κ−1√
κ+1

. There exit

θi, ηi such that
‖yi‖ ≤ γi‖y0‖.

Such θi, ηi can be chosen independently of A and y0 and depend only on m and
M .

Remark: This is signi�cant improvement over gradient descent since we replace
κ by

√
κ. For example when κ = 100 we get almost 10 times better estimate.

Note:

• Rather complicated choice of parameters, known as Chebyshev accelera-
tion

• Unlike conjugate gradient choice of parameters does not depend on A and
x0

• But we need to know or estimate m and M

• Since conjugate gradient is optimal for quadratic functions conjugate gra-
dient gives at least the same improvement of goal function
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• But above we talk about ‖xi − x∞‖, minimizing this is di�erent than
minimizing goal function.

It is convenient to use ηi and θi which does not depend on i, for this we
have:

Lemma 2.2 Assume that mI ≤ ∇2f(x) ≤ MI. Put κ = M
m , γ =

√
κ−1√
κ+1

,

ηi =
4

(
√
M+
√
m)2

, θi = γ2. Then for i > 0∥∥∥∥( xi+1 − x∞
γ(xi − x∞)

)∥∥∥∥ ≤ (3i− 1)γi
∥∥∥∥( x1 − x∞

γ(x0 − x∞)

)∥∥∥∥
Remark: Factor (3i−1) is not optimal, but we can not avoid linearly growing

factor. So we need extra iterations to overcome this. Still substantial gain
compared to steepest descent.

Remark: In limiting case, when κ goes to 1 instead of convergence we may
get growth of distance.

We expect similar results for convex function when ∇2f is regular so Ai are
close to constant. However, when ∇2f is irregular situation is unclear.

2.1 Nesterov acceleration

Nesterov proposed the following method

pi+1 = βipi − αi∇f(xi + βipi)

xi+1 = xi + pi+1

Standard choice of parameters is αi =
1
M where M is Lipschitz constant of ∇f

and βi =
i
i+3 .

Like momentum, but updates xi before computing ∇f .

Lemma 2.3 When f is convex, with αi and βi as above we have

f(xi)− f(x∞) ≤ 4M‖x0 − x∞‖2

(i+ 2)2

There is also result for strictly convex functions, with slightly di�erent choice
of parameters.

Notes about Nesterov acceleration:

• proven upper bound for convergence rate is comparable to lower bound
for convex functions

• works well in practice

• low computational cost, comparable to momentum or conjugate gradient

2.2 Further reading 2

Yurii Nesterov, Introductory lectures on convex optimization, Springer 2004,
Section 2.2
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