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1 Constrained optimization

Recall general optimization problem: given a set S and a function f : S → R
�nd x0 ∈ S such that

f(x0) = max
x∈S

f(x).

Usually we have

S = {x : ∀i∈Egi(x) = 0,∀i∈Igi(x) ≤ 0}

where E is called set of equality constraints, I is called set of inequality con-
straints. When all equality constraints are linear, and f and all gi are convex
the problem is called convex optimization problem.

In convex optimization problem feasible set is convex and under reasonable
regularity conditions is closed. Our de�nition of convex optimization problem
requires constraints of special form, so when S is convex but constraints are not
convex, then formally this is not a convex optimization problem. On the other
hand, when S is convex and closed then

g(x) = inf
y∈S
‖x− y‖2

is convex function such that S = {x : g(x) ≤ 0}. So when feasible set is convex
and closed and goal function is convex we can rewrite our problem as convex
optimization problem. However, for g above gradient ∇g vanishes at boundary
of S which may cause trouble. Also this g can be di�cult to compute. Usually
we want to take advantage of speci�c form of f and gi, and sometimes we
transform problem to simpler form.

Remark: It is important that in constrained problems optimal point may be
at the boundary of set S. If we know that optimum is attained in the interior (for
example when f(x) goes to in�nity when x approaches boundary of S), then we
can mostly disregard constraints and use methods from previous lectures. But
we need to be more careful when optimal point is at the boundary. In particular
derivative criterion ∇f(x∞) = 0 is no longer valid.

There are various forms of convex optimization problems of varying com-
plexity
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• linear problems: constraints and goal function are a�ne

• quadratic problems: constraints are a�ne, goal function is convex quadratic

• quadratically constrained quadratic problems: constraints and goal func-
tion are convex quadratic

• second order cone problems

• semi-de�nite problems

• cone problems

Why so many di�erent forms? Each has speci�c properties that makes it
simpler than more general form. If we can recognize problem as some of simpler
forms, then we can take advantage of this form and use more e�cient solution
method. In particular, up to semi-de�nite problems such forms have relatively
simple self-concordant barrier function.

Second order cone problems have a�ne goal function and constraints of form

‖Ax+ b‖ ≤ 〈c, x〉+ d.

If needed adding extra variables we can transform convex quadratic constraints
into second order cone constraints. Also, by adding extra variable t and con-
straint f − t ≤ 0 we can transform problem into problem with linear goal
function. So in this sense second order cone problems are more general than
quadratically constrained quadratic problems.

In linear programing problems special role is played by C = Rn+. C is a
convex cone and linear constraints may be written as

Ax+ b ∈ C.

In cone problems we replace C by more arbitrary closed convex cone possibly
in di�erent space. And each constraint may use its own cone. In semi-de�nite
problems we use cone of positive de�nite matrices. Note that

‖x‖ ≤ t

is equivalent to

0 ≤
(

tI x
xT t

)
so we can rewrite second order cone constraints as semi-de�nite constraints.

Example: Basis pursuit problem: minimize ‖x‖1 under constraint Ax = b
can be transformed to linear problem by writing xi = ui − wi and minimizing∑

(ui + wi).
Example: LASSO problem: minimize ‖Ax − b‖2 under constraint ‖x‖1 ≤ t

can be transformed into quadratic problem (again writing xi = ui − wi and
using

∑
(ui + wi) ≤ t and ui ≥ 0, wi ≥ 0 as constraints).

Example: SVM lead to quadratic problem.
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Example: Consider di�erentiable f : C 7→ R where C ⊂ Rn (most interesting
case is n = 2). Surface of the graph of f is∫

C

‖(f ′(x), 1)‖2dx

which is convex (quadratic) in�nite dimensional problem. Taking f from �nite
dimensional space (say via expression on �nite grid) leads to �nite dimensional
quadratic problem. We can put constraints on f , say limiting maximal value,
requesting speci�c values at boundary, etc.

Example: Limiting maximal eigenvalue of symmetric matrix A by M leads
to constraint

A ≤MI

Example: Limiting norm of A by t leads to constraint

0 ≤
(

tI A
AT tI

)
Non-convex problem lead to various di�culties. We say that vector v is

tangent to S at x if and only if

lim inf
t→0+

d(x+ tv, S)

t
= 0.

Set of tangent vectors is a cone (is closed under multiplication by positive num-
bers). We call it tangent cone and denote it by TSx.

Remark: This de�nition is rather general. For regular sets one could use
more restrictive de�nition, replacing lim inf by lim. In fact, for for convex set
S we can using lim we get the same set TSx, but there are di�erences in less
regular cases.

Remark: When S1 = {(t, 0) : t ≥ 0}, S2 = {(0, t) : t ≥ 0}, S = S1 ∪ S2,
x = (0, 0) then TSx = S. So TSx may be non-convex.

Example: Let g(x) = x2
1 + x2

2 − 1 and S = {x ∈ R2 : g(x) = 0}. Of course
this is just unit circle in the plane. Tangent vectors at x = (1, 0) are of form
(0, s), but (1, 0) + (0, s) = (1, s) /∈ S. In this case tangent cone is just a line.

Example: Let S = R2
+ and x = (0, 0). Then set of tangent vectors at x is

just S. Let f(y) = y1 +y2. Then f attains minimum at x, but ∇f(x) is nonzero.
However, for all v ∈ TSx we have 〈∇f(x), v〉 ≥ 0.

Example: Let S = {(0, 1/n) : n > 0 and n ∈ Z} where Z denotes integer
numbers. Then TS0 = {(0, t) : t > 0 and t ∈ R}.

Example: Let S = {(0, 2−n) : n ∈ Z}. Then TS0 is the same as previous
example. De�nition with lim would give TS0 = {0}.

We have the following general optimality condition:

Lemma 1.1 If f is di�erentiable at x and x = argminy∈S f(y), then for all

v ∈ TSx we have

〈∇f(x), v〉 ≥ 0
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Proof: Fix v ∈ TSx. By de�nition of lim inf there exists sequence of ti ≥ 0
going to 0 such that d(x+ tiv, S) = o(ti). By de�nition of distance there exists
yi ∈ S such that d(x+ tiv, yi) ≤ 2d(x+ tiv, S). By de�nition of derivative

f(y) = f(x) + 〈∇f(x), y − x〉+ o(d(x, y)).

Put xi = x + tiv. We have d(x, xi) = O(ti) and d(xi, S) = o(ti), so d(yi, xi) =
o(ti) and d(yi, x) = O(ti). Consequently

〈∇f(x), yi − xi〉 = o(ti)

and
f(yi)− f(x) = 〈∇f(x), yi − x〉+ o(ti)

= 〈∇f(x), xi − x〉+ o(ti).

Now

〈∇f(x), v〉 = lim
i→∞

〈∇f(x), xi − x〉
ti

= lim
i→∞

f(yi)− f(x)

ti
≥ 0.

The last inequality follows because f(yi) ≥ f(x) so all terms are nonnegative.
�

Remark: Above we could use weaker de�nition of derivative. We will come
back to this when discussing subgradient.

Now we need to describe TSx. For this we need notion of active constraints:
constraint gi ≤ 0 is called active at x when gi(x) = 0.

Lemma 1.2 If gi are di�erentiable at x then

TSx ⊂ {v : ∀i∈E〈∇gi(x), v〉 = 0, ∀i∈J〈∇gi(x), v〉 ≤ 0}

where J is set of active inequality constraints at x. If additionally gi have

continuous derivative and matrix formed from ∇gi(x), i ∈ E ∪ J has full rank,

then inclusion above is equality.

Outline of the proof: The �rst part follows from optimality lemma: for each
i ∈ E ∪ J function −gi attains minimal value over S at x. The second part
follows from inverse function theorem: after change of variables all constraints
are linear and result is obvious. �

To write optimality conditions in nicer form we need notion of dual cone.
When C is a convex cone, then

C∗ = {x : ∀y∈C〈x, y〉 ≥ 0}

is called dual cone. It is a closed convex cone.
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Lemma 1.3 If C is convex cone, then

(C∗)∗ = C̄

where C̄ is closure of C.

Proof: Clearly C̄ ⊂ (C∗)∗. By separating hyperplane lemma if y ∈ (C∗)∗−C̄,
then there is v and b such that

〈y, v〉 < b

and
∀x∈C̄〈x, v〉 ≥ b.

Since C̄ is a cone this means b ≤ 0. Also, the inequality above remains valid for
b = 0. But then v ∈ C∗, so �rst condition gives contradiction with y ∈ (C∗)∗,
so no such y can exist. �

Now, let C be convex cone spanned by ∇gi(x),−∇gi(x) for i ∈ E and
−∇gi(x) for i ∈ J . Under assumptions of previous lemma we have

TSx = C∗.

Our optimality condition can be written as

∇f(x) ∈ (TSx)∗ = (C∗)∗ = C.

In this way we obtained Karush-Kuhn-Tucker (KKT) optimality conditions:

Lemma 1.4 If gi have continuous derivative and matrix formed from ∇gi(x),
i ∈ E ∪ J has full rank, then there exist λi ∈ R, such that for i ∈ J we have

λi ≥ 0 and

∇f(x)−
∑
i∈E

λi∇gi(x) +
∑
i∈J

λi∇gi(x) = 0.

Example: Entropy f(x) = −
∑n
i=1 xi log(xi) with constraints g(x) =

∑n
i=1 xi =

1, xi ≥ 0. When xi = 0 corresponding term in f is 0, so we expect those con-
straints to be inactive. Then

∇g(x) = (1, . . . , 1),

∇f(x) = −(log(x1) + 1), log(x2) + 1), . . . , log(xn) + 1)

Since ∇g is always nonzero, with g as the only constraint KKT conditions hold
so log(xi) + 1 = λ is independent of i. Consequently x1 = x2 = · · · = xn = 1

n
and value is

−n 1

n
log(

1

n
) = log(n).

Making xi = 0 active e�ectively decreases n, so indeed this is optimal value.
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Example: minimize 2x2
1 + 2x1x2 + x2

2 − 10x1 − 10x2 subject to x2
1 + x2

2 ≤ 5,
3x1 + x2 ≤ 6. We have

∇f(x) = (4x1 + 2x2 − 10, 2x1 + 2x2 − 10).

Solving for ∇f(x) = 0 gives x = (0, 5) which does not satisfy the �rst con-
straint. With one constraint (�rst or second) active assumption of the lemma
are satis�ed, so KKT equations hold. When only second constraint is active we
get x = ( 2

5 ,
24
5 ) which again does not satisfy �rst constraint (and has negative

λ). When only �rst constraint is active we get two complex solutions, one so-
lution with negative λ and x = (1, 2) with λ = 1. This time second constraint
is satis�ed, so this is candidate solution giving f(x) = −20. There are also two
points where both constraints are active. Checking values of f we see that both
give bigger value than −20, so (1, 2) is optimal point.

From example it should be clear that large number of inequality constraints
leads to combinatorial explosion of cases. We need better methods than directly
solving KKT conditions.

Methods for convex problems:

• conditional gradient

• projected gradient

• penalty methods

• barrier methods

Conditional gradient algorithm (also called Frank-Wolfe algorithm) is given
by formulas:

di = argminz∈S〈∇f(xi), z − xi〉,

xi+1 = xi + αi(di − xi).

αi can be determined by line search or prescribed, for example αi = 2
i+2 (goes

to 0 when i goes to ∞).

• since f is convex, when di = xi we are at optimum

• generates feasible points

• does not need projection

• requires optimization with linear objective to �nd di

Lemma 1.5 If f is convex and ∇f is Lipschitz continuous with constant M ,

x∞ is optimal point, αi = 2/(i+ 2), then for i > 0

f(xi)− f(x∞) ≤ 2MD2

i+ 2

where D = supx,y∈S ‖x− y‖.
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Proof: By de�nition of di we have

〈∇f(xi), x∞ − xi〉 ≥ 〈∇f(xi), di − xi〉.

By convexity of f

f(x∞) ≥ f(xi) + 〈∇f(xi), x∞ − xi〉 ≥ f(xi) + 〈∇f(xi), di − xi〉.

Since ∇f is Lipschitz continuous we have decay estimate

f(xi+1) ≤ f(xi) + αi〈∇f(xi), di − xi〉+ α2
i

MD2

2
.

Subtracting estimate for f(x∞) we get

f(xi+1)− f(x∞) ≤ (αi − 1)〈∇f(xi), di − xi〉+ α2
i

MD2

2
.

When i = 0 we have α0 = 1 so

f(x1)− f(x∞) ≤ MD2

2
≤ 2MD2

1 + 2

so we get the result for x1. For larger i we use induction. Subtracting from
decay estimate αi times estimate for f(x∞) we get

f(xi+1)− αif(x∞) ≤ (1− αi)f(xi) + α2
i

MD2

2

so

f(xi+1)− f(x∞) ≤ (1− αi)(f(xi)− f(x∞)) + α2
i

MD2

2
.

By inductive assumption

f(xi)− f(x∞) ≤ 2MD2

i+ 2

so

f(xi+1)− f(x∞) ≤ (1− αi)
2MD2

i+ 2
+ α2

i

MD2

2

= (1− 2

i+ 2
)
2MD2

i+ 2
+

4

(i+ 2)2

MD2

2

=
i(i+ 3)

(i+ 2)2

2MD2

i+ 3
+

(i+ 3)

(i+ 2)2

2MD2

i+ 3

However

i(i+ 3)

(i+ 2)2
+

(i+ 3)

(i+ 2)2
=
i2 + 3i+ i+ 3

(i+ 2)2
=

(i+ 2)2 − 1

(i+ 2)2
≤ 1
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so we have

f(xi+1)− f(x∞) ≤ 2MD2

(i+ 1) + 2

which ends inductive proof. �

Remark: Can not get better rate for strongly convex f .
Remark: Exact line search will do the same or better.

1.1 Projection onto convex set

For the next algorithm we need notion of projection:

ProjS(x) = argminz∈S ‖z − x‖

Since set of z such that ‖z − x‖ ≤ t is compact, minimum above is attained
when S is closed, so ProjS is well de�ned (a priori de�nition involves choice).
We have

Lemma 1.6 For convex S

‖ProjS(x)− ProjS(y)‖ ≤ ‖x− y‖.

We will prove this later considering proximal methods.
Remark: In particular, lemma implies that projection onto convex set is

uniquely de�ned (no need for choice).
Example: When S is a hyperplane we get usual orthogonal projection.
Example: When S is a halfspace, then ProjS(x) = x for x ∈ S, otherwise it

is projection onto boundary hyperplane.
Example: When S is euclidean unit ball, then

ProjS(x) =

{
x when ‖x‖ ≤ 1
x
‖x‖ otherwise

Example: When S is l∞ unit ball, then

ProjS(x)i =

{
xi when |xi| ≤ 1

sign(xi) otherwise

where sign(xi) is sign of xi.

1.2 Projected gradient algorithm

Projected gradient algorithm is given by formula:

xi+1 = ProjS(xi − αi∇f(xi))

where ProjS denotes projection onto S.
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• thanks to projection generates feasible points

• reasonably good convergence properties

• projection may be expensive to compute

Lemma 1.7 Assume that mI ≤ ∇2f ≤ MI and optimal point x∞ belongs

to interior of S. Then for projected gradient descent with constant step size

α = 2
M+m we have

‖xi − x∞‖ ≤ Ci‖x0 − x∞‖

where

C =
M −m
M +m

Remark: The same as in unconstrained case.
Proof: Put yi+1 = xi − α∇f(xi). Proof in unconstrained case shows bound

for ‖yi − x∞‖. Then nonexpansiveness of projection gives result.
Without assumption about x∞ we get slightly weaker result, using αi = 1

M
and C = (1− 1

M ).
We also get convergence for convex (non necessarily strongly convex) f .

We will prove all this considering proximal methods. We can apply Nesterov
acceleration to get faster convergence.

1.3 Penalty methods

Instead of minimizing f in penalty methods we optimize

f(x) + λh(x)

where h(x) = 0 for x ∈ S and h(x) > 0 for x /∈ S for sequence of λ > 0 going to
in�nity. h above is called penalty function.

One possible choice for h is

h(x) =
∑
i∈E

g2
i (x) +

∑
i∈I

(gi)
2
+(x)

where (gi)+ is positive part of gi, that is (gi)+(x) = gi(x) when gi(x) > 0 and
(gi)+(x) = 0 otherwise.

For convex S another possibility is

h(x) = min
z∈S
‖z − x‖2 = ‖x− ProjS(x)‖2.

In general f(x)+λh(x) may fail to have minimal point, but under reasonable
conditions for large λ

xλ = argminx(f(x) + λh(x))

is well de�ned and converges to feasible point x∞.
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Lemma 1.8 When f is continuous and

xλ → x∞ ∈ S,

then

x∞ = argminx∈S f(x)

Proof: Fix ε > 0. Since f is continuous and xλ → x∞ for large λ we have

f(xλ) ≥ f(x∞) + ε

By de�nition of xλ we have

inf
x∈S

f(x) ≥ f(xλ) + λh(xλ) ≥ f(xλ)

so
inf
x∈S

f(x) ≥ f(xλ) ≥ f(x∞) + ε.

Since ε > 0 is arbitrary we have

inf
x∈S

f(x) ≥ f(x∞).

But x∞ ∈ S so we have equality

min
x∈S

f(x) = f(x∞).

�

Features of penalty methods:

• f needs to be de�ned on whole Rn (or at least open neighbourhood of S)

• can use e�cient unconstrained method like Newton method

• in principle f(x) + λh(x) becomes badly conditioned for large λ, not a
problem when λ is gradually increased and we use Newton method (or
preconditioning)

1.4 Barrier methods

Instead of minimizing f in barrier methods we optimize

f(x) + λh(x)

where h(x) ≥ 0 and h(x) goes to in�nity when x goes to boundary of S for
sequence of λ > 0 going to 0. h above is called barrier function. In pure barrier
methods we only allow inequality constraints.
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Popular choice of barrier function h are

h(x) =
∑
i∈I

1

g2
i (x)

and
h(x) = −

∑
i∈I

log(−gi(x)).

It has many advantages to use self-concordant barrier function, for many
important convex sets S such barriers are easy to construct.

Lemma 1.9 If f is continous, h is �nite in interior of S, S is equal to closure

of its interior,

xλ = argminx∈S(f(x) + h(x)),

xλ → x∞,

then

x∞ = argminx∈S f(x).

Proof: Fix ε > 0. By de�nition of inf there exists y ∈ S such that

f(y) ≤ inf
x∈S

f(x) + ε.

y may be on boundary of S, but since f is continuous and S is closure of its
interor there exists z in interior of S such that

f(z) ≤ inf
x∈S

f(x) + 2ε.

Since h(z) is �nite for small λ we have

f(z) + λh(z) ≤ inf
x∈S

f(x) + 3ε

so
f(xλ) ≤ f(xλ) + λh(xλ) = argminx∈S(f(x) + h(x))

≤ f(z) + λh(z) ≤ inf
x∈S

f(x) + 3ε.

Since xλ → x∞ and f is continous also

f(x∞) ≤ inf
x∈S

f(x) + 3ε.

Since ε > 0 were arbitrary we have

f(x∞) ≤ inf
x∈S

f(x)

so
f(x∞) = min

x∈S
f(x).

�

Features of barrier methods:
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• need feasible starting point

• goes only trough feasible points

• can use e�cient unconstrained method like Newton method

• barrier function is typically badly conditioned in classical sense

• self-concordant barriers have very good convergence properties with New-
ton method

1.5 Interior point methods

Simplex method solves linear programming problem by moving trough boundary
points of feasible set. Another possibility is to �nd sequence of points in the
interior of feasible set that converges to optimal solution. This happens in
barrier methods (which are now dominant form of interior point methods). For
linear constraints it is usual to use logarithmic barrier. More precisely, we
replace inequality constraints x ≥ 0 by barrier

φ(x) = −
m∑
i=1

log(xi)

Equality constraints remain (and must be treated separately). For λ > 0 we get
problem of minimizing

f(x) + λφ(x)

This is equivalent to minimizing

1

λ
f(x) + φ(x)

Since f is a�ne (as we have linear programming problem), function above is
self-concordant, so we have good convergence properties for Newton method.
We will say more about this later. However, before doing this we will look into
duality.

1.6 Further reading

Stephen Boyd, Lieven Vandenberghe, Convex Optimization, chapters 4, 8.1, 10,
11.

David G. Luenberger, Yinyu Ye, Linear and Nonlinear Programming, chap-
ters 11, 12, 13.

Jorge Nocedal, Stephen J. Wright, Numerical Optimization, chapter 12.
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