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Interior Point Polynomial Methods in Convex Programming

Goals. During the last decade the area of interior point polynomial methods (started in 1984 when
N. Karmarkar invented his famous algorithm for Linear Programming) became one of the dominating
fields, or even the dominating field, of theoretical and computational activity in Convex Optimization.
The goal of the course is to present a general theory of interior point polynomial algorithms in Convex
Programming. The theory allows to explain all known methods of this type and to extend them from
the initial area of interior point technique - Linear and Quadratic Programming - onto a wide variety of
essentially nonlinear classes of convex programs.

We present in a self-contained manner the basic theory along with its applications to several important
classes of convex programs (LP, QP, Quadratically constrained Quadratic programming, Geometrical
programming, Eigenvalue problems, etc.)

The course follows the recent book
Yu. Nesterov, A. Nemirovski Interior-Point Polynomial Algorithms in Convex Programming SIAM Stud-
ies in Applied Mathematics, 1994

Prerequisites for the course are the standard Calculus and the most elementary parts of Convex
Analysis.

Duration: one semester, 2 hours weekly

Contents:
Introduction: what the course is about
Developing Tools, I: self-concordant functions, self-concordant barriers and the Newton method
Interior Point Polynomial methods, I: the path-following scheme
Developing Tools, II: Conic Duality
Interior Point Polynomial methods, II: the potential reduction scheme
Developing Tools, III: how to construct self-concordant barriers
Applications:

Linear and Quadratic Programming
Quadratically Constrained Quadratic Problems
Geometrical Programming
Semidefinite Programming

I decided to add to the course three Appendices:
Appendices I and II contain two recent papers on the subject; The first of them develops the approach

to the design of long-step interior point methods discussed, in its simplest form, in Lecture 8. The second
paper is devoted to the particular application – Truss Topology Design – discussed in the exercises to
Lecture 5 (Section 5.5). I think the ability to go through these papers is a good indication of mastering
the course.

Appendix III is a 4-lecture Minicourse on polynomial time methods in Convex Programming which
I wrote for the 1995i Summer AMS Seminar on Mathematics of Numerical Analysis (June-August 1995,
Park City, Utah, USA). It can be regarded as a “technicality-free” summary of the main body of the
Course a summary which contains also some new details. In fact I think it makes sense to start reading
with this summary. Appendix III (same as Appendices I and II) can be read independently of other parts
of the text.
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About Exercises

The majority of Lectures are accompanied by the ”Exercise” sections. In several cases,
the exercises are devoted to the lecture where they are placed; sometimes they prepare the
reader to the next lecture.

The mark ∗ at the word ”Exercise” or at an item of an exercise means that you may use
hints given in Appendix ”Hints”. A hint, in turn, may refer you to the solution of the exercise
given in the Appendix ”Solutions”; this is denoted by the mark +. Some exercises are marked
by + rather than by ∗; this refers you directly to the solution of an exercise.

Exercises marked by # are closely related to the lecture where they are placed; it would
be a good thing to solve such an exercise or at least to become acquainted with its solution
(if any is given).

Exercises which I find difficult are marked with >.
The exercises, usually, are not that simple. They in no sense are obligatory, and the reader

is not expected to solve all or even the majority of the exercises. Those who would like to
work on the solutions should take into account that the order of exercises is important: a
problem which could cause serious difficulties as it is becomes much simpler in the context
(at least I hope so).
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Chapter 1

Introduction to the Course

What we are about to study in this semester are the theory and the applications of interior point
polynomial time methods in Convex Programming. Today, in the introductory lecture, I am not going
to prove theorems and present algorithms. My goal is to explain what the course is about, what are the
interior point methods and why so many researchers and practitioners are now deeply involved in this
new area.

1.1 Some history

The modern theory of polynomial time interior point methods takes its origin in the seminal paper of
Narendra Karmarkar published in 1984. Now, after 10 years, there are hundreds of researchers working
in the area, and thousands of papers and preprints on the subject. The electronic bibliography on interior
point methods collected and maintained by Dr. Eberhard Kranich, although far from being complete,
contains now over 1,500 entries. For Optimization Community which covers not so many people, this
is a tremendous concentration of effort in a single area, for sure incomparable with all happened in the
previous years.

Although to the moment the majority of the papers on interior point methods deal with the theoretical
issues, the practical yield also is very remarkable. It suffices to say that the Karmarkar algorithm for
Linear Programming was used as the working horse for the US Army logistic planning (i.e., planning of
all kinds of supplies) in the Gulf War. Another interior point method for Linear Programming, the so
called primal-dual one, forms the nucleus of an extremely efficient and very popular now software package
OSL2. Let me present you a citation from G. Dantzig: ”At the present time (1990), interior algorithms
are in open competition with variants of the simplex methods”1). It means something when new-borned
methods can be competitive against an extremely powerful and polished for almost 50 years by thousands
of people Simplex method.

Now let me switch from the style of advertisements to the normal one. What actually happened
in 1984, was the appearance of a new iterative polynomial-time algorithm for Linear Programming.
We already know what does it mean ”a polynomial time algorithm for LP” - recall the lecture about
the Ellipsoid method and the Khachiyan theorem on polynomial solvability of LP. As we remember,
Khachiyan proved in 1979 that Linear Programming is polynomially solvable, namely, that an LP problem
with rational coefficients, m inequality constraints and n variables can be solved exactly in O(n3(n+m)L)
arithmetic operations, L being the input length of the problem, i.e., the total binary length of the
numerical data specifying the problem instance. The new method of Karmarkar possessed the complexity
bound of O(m3/2n2L) operations. In the standard for the complexity analysis case of more or less
”square” problems m = O(n) the former estimate becomes O(n4L), the latter O(n3.5L). Thus, there
was some progress in the complexity. And it can be said for sure that neither this moderate progress,
nor remarkable elegance of the new algorithm never could cause the revolution in Optimization. What
indeed was a sensation, what inspired extremely intensive activity in the new area and in a few years
resulted in significant theoretical and computational progress, was the claim that the new algorithm in

1 History of Mathematica Programming, J.K. Lenstra. A.H.G. Rinnooy Kan, A. Schrijver, Eds. CWI, North-Holland,
1991
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real-world computations was by order of magnitudes more efficient than the Simplex method. Let me
explain you why this was a sensation. It is known that the Simplex method is not polynomial: there
exist bad problem instances where the number of pivotings grows exponentially with the dimension of
the instance. Thus, any polynomial time algorithm for LP, the Ellipsoid one, the method of Karmarkar
or whatever else, for sure is incomparably better in its worst-case behaviour than the Simplex. But this is
the theoretical worst-case behaviour which, as is demonstrated by almost 50-year practice, never occurs
in real-world applications; from the practical viewpoint, the Simplex method is an extremely efficient
algorithm with fairy low empirical complexity; this is why the method is able to solve very large-scale
real world LP problems in reasonable time. In contrast to this, the Ellipsoid method works more or
less in accordance with its theoretical worst-case complexity bound, so that in practical computations
this ”theoretically good” method is by far dominated by the Simplex even on very small problems with
tens of variables and constraints. If the method of Karmarkar would also behave itself according to its
theoretical complexity bound, it would be only slightly better then the Ellipsoid method and still would
be incomparably worse than the Simplex. The point, anyhow, is that actual behaviour of the method of
Karmarkar turned out to be much better than it is said by the worst-case theoretical complexity bound.
This phenomenon combined with the theoretical advantages of a polynomial time algorithm, not the
latter advantages alone, (same as, I believe, not the empirical behaviour of the method alone), inspired
an actual revolution in optimization which continues up today and hardly will terminate in the nearest
future.

I have said something about the birth of the ”interior point science”. As it often happens in our
field, later it turned out that this was the second birth; the first one was in 1967 in Russia, where Ilya
Dikin, then the Ph.D. student of Leonid Kantorovich, invented what is now called the affine scaling
algorithm for LP. This algorithm which hardly is theoretically polynomial, is certain simplification of the
method of Karmarkar which shares all practical advantages of the basic Karmarkar algorithm; thus, as a
computational tool, interior point methods exist at least since 1967. A good question is why this compu-
tational tool which is in extreme fashion now was completely overlooked in the West, same as in Russia.
I think that this happened due to two reasons: first, Dikin came too early, when there was no interest
to iterative procedures for LP - a new-borned iterative procedure, even of a great potential, hardly could
overcome as a practical tool perfectly polished Simplex method, and the theoretical complexity issues
in these years did not bother optimization people (even today we do not know whether the theoretical
complexity of the Dikin algorithm is better than that one of the Simplex; and in 1967 the question itself
hardly could occur). Second, the Dikin algorithm appeared in Russia, where there were neither hardware
base for Dikin to perform large-scale tests of his algorithm, nor ”social demand” for solving large-scale
LP problems, so it was almost impossible to realize the practical potential of the new algorithm and to
convince people in Russia, not speaking about the West, that this is something which worths attention.

Thus, although the prehistory of the interior point technique for LP started in 1967, the actual
history of this subject started only in 1984. It would be impossible to outline numerous significant
contributions to the field done since then; it would require mentioning tens, if not hundreds, of authors.
There is, anyhow, one contribution which must be indicated explicitly. I mean the second cornerstone of
the subject, the paper of James Renegar (1986) where the first path-following polynomial time interior
point method for LP was developed. The efficiency estimate of this method was better than that one
of the method of Karmarkar, namely, O(n3L) 2) - cubic in the dimension, same as for classical methods
of solving systems of linear equations; up to now this is the best known theoretical complexity bound
for LP. Besides this remarkable theoretical advantage, the method of Renegar possesses an important
advantage in, let me say, the human dimension: the method belongs to a quite classical and well-known
in Optimization scheme, in contrast to rather unusual Ellipsoid and Karmarkar algorithms. The paper
of Renegar was extremely important for the understanding of the new methods and it, same as a little
bit later independent paper of Clovis Gonzaga with close result, brought the area in the position very
favourable for future developments.

To the moment I was speaking about interior point methods for Linear Programming, and this reflects
the actual history of the subject: not only the first interior point methods vere developed for this case, but
till the very last years the main activity, both theoretical and computational, in the field was focused on
Linear Programming and the very close to it Linearly constrained Quadratic Programming. To extend the

2recall that we are speaking about ”almost square” problems with the number of inequalities m being of order of the
number of variables n
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approach to more general classes of problems, it was actually a challenge: the original constructions and
proofs heavily exploited the polyhedral structure of the feasible domain of an LP problem, and in order
to pass to the nonlinear case, it required to realize what is the deep intrinsic nature of the methods. This
latter problem was solved in a series of papers of Yurii Nesterov in 1988; the ideas of these papers form
the basis of the theory the course is devoted to, the theory which now has became a kind of standard for
unified explanation and development of polynomial time interior point algorithms for convex problems,
both linear and nonlinear. To present this theory and its applications, this is the goal of my course. In
the remaining part of this introductory lecture I am going to explain what we are looking for and what
will be our general strategy.

1.2 The goal: poynomial time methods

I have declared that the purpose of the theory to be presented is developing of polynomial time algorithms
for convex problems. Let me start with explaining what a polynomial time method is. Consider a family
of convex problems

(p) : minimize f(x) s.t. gj(x) ≤ 0, i = 1, ...,m, x ∈ G

of a given analytical structure, like the family of LP problems, or Linearly constrained Quadratic problems,
or Quadratically constrained Quadratic ones, etc. The only formal assumption on the family is that a
problem instance p from it is identified by a finite-dimensional data vector D(p); normally you can
understand this vector as the collection of the numeric coefficients in analytical expressions for the
objective and the constraints; these expressions themselves are fixed by the description of the family.
The dimension of the data vector is called the size l(p) of the problem instance. A numerical method
for solving problems from the family is a routine which, given on input the data vector, generates a
sequence of approximate solutions to the problem in such a way that every of these solutions is obtained
in finitely many operations of precise real arithmetic, like the four arithmetic operations, taking square
roots, exponents, logarithms and other elementary functions; each operand in an operation is either an
entry of the data vector, or the result of one of the preceding operations. We call a numerical method
convergent, if, for any positive ε and for any problem instance p from the family, the approximate solutions
xi generated by the method, starting with certain i = i∗(ε, p), are ε-solutions to the problem, i.e., they
belong to G and satisfy the relations

f(xi)− f∗ ≤ ε, gj(xi) ≤ ε, j = 1, ...,m,

(f∗ is the optimal value in the problem). We call a method polynomial, if it is convergent and the
arithmetic cost C(ε, p) of ε-solution, i.e., the total number of arithmetic operations at the first i∗(ε, p)
steps of the method as applied to p, admits an upper bound as follows:

C(ε, p) ≤ π(l(p)) ln

(
V(p)

ε

)
,

where π is certain polynomial independent on the data and V(p) is certain data-dependent scale factor.
The ratio V(p)/ε can be interpreted as the relative accuracy which corresponds to the absolute accuracy

ε, and the quantity ln(V(p)
ε ) can be thought of as the number of accuracy digits in ε-solution. With

this interpretation, the polynomiality of a method means that for this method the arithmetic cost of an
accuracy digit is bounded from above by a polynomial of the problem size, and this polynomial can be
thought of as the characteristic of the complexity of the method.

It is reasonable to compare this approach with the information-based approach we dealt with in the
previous course. In the information-based complexity theory the problem was assumed to be represented
by an oracle, by a black box, so that a method, starting its work, had no information on the instance; this
information was accumulated via sequential calls to the oracle, and the number of these calls sufficient to
find an ε-solution was thought of as the complexity of the method; we did not include in this complexity
neither the computational effort of the oracle, nor the arithmetic cost of processing the answers of the
oracle by the method. In contrast to this, in our now approach the data specifying the problem instance
form the input to the method, so that the method from the very beginning possesses complete global
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information on the problem instance. What the method should do is to transform this input information
into ε-solution to the problem, and the complexity of the method (which now might be called algorithmic
or combinatorial complexity) is defined by the arithmetic cost of this transformation. It is clear that
our new approach is not as general as the information-based one, since now we can speak only on
families of problems of a reasonable analytic structure (otherwise the notion of the data vector becomes
senseless). As a compensation, the combinatorial complexity is much more adequate measure of the
actual computational effort than the information-based complexity.

After I have outlined what is our final goals, let me give you an idea of how this goal will be achieved. In
what follows we will develop methods of two different types: the path-following and the potential reduction
ones; the LP prototypes of these methods are, respectively, the methods of Renegar and Gonzaga, which
are path-following routines, and the method of Karmarkar, which is a potential reduction one. In contrast
to the actual historical order, we shall start with the quite traditional path-following scheme, since we
are unprepared to understand what in fact happens in the methods of the Karmarkar type.

1.3 The path-following scheme

The, let me say, ”classical” stage in developing the scheme is summarized in the seminal monograph of
Fiacco and McCormic (1967). Assume we intend to solve a convex program

(P ) : minimize f(x) s.t. gi(x) ≤ 0, i = 1, ...,m

associated with smooth (at least twice continuously defferentiable) convex functions f , gi on Rn. Let

G = {x ∈ Rn | gi(x) ≤ 0}

be the feasible domain of the problem; assume for the sake of simplicity that this domain is bounded,
and let the constraints {gi} satisfy the Slater condition:

∃x : gi(x) < 0, i = 1, ...,m.

Under these assumptions the feasible domain G is a solid - a closed and bounded convex set in Rn with
a nonempty interior.

In 60’s people believed that it is not difficult to solve unconstrained smooth convex problems, and it
was very natural to try to reduce the constrained problem (P ) to a series of unconstrained problems. To
this end it was suggested to associate with the feasible domain G of problem (P ) a barrier - an interior
penalty function F (x), i.e., a smooth convex function F defined on the interior of G and tending to ∞
when we approach from inside the boundary of G:

lim
i→∞

F (xi) =∞ for any sequence {xi ∈ int G} with lim
i→∞

xi ∈ ∂G.

It is also reasonble to assume that F is nondegenerate, i.e.,

F ′′(x) > 0, x ∈ int G

(here > 0 stands for ”positive definite”).
Given such a barrier, one can associate with it and with the objective f of (P ) the barrier-generated

family comprised of the problems

(Pt) : minimize Ft(x) ≡ tf(x) + F (x).

Here the penalty parameter t is positive. Of course, x in (Pt) is subject to the ”induced” restriction
x ∈ int G, since Ft is outside the latter set.

From our assumptions on G it immediately follows that
a) every of the problems (Pt) has a unique solution x∗(t); this solution is, of course, in the interior of

G;
b) the path x∗(t) of solutions to (Pt) is a continuous function of t ∈ [0,∞), and all its limiting, as

t→∞, points belong to the set of optimal solutions to (P ).
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It immediately follows that if we are able to follow the path x∗(t) along certain sequence ti →∞ of values
of the penalty parameter, i.e., know how to form ”good enough” approximations xi ∈ int G to the points
x∗(ti), say, such that

xi − x∗(ti)→ 0, i→∞, (1.1)

then we know how to solve (P ): b) and (1.1) imply that all limiting points of the sequance of our iterates
{xi} belong to the optimal set of (P ).

Now, to be able to meet the requirement (1.1) is, basically, the same as to be able to solve to a
prescribed accuracy each of the ”penalized” problems (Pt). What are our abilities in this respect? (Pt)
is a minimization problem with smooth and nondegenerate (i.e., with nonsingular Hessian) objective. Of
course, this objective is defined on the proper open convex subset of Rn rather than on the whole Rn,
so that the problem, rigorously speaking, is a constrained one, same as the initial problem (P ). The
constrained nature of (Pt) is, anyhow, nothing but an illusion: the solution to the problem is unique
and belongs to the interior of G, and any converging minimization method of a relaxation type (i.e.,
monotonically decreasing the value of the objective along the sequence of iterates) started in an interior
point of G would automatically keep the iterates away from the boundary of G (since Ft →∞ together
with F as the argument approaches the boundary from inside); thus, qualitatively speaking, the behaviour
of the method as applied to (Pt) would be the same as if the objective Ft was defined everywhere. In
other words, we have basically the same possibilities to solve (Pt) as if it was an unconstrained problem
with smooth and nondegenerate objective. Thus, the outlined path-following scheme indeed achieves our
goal - it reduces the constrained problem (P ) to a series of in fact unconstrained problems (Pt).

We have outlined what are our abilities to solve to a prescribed accuracy every particular problem
(Pt) - to this end we can apply to the problem any relaxation iterative routine for smooth unconstrained
minimization, starting the routine from an interior point of G. What we need, anyhow, is to solve not
a single problem from the family, but a sequence of these problems associated with certain tending to
∞ sequence of values of the penalty parameter. Of course, in principle we could choose an arbitrary
sequence {ti} and solve each of the problems (Pti) independently, but anybody understands that it is
senseless. What makes sense is to use the approximate solution xi to the ”previous” problem (Pti) as
the starting point when solving the ”new” problem (Pti+1

). Since x∗(t), as we just have mentioned, is a
continuous function of t, a good approximate solution to the previous problem will be a good initial point
for solving the new one, provided that ti+1 − ti is not too large; this latter asumption can be ensured by
a proper policy of updating the penalty parameter.

To implement the aforementioned scheme, one should specify its main blocks, namely, to choose
somehow:

1) the barrier F ;
2) the ”working horse” - the unconstrained minimization method for solving the problems (Pt), along

with the stopping criterion for the method;
3) the policy for updating the penalty parameter.
The traditional recommendations here were rather diffuse. The qualitative theory insisted on at least

C2-smoothness and nondegeneracy of the barrier, and this was basically all; within this class of barriers,
there were no clear theoretical priorities. What people were adviced to do, was

for 1): to choose F as certain ”preserving smoothness” aggregate of gi, e.g.,

F (x) =

m∑
i=1

(
1

−gi(x)

)α
(1.2)

with some α > 0, or

F (x) = −
m∑
i=1

ln(−gi(x)), (1.3)

or something else of this type; the idea was that the local information on this barrier required by the
”working horse” should be easily computed via similar information on the constraints gi;

for 2): to choose as the ”working horse” the Newton method; this recommendation came from com-
putational experience and had no serious theoretical justification;

for 3): qualitatively, updating the penalty at a high rate, we reduce the number of auxiliary un-
constrained problems at the cost of elaborating each of the problems (since for large ti+1 − ti a good
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approximation of x∗(ti) may be a bad starting point for solving the updated problem; a low rate of updat-
ing the penalty simplifies the auxiliary problems and increases the number of the problems to be solved
before a prescribed value of the penalty (which corresponds to the required accuracy of solving (P )) is
achieved. The traitional theory was unable to offer explicit recommendations on the ”balanced” rate re-
sulting in the optimal overall effort, and this question normally was solved on the basis of ”computational
experience”.

What was said looks very natural and is known for more than 30 years. Nevertheless, the classical
results on the path-following scheme have nothing in common with polynomial complexity bounds, and
not only because in 60’s nobody bothered about polynomiality: even after you pose this question, the
traditional results do not allow to answer this question affirmatively. The reason is as follows: to perform
the complexity analysis of the path-following scheme, one needs not only qualitative information like
”the Newton method, as applied to a smooth convex function with nondegenerate Hessian, converges
quadratically, provided that the starting point is close enough to the minimizer of the objective”, but
also quantitive information: what is this ”close enough”. The results of this latter type also existed and
everybody in Optimization knew them, but it did not help much. Indeed, the typical quantitive result
on the behaviour of the Newton optimization method was as follows:

let φ be a C2-continuous convex function defined in the Euclidean ball V of radius R centered at x∗ and
taking minimum at x∗ such that

φ′′(x∗) is nondegenerate with the spectrum from certain segment segment [L0, L1], 0 < L0 < L1;
φ′′(x) is Lipschitz continuous at x∗ with certain constant L3:

|φ′′(x)− φ′′(x∗)| ≤ L3|x− x∗|, x ∈ V.

Then there exist

ρ = ρ(R,L0, L1, L2) > 0, c = c(R,L0, L1, L2)

such that the Newton iterate

x+ = x− [φ′′(x)]−1φ′(x)

of a point x satisfies the relation

|x+−x∗| ≤ c|x− x∗|2, (1.4)

provided that

|x− x∗| ≤ ρ.

The functions ρ(·) and c(·) can be written down explicitly, the statement itself can be modified and a little
bit strengthen, but it does not matter for us: the point is the structure of traditional results on the Newton
method, not the results themselves. These results are local: the quantitive description of the convergence
properties of the method is given in terms of the parameters responsible for smoothness and nondegeneracy
of the objective, and the ”constant factor” c in the rate-of-convergence expression (1.4), same as the size
ρ of the ”domain of quadratic convergence” become worse and worse as the aforementioned parameters
of smoothness and nondegeneracy of the objective become worse. This is the structure of the traditional
rate-of-convergence results for the Newton method; the structure traditional results on any other standard
method for smooth unconstrained optimization is completely similar: these results always involve some
data-dependent parameters of smoothness and/or nondegeneracy of the objective, and the quantitive
description of the rate of convergence always becomes worse and worse as these parameters become
worse.

Now it is easy to realize why the traditional rate-of-convergence results for our candidate ”working
horses” - the Newton method or something else - do not allow to establish polynomiality of the path-
following scheme. As the method goes on, the parameters of smoothness and nondegeneracy of our
auxiliary objectives Ft inevitably become worse and worse: if the solution to (P ) is on the boundary of
G, and this is the only case of interest in constrained minimization, the minimizers x∗(t) of Ft approach
the boundary of G as t grows, and the behaviour of Ft in a neighbourhood of x∗(t) becomes less and
less regular (indeed, for large t the function Ft goes to ∞ very close to x∗(t). Since the parameters of
smoothness/nondegeneracy of Ft become worse and worse as t grows, the auxiliary problems, from the
traditional viewpoint, become quantitively more and more complicated, and the progress in accuracy (#
of new digits of accuracy per unit computational effort) tends to 0 as the method goes on.
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The seminal contribution of Renegar and Gonzaga was in demonstration of the fact that the above
scheme applied to a Linear Programming problem

minimize f(x) = cTx s.t. gj(x) ≡ aTi − bj ≤ 0, j = 1, ...,m, x ∈ Rn

and to the concrete barrier for the feasible domain G of the problem - to the standard logarithmic barrier

F (x) = −
m∑
j=1

ln(bj − aTj x)

for the polytope G - is polynomial.
More specifically, it was proved that the method

ti+1 = (1 +
0.001√
m

)ti; xi+1 = xi − [∇2
xFti+1

(xi)]
−1∇xFti+1

(xi) (1.5)

(a single Newton step per each step in the penalty parameter) keeps the iterates in the interior of G,
maintains the ”closeness relation”

Fti(xi)−minFti ≤ 0.01

(provided that this relation was satisfied by the initial pair (t0, x0)) and ensures linear data-independent
rate of convergence

f(xi)− f∗ ≤ 2mt−1
i ≤ 2mt−1

0 exp{−O(1)im−1/2}. (1.6)

Thus, in spite of the above discussion, it turned out that for the particular barrier in question the
path-following scheme is polynomial - the penalty can be increased at a constant rate (1 + 0.001m−1/2)
depending only on the size of the problem instance, and each step in the penalty should be accompanied
by a single Newton step in x. According to (1.6), the absolute inaccuracy is inverse proportional to the
penalty parameter, so that to add an extra accuracy digit it suffices to increase the parameter by an
absolute constant factor, which, in view of the description of the method, takes O(

√
m) steps. Thus, the

Newton complexity - the # of Newton steps - of finding an ε-solution is

N (ε, p) = O(
√
m) ln

(
V(p)

ε

)
, (1.7)

and since each Newton step costs, as it is easily seen, O(mn2) operations, the combinatorial complexity
of the method turns out to be polynomial, namely,

C(ε, p) ≤ O(m1.5n2) ln

(
V(p)

ε

)
.

1.4 What is inside: self-concordance

Needless to say that the proofs of the announced results given by Renegar and Gonzaga were completely
non-standard and heavily exploited the specific form of the logarithmic barrier for the polytope. The
same can be said about subsequent papers devoted to the Linear Programming case. The key to nonlinear
extensions found by Yurii Nesterov was in realizing that among all various properties of the logarithmic
barrier for a polytope, in fact only two are responsible for the polynomiality of the path-following meth-
ods associated with this polytope. These properties are expressed by the following pair of differential
inequalities:
[self-concordance]:

| d
3

dt3
|t=0F (x+ th)| ≤ 2

(
d2t

dt2
|t=0F (x+ th)

)3/2

, ∀h ∀x ∈ int G,

[finiteness of the barrier parameter]:

∃ϑ <∞ : | d
dt
|t=0F (x+ th)| ≤ ϑ1/2

(
d2t

dt2
|t=0F (x+ th)

)1/2

, ∀h ∀x ∈ int G.
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The inequality in the second relation in fact is satisfied with θ = m.
I am not going to comment these properties now; this is the goal of the forthcoming lectures. What

should be said is that these properties do not refer explicitly to the polyhedral structure of G. Given
an arbitrary solid G, not necessarily polyhedral, one can try to find for this solid a barrier F with the
indicated properties. It turns out that such a self-concordant barrier always exists; moreover, in many
important cases it can be written down in explicit and ”computable” form. And the essense of the theory
is that

given a self-concordant barrier F for a solid G, one can associate with this barrier interior-
point methods for minimizing linear objectives over G in completely the same manner as in
the case when G is a polytope and F is the standard logarithmic barrier for G. E.g., to get
a path-following method, it suffices to replace in the relations (1.5) the standard logarithmic
barrier for a polytope with the given self-concordant barrier for the solid G, and the quantity
m with the parameter ϑ of the latter barrier, with similar substitution m⇐ ϑ in the expression
for the Newton complexity of the method.

In particular, if F is ”polynomially computable”, so that its gradient and Hessian at a
given point can be computed at a polynomial arithmetic cost, then the associated with F
path-following method turns out to be polynomial.

Note that in the above claim I spoke about minimizing linear objectives only. This does not cause any
loss of generality, since, given a general convex problem

minimize f(u) s.t. gj(u) ≤ 0, j = 1, ...,m, u ∈ Q ⊂ Rk,

you always can pass from it to an equivalent problem

minimize t s.t. x ≡ (t, u) ∈ G ≡ {(t, u) | f(u)− t ≤ 0, gj(u) ≤ 0, i = 1, ...,m, u ∈ Q}

of minimizing a linear objective over convex set. Thus, the possibilities to solve convex problems by inte-
rior point polynomial time methods are restricted only by our abilities to point out ”explicit polynomially
computable” self-concordant barriers for the corresponding feasible domains, which normally is not so
difficult.

1.5 Structure of the course

I hope now you have certain preliminary impression of what we are going to do. More specifically, our
plans are as follows.

1) First of all, we should study the basic properties of self-concordant functions and barriers; these
properties underly all our future constructions and proofs. This preliminary part of the course is technical;
I hope we shall survive the technicalities which, I think, will take two lectures.

2) As an immediate consequence of our technical effort, we shall find ourselves in a fine position to
develop and study path-following interior point methods for convex problems, and this will be the first
application of our theory.

3) To extend onto the nonlinear case another group of interior point methods known for LP, the
potential reduction ones (like the method of Karmarkar), we start with a specific and very interesting in
its own right geometry - conic formulation of a Convex Programming Problem and Conic Duality. After
developing the corresponding geometrical tools, we would be in a position to develop potential reduction
methods for general convex problems.

4) The outlined ”general” part of the course is, in a sense, conditional: the typical statements here
claim that, given a ”good” - self-concordant - barrier for the feasible domain of the problem in question,
you should act in such and such way and will obtain such and such polynomial efficiency estimate. As far
as applications are concerned, these general schemes should, of course, be accompanied by technique for
constructing the required ”good” barriers. This technique is developed in the second part of the course.
Applying this technique and our general schemes, we shall come to concrete ”ready-to-use” interior point
polynomial time algorithms for a series of important classes of Convex Programming problems, including,
besides Linear Programming, Linearly constrained Quadratic Programming, Quadratically constrained
Quadratic Programming, Geometrical Programming, Optimization over the cone of positive semidefinite
matrices, etc.



Chapter 2

Self-concordant functions

In this lecture I introduce the main concept of the theory in question - the notion of a self-concordant
function. The goal is to define a family of smooth convex functions convenient for minimization by the
Newton method. Recall that a step of the Newton method as applied to the problem of (unconstrained)
minimization of a smooth convex function f is based on the following rule:

in order to find the Newton iterate of a point x compute the second-order Taylor expansion of f at x,
find the minimizer x̂ of this expansion and perform a step from x along the direction x̂− x.

What the step should be, it depends on the version of the method: in the pure Newton routine the iterate
is exactly x̂; it the relaxation version of the method one minimizes f along the ray [x, x̂), etc.

As it was mentioned in the introductory lecture, the traditional results on the Newton method state,
under reasonable smoothness and nondegeneracy assumptions, its local quadratic convergence. These
results, as it became clear recently, possess a generic conceptual drawback: the quantitive description of
the region of quadratic convergence, same as the convergence itself, is given in terms of the condition
number of the Hessian of f at the minimizer and the Lipschitz constant of this Hessian. These quantities,
anyhow, are ”frame-dependent”: they are defined not by f itself, but also by the Euclidean structure in
the space of variables. Indeed, we need this structure simply to define the Hessian matrix of f , same,
by the way, as to define the gradient of f . When we change the Euclidean structure, the gradient and
the Hessian are subject to certain transformation which does not remain invariant the quantities like
the condition number of the Hessian or its Lipschitz constant. As a result, the traditional description
of the behaviour of the method depends not only on the objective itself, but also on an arbitrary choice
of the Euclidean structure used in the description, which contradicts the affine-invariant nature of the
method (note that no ”metric notions” are involved into the formulation of the method). To overcome
this drawback, note that the objective itself at any point x induces certain Euclidean structure Ex; to
define this structure, let us regard the second order differential

D2f(x)[h, g] =
∂2

∂t∂s
|t=s=0 f(x+ th+ sg)

of f taken at x along the pair of directions h and g as the inner product of the vectors h and g. Since
f is convex, this inner product possesses all required properties (except, possibly, the nondegeneracy
requirement ”the square of a nonzero vector is strictly positive”; as we shall see, this is a minor difficulty).
Of course, this Euclidean structure is local - it depends on x. Note that the Hessian of f , taken at x
with respect to the Euclidean structure Ex, is fine - this is simply the unit matrix, the matrix with the
smallest possible condition number, namely, 1. The traditional results on the Newton method say that
what is important for besides this condition number is the Lipschitz constant of the Hessian, or, which
is basically the same, the magnitude of the third order derivatives of f . What happens if we relate
these latter quantities to the local Euclidean structure defined by f? This is the key to the notion of
self-concordance. And the definition is as follows:

Definition 2.0.1 Let Q be a nonempty open convex set in Rn and F be a C3 smooth convex function
defined on Q. F is called self-concordant on Q, if it possesses the following two properties:

[Barrier property] F (xi) → ∞ along every sequence {xi ∈ Q} converging, as i → ∞, to a boundary
point of Q;

17



18 CHAPTER 2. SELF-CONCORDANT FUNCTIONS

[Differential inequality of self-concordance] F satisfies the differential inequality

|D3F (x)[h, h, h]| ≤ 2
(
D2F (x)[h, h]

)3/2
(2.1)

for all x ∈ Q and all h ∈ Rn.
From now on

DkF (x)[h1, ..., hk] ≡ ∂k

∂t1...∂tk
|t1=...=tk=0F (x+ t1h1 + ...+ tkhk)

denotes kth differential of F taken at x along the directions h1, ..., hk.

(2.1) says exactly that if a vector h is of local Euclidean length 1, then the third order derivative of
F in the direction h is, in absolute value, at most 2; this is nothing but the aforementioned ”Lipschitz
continuity”, with certain once for ever fixed constant, namely, 2, of the second-order derivative of F with
respect to the local Euclidean metric defined by this derivative itself.

You can ask what is so magic in the constant 2. The answer is as follows: both sides of (2.1) should be
nad actually are of the same homogeneity degree with respect to h (this is the origin of the exponentual
3/2 in the right hand side). As a consequence, they are of different homogeneity degrees with respect to
F . Therefore, given a function F satisfying the inequality

|D3F (x)[h, h, h]| ≤ 2α
(
D2F (x)[h, h]

)3/2
,

with certain positive α, you always may scale F , namely, multiply it by
√
α, and come to a function

satisfying (2.1). We see that the choice of the constant factor in (2.1) is of no actual importance and is
nothing but a normalization condition. The indicated choice of this factor is motivated by the desire to
make the function − ln t, which plays important role in what follows, to satisfy (2.1) ”as it is”, without
any scaling.

2.1 Examples and elementary combination rules

We start with a pair of examples of self-concordant functions.

Example 2.1.1 A convex quadratic form

f(x) = xTAx− 2bTx+ c

on Rn (and, in particular, a linear form on Rn) is self-concordant on Rn.

This is immediate: the left hand side of (2.1) is identically zero. An single-line verification of the definition
justifies also the following example:

Example 2.1.2 The function − ln t is self-concordant on the positive ray {t ∈ R | t > 0}.

The number of examples can be easily increased, due to the following extremely simple (and very
useful) combination rules:

Proposition 2.1.1 (i) [stability with respect to affine substitutions of argument] Let F be self-concordant
on Q ⊂ Rn and x = Ay + b be affine mapping from Rk to Rn with the image intersecting Q. Then the
inverse image of Q under the mapping, i.e., the set

Q+ = {y ∈ Rk | Ay + b ∈ Q}

is an open convex subset of Rk, and the composite function

F+(y) = F (Ay + b) : Q+ → R

is self-concordant on Q+.
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(ii) [stability with respect to summation and multiplication by reals ≥ 1] Let Fi be self-concordant
functions on the open convex domains Qi ⊂ Rn and αi ≥ 1 be reals, i = 1, ...,m. Assume that the set
Q = ∩mi=1Qi is nonempty. Then the function

F (x) = α1F1(x) + ...+ αmFm(x) : Q→ R

is self-concordant on Q.
(iii) [stability with respect to direct summation] Let Fi be self-concordant on open convex domains

Qi ⊂ Rni , i = 1, ...,m. Then the function

F (x1, ..., xm) = F1(x1) + ...+ Fm(xm) : Q ≡ Q1 × ...×Qm → R

is self-concordant on Q.

Proof is given by immediate and absolutely trivial verification of the definition. E.g., let us prove (ii).
Since Oi are open convex domains with nonempty intersection Q, Q is an open convex domain, as it
should be. Further, F , is, of course, C3 smooth and convex on Q. To prove the barrier property, note
that since Fi are convex, they are below bounded on any bounded subset of Q. It follows that if {xj ∈ Q}
is a sequence converging to a boundary point x of Q, then all the sequences {αiFi(xj)}, i = 1, ...,m, are
below bounded, and at least one of them diverges to ∞ (since x belongs to the boundary of at least one
of the sets Qi); consequently, F (xj)→∞, as required.

To verify (2.1), add the inequalities

αi|D3Fi(x)[h, h, h]| ≤ 2αi
(
D2Fi(x)[h, h]

)3/2
(x ∈ Q, h ∈ Rn). The left hand side of the resulting inequality clearly will be ≥ |D3F (x)[h, h, h]|, while

the right hand side will be ≤ 2
(
D2F (x)[h, h]

)3/2
, since for nonnegative bi and αi ≥ 1 one has∑

i

αib
3/2
i ≤ (

∑
i

αibi)
3/2.

Thus, F satisfies (2.1).
An immediate consequence of our combination rules is the following

Corollary 2.1.1 Let
G = {x ∈ Rn | aTi x− bi ≤ 0, i = 1, ...,m}

be a convex polyhedron defined by a set of linear inequalities satisfying the Slater condition:

∃x ∈ Rn : aTi x− bi < 0, i = 1, ...,m.

Then the standard logarithmic barrier for G given by

F (x) = −
m∑
i=1

ln(bi − aTi x)

is self-concordant on the interior of G.

Proof. From the Slater condition it follows that

int G = {x ∈ Rn | aTi x− bi < 0, i = 1, ...,m} = ∩mi=1Gi, Gi = {x ∈ Rn | aTi x− bi < 0}.

Since the function − ln t is self-concordant on the positive half-axis, every of the functions Fi(x) =
− ln(bi − aTi x) is self-concordant on Gi (item (i) of Proposition; note that Gi is the inverse image of the
positive half-axis under the affine mapping x 7→ bi−aTi x), whence F (x) =

∑
i Fi(x) is self-concordant on

G = ∩iGi (item (ii) of Proposition).
In spite of its extreme simplicity, the fact stated in Corollary, as we shall see in the mean time, is

responsible for 50% of all polynomial time results in Linear Programming.
Now let us come to systematic investigation of properties of self-concordant functions, with the final

goal to analyze the behaviour of the Newton method as applied to a function of this type.
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2.2 Properties of self-concordant functions

Let Q be an open convex domain in E = Rn and F be self-concordant on Q. For x ∈ Q and h, g ∈ E let
us define

〈g, h〉x = D2F (x)[g, h], |h|x = 〈h, h〉1/2x

so that | · |x is a Euclidean seminorm on E; it is a norm if and only if D2F (x) is nondegenerate.
Let us establish the basic properties of F .

0. Basic inequality. For any x ∈ Q and any triple hi ∈ E, i = 1, 2, 3, one has

|D3F (x)[h1, h2, h3]| ≤ 2

3∏
i=1

|hi|x.

Comment. This is the result of applying to the symmetric 3-linear form D3F (x)[h1, h2, h3] and 2-linear
positive semidefinite form D2F (x)[h1, h2] the following general fact:

let A[h1, ..., hk] be a symmetric k-linear form on Rn and B[h1, h2] be a symmetrice positive semidefinite
bilinear form such that

|A[h, h, ..., h]| ≤ αBk/2[h, h]

for certain α and all h. Then

|A[h1, ..., hk]| ≤ αB1/2[h1, h1]B1/2[h2, h2]...B1/2[hk, hk]

for all h1, ..., hk.

The proof of this statement is among the exercises to the lecture.

I. Behaviour in the Dikin ellipsoid For x ∈ Q let us define the centered at x open Dikin ellipsoid of
radius r as the set

Wr(x) = {y ∈ E | |y − x|x < r},

and the closed Dikin ellipsoid as the set

Ŵr(x) = clWr(x) = {y ∈ E | |y − x|x ≤ r}.

The open unit Dikin ellipsoid W1(x) is contained in Q. Within this ellipsoid the Hessians of F are ”almost
proportional” to F ′′(x),

(1− |h|x)2F ′′(x) ≤ F ′′(x+ h) ≤ (1− |h|x)−2F ′′(x) whenever |h|x < 1, (2.2)

the gradients of F satisfy the following Lipschitz-type condition:

|zT (F ′(x+ h)− F ′(x))| ≤ |h|x
1− |h|x

|z|x ∀z whenever |h|x < 1, (2.3)

and we have the following lower and upper bounds on F :

F (x) +DF (x)[h] + ρ(−|h|x) ≤ F (x+ h) ≤ F (x) +DF (x)[h] + ρ(|h|x), |h|x < 1. (2.4)

where

ρ(s) = − ln(1− s)− s =
s2

2
+
s3

3
+
s4

4
+ ... (2.5)

Lower bound in (2.4) is valid for all h such that x+ h ∈ Q, not only for those h with |h|x < 1.

Proof. Let h be such that
r ≡ |h|x < 1 and x+ h ∈ Q.

Let us prove that relations (2.2), (2.3) and (2.4) are satisfied at this particular h.
10. Let us set

φ(t) = D2F (x+ th)[h, h],
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so that φ is continuously differentiable on [0, 1]. We have

0 ≤ φ(t), r2 = φ(0) < 1, |φ′(t)| = |D3F (x+ th)[h, h, h]| ≤ 2φ3/2(t),

whence, for all small enough positive ε,

0 < φε(t) ≡ ε+ φ(t), φε(0) < 1, |φ′ε(t)| ≤ 2φ3/2
ε (t),

so that

| d
dt
φ−1/2
ε (t)| ≤ 1.

It follows that
φ−1/2
ε (0)− t ≤ φ−1/2

ε (t) ≤ φ−1/2
ε (0) + t, 0 ≤ t ≤ 1,

whence
φε(0)

(1 + tφ
1/2
ε (0))2

≤ φε(t) ≤
φε(0)

(1− tφ1/2
ε (0))2

.

The resulting inequalities hold true for all t ∈ [0, 1] and all ε > 0; passing to limit as ε→ +0, we come to

r2

(1 + rt)2
≤ φ(t) ≡ D2F (x+ th)[h, h] ≤ r2

(1− rt)2
, 0 ≤ t ≤ 1. (2.6)

20. Two sequential integrations of (2.6) result in

F (x) +DF (x)[h] +

∫ 1

0

{
∫ τ

0

r2

(1 + rt)2
dt}dτ ≤ F (x+ h) ≤

≤ F (x) +DF (x)[h] +

∫ 1

0

{
∫ τ

0

r2

(1− rt)2
dt}dτ,

which after straightforward computation leads to (2.4) (recall that r = |h|x).
Looking at the presented reasoning, one can immediately see that the restriction r < 1 was used only

in the derivation of the upper, not the lower bound in (2.4); therefore this lower bound is valid for all h
such that x+ h ∈ Q, as claimed.

30. Now let us fix g ∈ E and set

ψ(t) = D2F (x+ th)[g, g],

so that ψ a continuously differentiable nonnegative function on [0, 1]. We have

|ψ′(t)| = |D3F (x+ th)[g, g, h]| ≤ 2D2F (x+ th)[g, g]
[
D2F (x+ th)[h, h]

]1/2
(2.7)

(we have used 0.). Relation (2.7) means that ψ satisfies the linear differential inequality

|ψ′(t)| ≤ 2ψ(t)φ1/2(t) ≤ 2ψ(t)
r

1− rt
, 0 ≤ t ≤ 1

(the second inequality follows from (2.6) combined with ψ ≥ 0). It follows that

d

dt
[(1− rt)2ψ(t)] ≡ (1− rt)2[ψ′(t)− 2r(1− rt)−1ψ(t)] ≤ 0, 0 ≤ t ≤ 1,

and
d

dt
[(1− rt)−2ψ(t)] ≡ (1− rt)−2[ψ′(t) + 2r(1− rt)−1ψ(t)] ≥ 0, 0 ≤ t ≤ 1,

whence, respectively,
(1− rt)2ψ(t) ≤ ψ(0), (1− rt)−2ψ(t) ≥ ψ(0),

or, recalling what ψ and r are,

(1− |h|xt)−2D2F (x+ th)[g, g] ≥ D2F (x)[g, g] ≥ (1− |h|xt)2D2F (x+ th)[g, g];
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since g is arbitrary, we come to (2.2).
40. We have proved that (2.2) and (2.4) hold true for any h such that x+ h is in the open unit Dikin

ellipsoid W1(x) and x+h ∈ Q. To complete the proof, it remains to demonstrate that the latter ”and” is
redundant: x+h ∈ Q whenever x+h belongs to the open unit Dikin ellipsoid W1(x). To prove the latter
statement, assume, on contrary, that W1(x) is not contained in Q. Then there is a point y in W1(x) such
that the half-segment [x, y) belongs to Q and y itself does not belong to Q. The function F is well-defined
on this half-segment; moreover, as we already have seen, at any point x + h of this half-segment (2.4)
holds. When x + h runs over the half-segment, the quantities |h|x are bounded from above by |y − x|x
and are therefore less than 1 and bounded away from 1. It follows from (2.4) that F is bounded on the
half-segment, which is the desired contradiction: since y is a boundary point of Q, F should tend to ∞
as a point from [x, y) approaches to y.

50. It remains to prove (2.3). To this end let us fix an arbitrary vector z and let us set

g(t) = zT (F ′(x+ th)− F ′(x)).

Since the open unit Dikin ellipsoid W1(x) is contained in Q, the function g is well-defined on the segment
[0, 1]. We have

g(0) = 0;
|g′(t)| = |zTF ′′(x+ th)h|

≤
√
zTF ′′(x+ th)z

√
hTF ′′(x+ th)h

[we have used Cauchy’s inequality]

≤ (1− t|h|x)−2
√
zTF ′′(x)z

√
hTF ′′(x)h

[we have used (2.2)]

= |h|x(1− t|h|x)−2
√
zTF ′′(x)z,

whence

|g(1)| ≤
∫ 1

0

|h|x
(1− t|h|x)2

dt
√
zTF ′′(x)z =

|h|x
1− |h|x

√
zTF ′′(x)z,

as claimed in (2.3).

II. Recessive subspace of a self-concordant function. For x ∈ Q consider the subspace {h ∈ E |
D2F (x)[h, h] = 0} - the kernel of the Hessian of F at x. This recessive subspace EF of F is independent
of the choice of x and is such that

Q = Q+ EF .

In particular, the Hessian of F is nonsingular everywhere if and only if there exists a point where the
Hessian of F is nonsingular; this is for sure the case if Q is bounded.

Terminology: we call F nondegenerate, if EF = {0}, or, which is the same, if the Hessian of F is
nonsingular somewhere (and then everywhere) on Q.

Proof of II. To prove that the kernel of the Hessian of F is independent of the point where the Hessian
is taken is the same as to prove that if D2F (x0)[h, h] = 0, then D2F (y)[h, h] ≡ 0 identically in y ∈ Q.
To demonstrate this, let us fix y ∈ Q and consider the function

ψ(t) = D2F (x0 + t(y − x))[h, h],

which is consinuously differentiable on the segment [0, 1]. Same as in the item 30 of the previous proof,
we have

|ψ′(t)| = |D3F (x0 + t(y − x))[h, h, y − x]| ≤

≤ 2D2F (x0 + t(y − x))[h, h]
[
D2F (x0 + t(y − x))[y − x, y − x]

]1/2 ≡ ψ(t)ξ(t)

with certain continuous on [0, 1] function ξ. It follows that

|ψ′(t)| ≤Mψ(t)

with certain constant M , whence 0 ≤ ψ(t) ≤ ψ(0) exp{Mt}, 0 ≤ t ≤ 1 (look at the derivative of the
function ψ(t) exp{−Mt}). Since ψ(0) = 0, we come to ψ(1) = 0, i.e., D2F (y)[h, h] = 0, as claimed.
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Thus, the kernel of the Hessian of F is independent of the point where the Hessian is taken. If h ∈ EF
and x ∈ Q, then, of course, |h|x = 0, so that x+ h ∈ W1(x); from I. we know that W1(x) belongs to Q,
so that x+ h ∈ Q; thus, x+ EF ⊂ Q whenever x ∈ Q, as required.

Now it is time to introduce a very important concept of Newton decrement of a self-concordant
function at a point. Let x ∈ Q. The Newton decrement of F at x is defined as

λ(F, x) = max{DF (x)[h] | h ∈ E, |h|x ≤ 1}.

In other words, the Newton decrement is nothing but the conjugate to | · |x norm of the first-order
derivative of F at x. To be more exact, we should note that | · |x is not necessary a norm: it may be a
seminorm, i.e., may be zero at certain nonzero vectors; this happens if and only if the recessive subspace
EF of F is nontrivial, or, which is the same, if the Dikin ellipsoid of F is not an actual ellipsoid, but
an unbounded set - elliptic cylinder. In this latter case the maximum in the definition of the Newton
decrement may (not necessarily should) be +∞. We can immediately realize when this is the case.

III. Continuity of the Newton decrement. The Newton decrement of F at x ∈ Q is finite if and
only if DF (x)[h] = 0 for all h ∈ EF . If it is the case for certain x = x0 ∈ Q, then it is also the case for
all x ∈ Q, and in this case the Newton decrement is continuous in x ∈ Q and F is constant along its
recessive subspace:

F (x+ h) = F (x) ∀x ∈ Q ∀h ∈ EF ; (2.8)

otherwise the Newton decrement is identically +∞.

Proof. It is clear that if there is h ∈ EF such that DF (x)[h] 6= 0, then λ(F, x) = ∞, since |th|x = 0
for all real t and, consequently, DF (x)[u] is above unbounded on the set {|u|x ≤ 1}. Vice versa, assume
that DF (x)[h] = 0 for all h ∈ EF , and let us prove that then λ(F, x) <∞. There is nothing to prove if
EF = E, so that let us assume that EF 6= E. Let E⊥F be certain subspace of E complementary to EF :
EF ∩ E⊥F = {0}, EF + E⊥F = E, and let π be the projector of E onto E⊥F parallel to EF , i.e., if

h = hF + h⊥F

is the (unique) representation of h ∈ E as the sum of vectors from EF and E⊥F , then

πh = h⊥F .

It is clear that

|πh|x ≡ |h|x

(since the difference h − πh belongs to EF and therefore is of zero | · |x-seminorm), and since we have
assumed that DF (x)[u] is zero for u ∈ EF , we also have

DF (x)[h] = DF (x)[πh].

Combining these observations, we see that it is possible to replace E in the definition of the Newton
decrement by E⊥F :

λ(F, x) = max{DF (x)[h] | h ∈ E⊥F , |h|x ≤ 1}. (2.9)

Since | · |x restricted onto E⊥F is a norm rather than a seminorm, the right hand side of the latter relation
is finite, as claimed.

Now let us demonstrate that if λ(F, x) is finite at certain point x0 ∈ Q, then it is also finite at
any other point x of Q and is continuous in x. To prove finiteness, as we just have seen, it suffices to
demonstrate that DF (x)[h] = 0 for any x and any h ∈ EF . To this end let us fix x ∈ Q and h ∈ EF and
consider the function

ψ(t) = DF (x0 + t(x− x0))[h].

This function is continuously differentiable on [0, 1] and is zero at the point t = 0 (since λ(F, x0) is
assumed finite); besides this,

ψ′(t) = D2F (x0 + t(x− x0))[h, x− x0] = 0
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(since h belongs to the null space of the positive semidefinite symmetric bilinear form D2F (x0 + t(x −
x0))[h1, h2]), so that ψ is constant, namely, 0, and ψ(1) = 0, as required. As a byproduct of our reasonong,
we see that if λ(F, ·) is finite, then

F (x+ h) = F (x), x ∈ Q, h ∈ EF ,

since the derivative of F at any point from Q in any direction from EF is zero.
It remains to prove that if λ(F, x) is finite at certain (and then, as we just have proved, at any) point,

then this is a continuous function of x. This is immediate: we already know that if λ(F, x) is finite, it
can be defined by relation (2.9), and this relation, by the standard reasons, defines a continuous function
of x (since | · |x restricted onto E⊥F is a continuously depending on x norm, not a seminorm).

The following simple observation clarifies the origin of the Newton decrement and its relation to the
Newton method.

IV. Newton Decrement and Newton Iterate. Given x ∈ Q, consider the second-order Newton
expansion of F at x, i.e., the convex quadratic form

NF,x(h) = F (x) +DF (x)[h] +
1

2
D2F (x)[h, h] ≡ F (x) +DF (x)[h] +

1

2
|h|2x.

This form is below bounded if and only if it attains its minimum on E and if and only if λ(F, x) <∞; if
it is the case, then for (any) Newton direction e of F at x, i.e., any minimizer of this form, one has

D2F (x)[e, h] ≡ −DF (x)[h], h ∈ E, (2.10)

|e|x = λ(F, x) (2.11)

and

NF,x(0)−NF,x(e) =
1

2
λ2(F, x). (2.12)

Thus, the Newton decrement is closely related to the amount by which the Newton iteration

x 7→ x+ e

decreases F in its second-order expansion.

Proof. This is an immediate consequence of the standard fact of Linear Algebra: a convex quadratic
form

fA,b(h) =
1

2
hTAh+ bTh+ c

is below bounded if and only if it attains its minimum and if and only if the quantity

λ = max{bTh | hTAh ≤ 1}

is finite; if it is the case, then the minimizers y of the form are exactly the vectors such that

yTAh = −bTh, h ∈ E,

for every minimizer y one has
yTAy = λ2

and

fA,b(0)−min fA,b =
1

2
λ2.

The observation given by IV. allows to compute the Newton decrement in the nondegenerate case
EF = {0}.

IVa. Expressions for the Newton direction and the Newton decrement. If F is nondegenerate
and x ∈ Q, then the Newton direction of F at x is unique and is nothing but

e(F, x) = −[F ′′(x)]−1F ′(x),
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F ′ and F ′′ being the gradient and the Hessian of F with respect to certain Euclidean structure on E,
and the Newton decrement is given by

λ(F, x) =
√

(F ′(x))T [F ′′(x)]−1F ′(x) =
√
eT (F, x)F ′′(x)e(F, x) =

√
−eT (F, x)F ′(x).

Proof. This is an immediate consequence of IV. (pass from the ”coordinateless” differentials to
”coordinate” representation in terms of the gradient and the Hessian).

Now comes the main statement about the behaviour of the Newton method as applied to a self-
concordant function.

V. Damped Newton Method: relaxation property. Let λ(F, ·) be finite on Q. Given x ∈ Q,
consider the damped Newton iterate of x

x+ ≡ x+(F, x) = x+
1

1 + λ(F, x)
e,

e being (any) Newton direction of F at x. Then

x+ ∈ Q

and
F (x)− F (x+) ≥ λ(F, x)− ln(1 + λ(F, x)). (2.13)

Proof. As we know from IV., |e|x = λ ≡ λ(F, x), and therefore |x+ − x|x = λ/(1 + λ) < 1. Thus, x+

belongs to the open unit Dikin ellipsoid of F centered at x, and, consequently, to Q (see I.). In view of
(2.4) we have

F (x+) ≤ F (x) +
1

1 + λ
DF (x)[e] + ρ((1 + λ)−1|e|x) =

[see (2.10) - (2.12)]

= F (x)− 1

1 + λ
D2F (x)[e, e] + ρ

(
λ

1 + λ

)
= F (x)− λ2

1 + λ
+ ρ

(
λ

1 + λ

)
=

[see the definition of ρ in (2.4)]

= F (x)− λ2

1 + λ
− ln

(
1− λ

1 + λ

)
− λ

1 + λ
=

= F (x)− λ+ ln(1 + λ),

so that
F (x)− F (x+) ≥ λ− ln(1 + λ),

as claimed.

VI. Existence of minimizer, A. F attains its minimum on Q if and only if it is below bounded on
Q; if it is the case, then λ(F, ·) is finite and, moreover, minx∈Q λ(F, x) = 0.

Proof. Of course, if F attains its minimum on Q, it is below bounded on this set. To prove the inverse
statement, assume that F is below bounded on Q, and let us prove that it attains its minimum on Q.
First of all, λ(F, ·) is finite. Indeed, if there would be x ∈ Q with infinite λ(F, x), it would mean that
the derivative of F taken at x in certain direction h ∈ EF is nonzero. As we know from II., the affine
plane x+EF is contained in Q, and the second order derivative of the restriction of F onto this plane is
identically zero, so that the restriction is linear (and nonconstant, since the first order derivative of F at x
in certain direction from EF is nonzero). And a nonconstant linear function F |x+EF is, of course, below
unbounded. Now let Q⊥ be the cross-section of Q by the plane x+E⊥F , where x ∈ Q is certain fixed point
and E⊥F is a subspace complementary to EF . Then Q⊥ is an open convex set in certain Rk and, in view
of II., Q = Q⊥ +EF ; in view of III. F is constant along any translation of EF , and we see that it is the
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same to prove that F attains its minimum on Q and to prove that the restriction of F onto Q⊥ attains its
minimum on Q⊥. This restriction is a self-concordant function on Q⊥ (Proposition 2.1.1); of course, it is
below bounded on Q⊥, and its recessive subspace is trivial. Passing from (Q,F ) to (Q⊥, F |Q⊥), we see
that the statement in question can be reduced to a similar statement for a nondegenerate self-concordant
below bounded function; to avoid complicated notation, let us assume that F itself is nondegenerate.

Since F is below bounded, the quantity infx∈Q λ(F, x) is 0; indeed, if it were positive:

λ(F, x) > λ > 0 ∀x ∈ Q,

then, according to V., we would have a possibility to pass from any point x ∈ Q to another point x+

with at least by the constant λ − ln(1 + λ) less value of F , which, of course, is impossible, since F is
assumed below bounded. Since infx∈Q λ(F, x) = 0, there exists a point x with λ ≡ λ(F, x) ≤ 1/6. From
(2.4) it follows that

F (x+ h) ≥ F (x) +DF (x)[h] + |h|x − ln(1 + |h|x), |h|x < 1.

Further, in view of (2.10),
DF (x)[h] = −D2F (x)[e, h] ≥ −|e|x|h|x

(we have used the Cauchy inequality), which combined with (2.11) results in

DF (x)[h] ≥ −λ|h|x,

and we come to
F (x+ h) ≥ F (x)− λ|h|x + |h|x − ln(1 + |h|x). (2.14)

When 0 ≤ t < 1, we have

f(t) ≡ −λt+ t− ln(1 + t) ≥ −λt+ t− t+
1

2
t2 − 1

3
t3 +

1

4
t4 − ... ≥

≥ −λt+
1

2
t2 − 1

3
t3 = t

[
1

2
t− 1

3
t2 − λ

]
,

and we see that if
t(λ) = 2(1 + 3λ)λ,

then f(t(λ)) > 0 and t(λ) < 1. From (2.14) we conclude that F (x + h) > F (x) whenever x + h belongs

to the boundary of the closed Dikin ellipsoid Ŵt(λ)(x) which in the case in question is a compact subset
of Q (recall that F is assumed to be nondegenerate). It follows that the minimizer of F over the ellipsoid
(which for sure exists) is an interior point of the ellipsoid and therefore (due to convexity of F ) is a
minimizer of F over Q, so that F attains its minimum over Q.

To proceed, let me recall to you the concept of the Legendre transformation. Given a convex function
f defined on a convex subset Dom f of Rn, one can define the Legendre transformation f∗ of f as

f∗(y) = sup
x∈Dom f

[yTx− f(x)];

the domain of f∗ is, by definition, comprised of those y for which the right hand side is finite. It is
immediately seen that Dom f∗ is convex and f∗ is convex on its domain.

Let Dom f be open and f be k ≥ 2 times continuously differentiable on its domain, the Hessian of f
being nondegenerate. It is celarly seen that

(L.1) if x ∈ Dom f , then y = f ′(x) ∈ Dom f∗, and

f∗(f ′(x)) = (f ′(x))Tx− f(x); x ∈ ∂f∗(f ′(x)).

Since f ′′ is nondegenerate, by the Implicit Function Theorem the set Dom∗ f∗ of values of f ′ is open;
since, in addition, f is convex, the mapping

x 7→ f ′(x)
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is (k − 1) times continuously differentiable one-to-one mapping from Dom f onto Dom∗ f∗ with (k − 1)
times continuously differentiable inverse. From (L.1) it follows that this inverse mapping also is given by
gradient of some function, namely, f∗. Thus,

(L.2) The mapping x 7→ f ′(x) is a one-to-one mapping of Dom f onto an open set Dom∗ f∗ ⊂ Dom f∗,
and the inverse mapping is given by y 7→ (f∗)′(y).
As an immediate consequence of (L.2), we come to the following statement

(L.3) f∗ is k times continuously differentiable on Dom∗ f∗, and

(f∗)′′(f ′(x)) = [f ′′(x)]−1, x ∈ Dom f. (2.15)

VII. Self-concordance of the Legendre transformation. Let the Hessian of the self-concordant
function F be nondegenerate at some (and then, as we know from II., at any) point. Then DomF ∗ =
Dom∗ F ∗ is an open convex set, and the function F ∗ is self-concordant on DomF ∗.

Proof. 10. Let us prove first that DomF ∗ = Dom∗ F ∗. If y ∈ DomF ∗, then, by definition, the function
yTx−F (x) is bounded from above on Q, or, which is the same, the function F (x)−yTx is below bounded
on Q. This function is self-concordant (Proposition 2.1.1.(ii) and Example 2.1.1), and since it is below
bounded, it attains its minimum on Q (VI.). At the minimizer x∗ of the function we have F ′(x∗) = y,
and we see that y ∈ Dom∗ F ∗. Thus, DomF = Dom∗ F ∗.

20. The set DomF ∗ is convex, and the set Dom∗ F ∗ is open ((L.2)); from 10 it follows therefore
that F ∗ is a convex function with a convex open domain DomF ∗. The function is 3 times continuously
differentiable on DomF ∗ = Dom∗ F ∗ in view of (L.3). To prove self-concordance of F ∗, it suffices to
verify the barrier property and the differential inequality (2.1).

30. The barrier property is immediate: if a sequence yi ∈ DomF ∗ converges to a point y and the
sequence {F ∗(yi)} is bounded from above, then the functions yTi x − F (x) are uniformly bounded from
above on Q and therefore their pointwise limit yTx−F (x) also is bounded from above on Q; by definition
of DomF ∗ it means that y ∈ DomF ∗, and since we already know that DomF ∗ is open, we conclude that
any convergent sequence of points from DomF ∗ along which F ∗ is bounded from above converges to an
interior point of DomF ∗; this, of course, is an equivalent reformulation of the barrier property.

40. It remains to verify (2.1). From (L.3) for any fixed h we have

hT (F ∗)′′(F ′(x))h = hT [F ′′(x)]−1h, x ∈ Q.

Differentiating this identity in x in a direction g, we come to1)

D3F ∗(F ′(x))[h, h, F ′′(x)g] = −D3F (x)[[F ′′(x)]−1h, [F ′′(x)]−1h, g];

substituting g = [F ′′(x)]−1h, we come to

|D3F ∗(F ′(x))[h, h, h]| = |D3F (x)[g, g, g]| ≤ 2
(
D2F (x)[g, g]

)3/2 ≡ 2
(
gTF ′′(x)g

)3/2
=

[since g = [F ′′(x)]−1h]

= 2
(
hT [F ′′(x)]−1h

)3/2
.

The latter quantity, due to (L.3), is exactly 2
(
hT (F ∗)′′(F ′(x))h

)3/2
, and we come to

|D3F ∗(y)[h, h, h]| ≤ 2
(
D2F ∗(y)[h, h]

)3/2
for all h and all y = F ′(x) with x ∈ Q. When x runs over Q, y, as we alerady know, runs through the
whole DomF ∗, and we see that (2.1) indeed holds true.

1we use the following rule for differentiating the mapping x 7→ B(x) ≡ A−1(x), A(x) being a square nonsingular matrix
smoothly depending on x:

DB(x)[g] = −B(x)DA(x)[g]B(x)

(to get it, differentiate the identity B(x)A(x) ≡ I).
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VIII. Existence of minimizer, B. F attains its minimum on Q if and only if there exists x ∈ Q with
λ(F, x) < 1, and for every x with the latter property one has

F (x)−min
Q

F ≤ ρ(λ(F, x)); (2.16)

moreover, for an arbitrary minimizer x∗ of F on Q and the above x one has

D2F (x)[x∗ − x, x∗ − x] ≤
(

λ(F, x)

1− λ(F, x)

)2

. (2.17)

Proof. The ”only if” part is evident: λ(F, x) = 0 at any minimizer x of F . To prove the ”if” part, we,
same as in the proof of VI., can reduce the situation to the case when F is nondegenerate. Let x be such
that λ ≡ λ(F, x) < 1, and let y = F ′(x). In view of (L.3) we have

yT (F ∗)′′(y)y = (F ′(x))T [F ′′(x)]−1F ′(x) = λ2 (2.18)

(the latter relation follows from VIa.). Since λ < 1, we see that 0 belongs to the centered at y open Dikin
ellipsoid of the self-concordant (as we know from VII.) function F ∗ and therefore (I.) to the domain
of this function. From VII. we know that this domain is comprised of values of the gradient of F at
the points of Q; thus, there exists x∗ ∈ Q such that F ′(x∗) = 0, and F attains its minimum on Q.
Furthermore, from (2.4) as applied to F ∗ and from (2.18) we have

F ∗(0) ≤ F ∗(y)− yT (F ∗)′(y) + ρ(λ);

since y = F ′(x) and 0 = F ′(x∗), we have (see (L.1))

F ∗(y) = yTx− F (x), (F ∗)′(y) = x, F ∗(0) = −F ∗(x∗),

and we come to

−F (x∗) ≤ yTx− F (x)− yTx+ ρ(λ),

which is nothing but (2.16).
Finally, setting

|h|y =
√
hT (F ∗)′′(y)h

and noticing that, by (2.18), |y|y = λ < 1, we get for an arbitrary vector z

|zT (x∗ − x)| = |zT [(F ∗)′(0)− (F ∗)′(y)]|
≤ λ

1−λ

√
zT (F ∗)′′(y)z

[we have applied (2.3) to F ∗ at the point y with h = −y]

= λ
1−λ

√
zT [F ′′(x)]−1z;

substituting z = F ′′(x)(x∗ − x), we get

√
(x∗ − x)F ′′(x)(x∗ − x) ≤ λ

1− λ
,

as required in (2.17).

Remark 2.2.1 Note how sharp is the condition of existence of minimizer given by VII.: for the self-
concordant on the positive ray and below unbounded function F (x) = − lnx one has λ(F, x) ≡ 1!

IX. Damped Newton method: local quadratic convergence. Let λ(F, ·) be finite, let x ∈ Q, and
let x+ be the damped Newton iterate of x (see V.). Then

λ(F, x+) ≤ 2λ2(F, x). (2.19)
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Besides this, if λ(F, x) < 1, then F attains its minimum on Q, and for any minimizer x∗ of F one has

|x− x∗|x∗ ≤
λ(F, x)

1− λ(F, x)
; (2.20)

|x− x∗|x ≤
λ(F, x)

1− λ(F, x)
. (2.21)

Proof. 10. To prove (2.19), denote by e the Newton direction of F at x, set

λ = λ(F, x), r =
1

1 + λ
,

and let h ∈ E. The function
ψ(t) = DF (x+ te)[h]

is twice continuously differentiable on [0, r]; we have

ψ′(t) = D2F (x+ te)[h, e], ψ′′(t) = D3F (x+ te)[h, e, e],

whence, in view of O.,
|ψ′′(t)| ≤ 2|h|x+te|e|2x+te ≤

[in view of (2.2) and since |e|x = λ, see (2.11)]

≤ 2(1− tλ)−3|h|x|e|2x = 2(1− tλ)−3λ2|h|x.

It follows that

DF (x+)[h] ≡ ψ(r) ≤ ψ(0) + rψ′(0) + |h|x
∫ r

0

{
∫ t

0

2(1− τλ)−3λ2dτ}dt =

= ψ(0) + rψ′(0) +
λ2r2

1− λr
|h|x =

[the definition of ψ]

= DF (x)[h] + rD2F (x)[h, e] +
λ2r2

1− λr
|h|x =

[see (2.10)]

= (1− r)DF (x)[h] +
λ2r2

1− λr
|h|x =

[the definition of r]
λ

1 + λ
DF (x)[h] +

λ2

1 + λ
|h|x ≤

[since DF (x)[h] ≤ λ|h|x by definition of λ = λ(F, x)]

≤ 2
λ2

1 + λ
|h|x ≤

[see (2.2) and take into account that |x+ − x|x = r|e|x = rλ]

≤ 2
λ2

1 + λ

1

1− rλ
|h|x+ = 2λ2|h|x+ .

Thus, for any h ∈ E we have DF (x+)[h] ≤ 2λ2|h|x+ , as claimed in (2.19).
20. Let x ∈ Q be such that λ ≡ λ(F, x) < 1. We already know from VIII. that in this case F attains

its minimum on Q, and that

F (x)−min
Q

F ≤ ρ(λ) ≡ − ln(1− λ)− λ. (2.22)
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Let x∗ be a minimizer of F on Q and let r = |x − x∗|x∗ . From (2.4) applied to x = x∗, h = x − x∗ it
follows that

F (x) ≥ F (x∗) + ρ(−r) ≡ F (x∗) + r − ln(1 + r).

Combining this observation with (2.22), we come to

r − ln(1 + r) ≤ −λ− ln(1− λ),

and it immediately follows that r ≤ λ
1−λ , as required in (2.20). (2.21) is identical to (2.17).

The main consequence of the indicated properties of self-concordant functions is the following descrip-
tion of the behaviour of the Damped Newton method (for the sake of simplicity, we restrict ourselves
with the case of nondegenerate F ):

X. Summary on the Damped Newton method. Let F be self-concordant nondegenerate function
of Q. Then

A. [existence of minimizer] F attains its minimum on Q if and only if it is below bounded on Q; this
is for sure the case if

λ(F, x) ≡
√

(F ′(x))T [F ′′(x)]−1F ′(x) < 1

for some x.
B. Given x1 ∈ Q, consider the Damped Newton minimization process given by the reccurence

xi+1 = xi −
1

1 + λ(F, xi)
[F ′′(xi)]

−1F ′(xi). (2.23)

The recurrency keeps the iterates in Q and possesses the following properties
B.1 [relaxation property]

F (xi+1) ≤ F (xi)− [λ(F, xi)− ln(1 + λ(F, xi))]; (2.24)

in particular, if λ(F, xi) is greater than an absolute constant, then the progress in the value of F at the step
i is at least another absolute constant; e.g., if λ(F, xi) ≥ 1/4, then F (xi)−F (xi+1) ≥ 1

4−ln 5
4 = 0.026856...

B.2 [local quadratic convergence] If at certain step i we have λ(F, xi) ≤ 1
4 , then we are in the region

of quadratic convergence of the method, namely, for every j ≥ i we have

λ(F, xj+1) ≤ 2λ2(F, xj) [≤ 1

2
λ(F, xj)], (2.25)

F (xj)−min
Q

F ≤ ρ(λ(F, xj)) [≤ λ2(F, xj)

2(1− λ(F, xj))
], (2.26)

and for the (unique) minimizer x∗ of F we have

|xj − x∗|x∗ ≤
λ(F, xj)

1− λ(F, xj)
. (2.27)

If, in addition, λ(F, x) < 1/2, then also

|xj − x∗|xj ≤
λ(F, xj)

1− 2λ(F, xj)
. (2.28)

C. If F is below bounded, then the Newton complexity (i.e., # of steps (2.23)) of finding a point x ∈ Q
with λ(F, x) ≤ κ ≤ 0.1) does not exceed the quantity

O(1)

(
[F (x1)−min

Q
F ] + ln ln

1

κ

)
(2.29)

with an absolute constant O(1).

The statements collected in X. in fact are already proved: A is given by VIII.; B.1 is V.; B.2 is IX.;
C is an immediate consequence of B.1 and B.2.

Note that the description of the convergence properties of the Newton method as applied to a self-
concordant function is completely objective-independent; it does not involve any specific numeric char-
acteristics of F .
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2.3 Exercises: Around Symmetric Forms

The goal of the below exercises is to establish the statement underlying 0.:

(P): letA[h1, ..., hk] be a k-linear symmetric form on Rn andB[h1, h2] be a symmetric positive semidefinite
2-linear form on Rn. Assume that for some α one has

|A[h, ..., h]| ≤ αBk/2[h, h], h ∈ Rn. (2.30)

Then

|A[h1, ..., hk]| ≤ α
k∏
i=1

B1/2[hi, hi] (2.31)

for all h1, ..., hk.

Let me start with recalling the terminology. A k-linear form A[h1, ..., hk] on E = Rn is a real-
valued function of k arguments h1, ..., hk, each of them varying over E, which is linear and homogeneous
function with respect to every argument, the remaining arguments being set to arbitrary (fixed) values.
The examples are:

• a linear form A[h] = aTh (k = 1);

• a bilinear form A[h1, h2] = hT1 ah2, a being n× n matrix (k = 2);

• 3-linear form of the type A[h1, h2, h3] = (aTh1)(hT2 h3);

• the n-linear form A[h1, ..., hn] = Det (h1; ...;hn).

A k-linear form is called symmetric, if it remains unchanged under every permutation of the collection
of arguments.

Exercise 2.3.1 Prove that any 2-linear form on Rn can be reprresented as A[h1, h2] = hT1 ah2 via certain
n×n martix a. When the form is symmetric? Which of the forms in the above examples are symmetric?

The restriction of a symmetric k-linear form A[h1, ..., hk] onto the ”diagonal” h1 = h2 = ... = hk = h,
which is a function of h ∈ Rn, is called homogeneous polynomial of full degree k on Rn; the definition
coincides with the usual Calculus definition: ”a polynomial of n variables is a finite sum of monomials,
every monomial being constant times product of nonnegative integer powers of the variables. A polyno-
mial is called homogeneous of full degree k if the sum of the powers in every monomial is equal to k”.

Exercise 2.3.2 Prove the equivalence of the aforementioned two definitions of a homogeneous polyno-
mial. What is the 3-linear form on R2 which produces the polynomial xy2 ((x, y) are coordinates on
R2)?

Of course, you can restrict onto diagonal an arbitrary k-linear form, not necessarily symmetric, and get
certain function on E. You, anyhow, will not get something new: for any k-linear form A[h1, ..., hk] there
exists a symmetric k-linear form AS [h1, ..., hk] with the same restriction on the diagonal:

A[h, ..., h] ≡ AS [h, ..., h], h ∈ E;

to get AS , it suffices to take average, over all permutations σ of the k-element index set, of the forms
Aσ[h1, ..., hk] = A[hσ(1), ..., hσ(k)].

From polylinearity of a k-linear form A[h1, ..., hk] it follows that the value of the form at the collection
of linear combinations

hi =
∑
j∈J

ai,jui,j , i = 1, ..., k,

J being a finite index set, can be expressed as

∑
j1,...,jk∈J

(
k∏
i=1

ai,j

)
A[u1,j1 , u2,j2 , ..., uk,jk ];
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this is nothing but the usual rule for ”opening the parentheses”. In particular, A[·] is uniquely defined
by its values on the collections comprised of basis vectors e1, ..., en:

A[h1, ..., hk] =
∑

1≤j1,...,jk≤n

h1,j1h2,j2 ...hk,jk A[ej1 , ej2 , ..., ejk ],

hi,j being j-th coordinate of the vector hi with respect to the basis. It follows that a polylinear form is
continuous (even C∞) function of its arguments.

A symmetric bilinear form A[h1, h2] is called positive semidefinite, if the corresponding homogeneous
polynomial is nonnegative, i.e., if A[h, h] ≥ 0 for all h. A symmetric positive semidefinite bilinear form
sastisfies all requirements imposed on an inner product, except, possibly, the nondegeneracy requirements
”square of nonzero vector is nonzero”. If this requirement also is satisfied, i.e., if A[h, h] > 0 whenever
h 6= 0, then A[h1, h2] defines an Euclidean structure on E. As we know from Exercise 2.3.1, a bilinear
form on Rn always can be represented by a n× n matrix a as hT1 ah2; the form is symmetric if and only
if a = aT , and is symmetric positive (semi)definite if and only if a is symmetric positive (semi)definite
matrix.

A symmetric k-linear form produces, as we know, a uniquely defined homogeneous polynomial of
degree k. It turns out that the polynomial ”remembers everything” about the related k-linear form:

Exercise 2.3.3 #+ Prove that for every k there exist:

• integer m,

• real ”scale factors” r1,l, r2,l, ..., rl,l, l = 1, ...,m,

• real weights wl, l = 1, ...,m,

with the following property: for any n and any k-linear symmetric form A[h1, ..., hk] on Rn identically
in h1, ..., hk one has

A[h1, ..., hk] =

m∑
l=1

wlA

[
k∑
i=1

ri,lhi,

k∑
i=1

ri,lhi, ...,

k∑
i=1

ri,lhi

]
.

In other words, A can be restored, in a linear fashion, via its restriction on the diagonal.
Find a set of scale factors and weights for k = 2 and k = 3.

Now let us come to the proof of (P). Of course, it suffices to consider the case when B is positive
definite rather than semidefinite (replace B[h1, h2] with Bε[h1, h2] = B[h1, h2]+εhT1 h2, ε > 0, thus making
B positive definite and preserving the assumption (2.30); given that (P) is valid for positive definite B,
we would know that (2.31) is valid for B replaced with Bε and would be able to pass to limit as ε→ 0).
Thus, from now on we assume that B is symmetric positive definite. In this case B[h1, h2] can be taken
as an inner product on Rn, and in the associated ”metric” terms (P) reads as follows:

(P’): let | · | be a Euclidean norm on Rn, A[h1, ..., hk] be a k-linear symmetric form on Rn such that

|A[h, ..., h]| ≤ α|h|k, h ∈ Rn.

Then

|A[h1, ..., hk]| ≤ α|h1|...|hk|, h1, ..., hk ∈ Rn.

Now, due to homogeneity of A with respect to every hi, to prove the conclusion in (P’) is the same as
to prove that |A[h1, ..., hk]| ≤ α whenever |hi| ≤ 1, i = 1, ..., k. Thus, we come to the following equivalent
reformulation of (P’):

prove that for a k-linear symmetric form A[h1, ..., hk] one has

max
|h|=1

|A[h, ..., h]| = max
|hi|≤1

|A[h1, ..., hk]|. (2.32)
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Note that from Exercise 2.3.3 it immediately follows that the right hand side of (2.32) is majorated by
a constant times the left hand side, with the constant depending on k only. For this latter statement it is
completely unimportant whether the norm | · | in question is or is not Euclidean. The point, anyhow, is
that in the case of Euclidean norm the aforementioned constant factor can be set to 1. This is something
which should be a ”common knowledge”; surprisingly, I was unable to find somewhere even the statement,
not speaking of the proof. I do not think that the proof presented in the remaining exercises is the simplest
one, and you are welcome to find something better. We shall prove (2.32) by induction on k.

Exercise 2.3.4 Prove the base, i.e., that (2.32) holds true for k = 2.

Now assume that (2.32) is valid for k = l − 1 and any k-linear symmetric form A, and let is prove that
it is valid also for k = l.

Let us fix a symmetric l-linear form A, and let us call a collection T = {T1, ..., Tl} of one-dimensional
subspaces of Rn an extremal, if for some (and then - for each) choice of unit vectors ei ∈ Ti one has

|A[e1, ..., el]| = ω ≡ max
|h1|=...=|hl|=1

|A[h1, ..., hl]|.

Clearly, extremals exist (we have seen that A[·] is continuous). Let T be the set of all extremals. To
prove (2.32) is the same as to prove that T contains an extremal of the type {T, ..., T}.

Exercise 2.3.5 #+ Let {T1, ..., Tl} ∈ T and T1 6= T2. Let ei ∈ Ti be unit vectors, h = e1+e2, q = e1−e2.
Prove that then both {Rh,Rh, T3, ..., Tl} and {Rq,Rq, T3, ..., Tl} are extremals.

Let T∗ be the subset of T formed by the extremals of the type {
t times︷ ︸︸ ︷
T, ..., T ,

s times︷ ︸︸ ︷
S, ..., S} for some t and s

(depending on the extremal). By virtue of the inductive assumption, T∗ is nonempty (in fact, T∗ contains

an extremal of the type {T, ..., T, S}). For T = {
t times︷ ︸︸ ︷
T, ..., T ,

s times︷ ︸︸ ︷
S, ..., S} ∈ T∗ let α(T ) denote the angle (from

[0, π2 ]) between T and S.

Exercise 2.3.6 #+ Prove that if T = {T, ..., T, S, ..., S} is an extremal of the aforementioned ”2-line”
type, then there exists an extremal T ′ of the same type with φ(T ′) ≤ 1

2φ(T ). Derive from this observation
that there exists a 2-line extremal with φ(T ) = 0, i.e., of the type {T, ..., T}, and thus complete the
inductive step.

Exercise 2.3.7 ∗ Let A[h1, ..., hk], h1, ..., hk ∈ Rn be a linear with respect to every argument and invari-
ant with respect to premutations of argumens mapping taking values in certain Rl, and let B[h1, h2] be a
symmetric positive semidefinite bilinear scalar form on Rn such that

‖ A[h, ..., h] ‖≤ αBk/2[h, h], h ∈ Rn,

‖ · ‖ being certain norm on Rk. Prove that then

‖ A[h1, ..., hk] ‖≤ α
k∏
i=1

B1/2[hi, hi], h1, ..., hk ∈ Rn.
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Chapter 3

Self-concordant barriers

We have introduced and studied the notion of a self-concordant function for an open convex domain.
To complete developing of technical tools, we should investigate a specific subfamily of this family -
self-concordant barriers.

3.1 Definition, examples and combination rules

Definition 3.1.1 Let G be a closed convex domain in Rn (”domain” means ”a set with a nonempty
interior”), and let ϑ ≥ 0. A function F : int G → R is called self-concordant barrier for G with the
parameter value ϑ (in short, ϑ-self-concordant barrier for G), if

a) F is self-concordant on int G;
b) one has

|DF (x)[h]| ≤ ϑ1/2
[
D2F (x)[h, h]

]1/2
(3.1)

for all x ∈ int G and all h ∈ Rn.

Recall that self-concordance is, basically, Lipschitz continuity of the Hessian of F with respect to the
local Euclidean metric defined by the Hessian itself. Similarly, (3.1) says that F should be Lipschitz
continuous, with constant ϑ1/2, with respect to the same local metric.

Recall also that the quantity

λ(F, x) = max{DF (x)[h] | D2F (x)[h, h] ≤ 1}

was called the Newton decrement of F at x; this quantity played crucial role in our investigation of
self-concordant functions. Relation (3.1) means exactly that the Newton decrement of F should be
bounded from above, independently of x, by certain constant, and the square of this constant is called
the parameter of the barrier.

Let us point out preliminary examples of self-concordant barriers. To this end let us look at the basic
examples of self-concordant functions given in the previous lecture.

Example 3.1.1 A constant is self-concordant barrier for Rn with the parameter 0.

It can be proved that a constant is the only self-concordant barrier for the whole space, and the only
self-concordant barrier with the value of the parameter less than 1. In what follows we never deal with
the trivial - constant - barrier, so that you should remember that the parameters of barriers in question
will always be ≥ 1.

In connection with the above trivial example, note that the known to us self-concordant on the whole
space functions - linear and convex quadratic ones - are not self-concordant barriers, provided that they
are nonconstant. This claim follows from the aforementioned general fact that the only self-concordant
barrier for the whole space is a constant and also can be easily verified directly.

Another basic example of a self-concordant function known to us is more productive:

Example 3.1.2 The function F (x) = − lnx is a self-concordant barrier with parameter 1 for the non-
negative ray.

35
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This is seen from an immediate computation.
The number of examples can be immediately increased, due to the following simple combination rules

(completely similar to those for self-concordant functions):

Proposition 3.1.1 (i) [stability with respect to affine substitutions of argument] Let F be a ϑ-self-
concordant barrier for G ⊂ Rn and let x = Ay + b be affine mapping from Rk to Rn with the image
intersecting int G. Then the inverse image of G under the mapping, i.e., the set

G+ = {y ∈ Rk | Ay + b ∈ G}

is a closed convex domain in Rk, and the composite function

F+(y) = F (Ay + b) : int G+ → R

is a ϑ-self-concordant barrier for G+.
(ii) [stability with respect to summation and multiplication by reals ≥ 1] Let Fi be ϑi-self-concordant

barriers for the closed convex domains Gi ⊂ Rn and αi ≥ 1 be reals, i = 1, ...,m. Assume that the set
G = ∩mi=1Gi has a nonempty interior. Then the function

F (x) = α1F1(x) + ...+ αmFm(x) : int G→ R

is (
∑
i αiϑi)-self-concordant barrier for G.

(iii) [stability with respect to direct summation] Let Fi be ϑi-self-concordant barriers for closed convex
domains Gi ⊂ Rni , i = 1, ...,m. Then the function

F (x1, ..., xm) = F1(x1) + ...+ Fm(xm) : int G→ R, G ≡ G1 × ...×Gm,

is (
∑
i ϑi)-self-concordant barrier for G.

Proof is given by immediate and absolutely trivial verification of the definition. E.g., let us prove (ii).
From Proposition 2.1.1.(ii) we know that F is self-concordant on int G ≡ ∩mi=1 int Gi. The verification of
(3.1) is as follows:

|DF (x)[h]| = |
m∑
i=1

αiDFi(x)[h]| ≤
m∑
i=1

αi|DFi(x)[h]| ≤

[since Fi are ϑi-self-concordant barriers]

≤
m∑
i=1

αiϑ
1/2
i

[
D2Fi(x)[h, h]

]1/2
=

m∑
i=1

[αiϑi]
1/2
[
αiD

2Fi(x)[h, h]
]1/2 ≤

[Cauchy’s inequality]

≤

[
m∑
i=1

αiϑi

]1/2 [ m∑
i=1

αiD
2Fi(x)[h, h]

]1/2

=

[
m∑
i=1

αiϑi

]1/2 [
D2F (x)[h, h]

]1/2
,

as required.
An immediate consequence of our combination rules is as follows (cf. Corollary 2.1.1):

Corollary 3.1.1 Let
G = {x ∈ Rn | aTi x− bi ≤ 0, i = 1, ...,m}

be a convex polyhedron defined by a set of linear inequalities satisfying the Slater condition:

∃x ∈ Rn : aTi x− bi < 0, i = 1, ...,m.

Then the standard logarithmic barrier for G given by

F (x) = −
m∑
i=1

ln(bi − aTi x)

is m-self-concordant barrier for G.
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Proof. The function − ln t is 1-self-concordant barrier for the positive half-axis (Example 3.1.2); therefore
every of the functions Fi(x) = − ln(bi − aTi x) is 1-self-concordant barrier for the closed half-space {x ∈
Rn | bi−aTi x ≥ 0} (item (i) of Proposition; note that Gi is the inverse image of the nonnegative half-axis
under the affine mapping x 7→ bi − aTi x), whence F (x) =

∑
i Fi(x) is m-self-concordant barrier for the

intersection G of these half-spaces (item (ii) of Proposition).
The fact stated in Corollary is responsible for 100% of polynomial time results in Linear Programming.
Now let us come to systematic investigation of properties of self-concordant barriers. Please do not

be surprised by the forthcoming miscellania; everything will be heavily exploited in the mean time.

3.2 Properties of self-concordant barriers

Let G be a closed convex domain in E = Rn, and let F be ϑ-self-concordant barrier for G.

Preliminaries: the Minkowsky function of a convex domain. Recall that, given an interior point
x of G, one can define the Minkowsky function of G with the pole at x as

πx(y) = inf{t > 0 | x+ t−1(y − x) ∈ G}.

In other words, to find πx(y), consider the ray [x, y) and look where this ray intersects the boundary
of G. If the intersection point y′ exists, then πx(y) is the length of the segment [x, y′] divided by the
length of the segment [x, y]; if the ray [x, y) is contained in G, then πx(y) = 0. Note that the Minkowsky
function is convex, continuous and positive homogeneous:

πx(λy) = λπx(y), λ ≥ 0;

besides this, it is zero at x and is ≤ 1 in G, 1 on the boundary of G and > 1 outside G. Note that this
function is in fact defined in purely affine terms (the lengths of segments are, of course, metric notions,
but the ratio of lengths of parallel segments is metric-independent).

Now let us switch to properties of self-concordant barriers.

0. Explosure property: Let x ∈ int G and let y be such that DF (x)[y − x] > 0. Then

πx(y) ≥ γ ≡ DF (x)[y − x]

ϑ
, (3.2)

so that the point x+ γ−1(y − x) is not an interior point of G.

Proof. Let
φ(t) = F (x+ t(y − x)) : ∆→ R,

where ∆ = [0, T ) is the largest half-interval of the ray t ≥ 0 such that x + t(y − x) ∈ int G whenever
t ∈ ∆. Note that the function φ is three times continuously differentiable on ∆ and that

T = π−1
x (y) (3.3)

(the definition of the Minkowsky function; here 0−1 = +∞).
From the fact that F is ϑ-self-concordant barrier for G it immediately follows (see Proposition 3.1.1.(i))

that
|φ′(t)| ≤ ϑ1/2

√
φ′′(t),

or, which is the same,
ϑψ′(t) ≥ ψ2(t), t ∈ ∆, (3.4)

where ψ(t) = φ′(t). Note that ψ(0) = DF (x)[y−x] is positive by assumption and ψ is nondecreasing (as
the derivative of a convex function), so that ψ is positive on ∆. From (3.4) and the relation ψ(0) > 0 it
follows that ϑ > 0. In view of the latter relation and since ψ(·) > 0, we can rewrite (3.4) as

(−ψ−1(t))′ ≡ ψ′(t)ψ−2(t) ≥ ϑ−1,

whence

ψ(t) ≥ ϑψ(0)

ϑ− tψ(0)
, t ∈ ∆. (3.5)
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The left hand side of the latter relation is bounded on any segment [0, T ′], 0 < T ′ < T , and we conclude
that

T ≤ ϑ

ψ(0)
.

Recalling that T = π−1
x (y) and that ψ(0) = DF (x)[y − x], we come to (3.2).

I. Semiboundedness. For any x ∈ int G and y ∈ G one has

DF (x)[y − x] ≤ ϑ. (3.6)

Proof. The relation is evident in the case of DF (x)[y−x] ≤ 0; for the case DF (x)[y−x] > 0 the relation
is an immediate consequence of (3.2), since πx(y) ≤ 1 whenever y ∈ G.

II. Upper bound. Let x, y ∈ int G. Then

F (y) ≤ F (x) + ϑ ln
1

1− πx(y)
. (3.7)

Proof. For 0 ≤ t ≤ 1 we clearly have

πx+t(y−x)(y) =
(1− t)πx(y)

1− tπx(y)
;

from (3.6) applied to the pair (x+ t(y − x); y) it follows that

DF (x+ t(y − x))[y − [x+ t(y − x)]] ≤ ϑπx+t(y−x)(y),

whence

(1− t)DF (x+ t(y − x))[y − x] ≤ ϑ (1− t)πx(y)

1− tπx(y)
,

or

DF (x+ t(y − x))[y − x] ≤ ϑ πx(y)

1− tπx(y)
.

Integrating over t ∈ [0, 1], we come to

F (y)− F (x) ≤ ϑ ln
1

1− πx(y)
,

as required.

III. Lower bound. Let x, y ∈ int G. Then

F (y) ≥ F (x) +DF (x)[y − x] + ln
1

1− πx(y)
− πx(y). (3.8)

Proof. Let φ(t) = F (x + t(y − x)), −T− < t < T ≡ π−1
x (t), where T− is the largest t such that

x− t(y − x) ∈ G. By Proposition 3.1.1.(i) φ is a self-concordant barrier for ∆ = [−T−, T ], and therefore
this function is self-concordant on ∆; the closed unit Dikin ellipsoid of φ centered at t ∈ int ∆ should
therefore belong to the closure of ∆ (Lecture 2, I.), which means that

t+ [φ′′(t)]−1/2 ≤ T, 0 ≤ t < T

(here 0−1/2 = +∞). We come to the inequality

φ′′(t) ≥ (T − t)−2, 0 ≤ t < T.
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Two sequential integrations of this inequality result in

F (y)− F (x) ≡ φ(1)− φ(0) =

∫ 1

0

{
∫ t

0

(T − τ)−2dτ}dt = ln
T

T − 1
− T−1;

substituting T = π−1
x (y), we come to (3.8).

IV. Upper bound on local norm of the first derivative. Let x, y ∈ int G. Then for any h ∈ E one
has

|DF (y)[h]| ≤ ϑ

1− πx(y)
|h|x ≡

ϑ

1− πx(y)

[
D2F (x)[h, h]

]1/2
. (3.9)

Comment: By definition, the first-order derivative of the ϑ-self-concordant barrier F at a point x in
any direction h is bounded from above by

√
ϑ times the x-norm |h|x of the direction. The announced

statement says that this derivative is also bounded from above by another constant times the y-norm of
the direction.

Proof of IV. Since x ∈ int G, the closed unit Dikin ellipsoid W of F centered at x is contained in G
(Lecture 2, I.; note that G is closed). Assume, first, that πx(y) > 0. Then there exists w ∈ G such that

y = x+ πx(y)(w − x).

Consider the image V of the ellipsoid W under the dilation mapping z 7→ z + πx(y)(w − z); then

V = {y + h | |h|x ≤ (1− πx(y))}

is an | · |x-ball centered at y and at the same time V ⊂ G (since W ⊂ G and the dilation maps G into
itself). From the semiboundedness property I. it follows that

DF (y)[h] ≤ ϑ ∀h : y + h ∈ G,

and since V ⊂ G, we conclude that

DF (y)[h] ≤ ϑ ∀h : |h|x ≤ 1− πx(y),

which is nothing but (3.9).
It remains to consider the case when πx(y) = 0, so that the ray [x, y) is contained in G. From

convexity of G it follows that in the case in question y− x is a recessive direction of G: u+ t(y− x) ∈ G
whenever u ∈ G and t ≥ 0. In particular, the translation V = W + (y − x) of W by the vector y − x
belongs to G; V is nothing but the | · |x-unit ball centered at y, and it remains to repeat word by word
the above reasoning.

V. Uniqueness of minimizer and Centering property. F is nondegenerate if and only if G does
not contain lines. If G does not contain lines, then F attains its minimum on int G if and only if G is
bounded, and if it is the case, the minimizer x∗F - the F -center of G - is unique and possesses the following
Centering property:
The closed unit Dikin ellipsoid of F centered at x∗F is contained in G, and the ϑ + 2

√
ϑ times larger

concentric ellipsoid contains G:
x ∈ G⇒ |x− x∗F |x∗F ≤ ϑ+ 2

√
ϑ. (3.10)

Proof. As we know from Lecture 2, II., the recessive subspace EF of any self-concordant function is
also the recessive subspace of its domain: int G + EF = int G. Therefore if G does not contain lines,
then EF = {0}, so that F is nondegenerate. Vice versa, if G contains a line with direction h, then
y = x+ th ∈ int G for all x ∈ int G and all t ∈ R, from semiboundedness (see I.) it immediately follows
that DF (x)[y − x] = DF (x)[th] ≤ ϑ for all x ∈ int G and all t ∈ R, which implies that DF (x)[h] = 0.
Thus, F is constant along the direction h at any point of int G, so that D2F (x)[h, h] = 0 and therefore
F is degenerate.

From now on assume that G does not contain lines. If G is bounded, then F , of course, attains its
minumum on int G due to the standard compactness reasons. Now assume that F attains its minimum
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on int G; due to nondegeneracy, the minimizer x∗F is unique. Let W be the closed unit Dikin ellipsoid
of F centered at x∗F ; as we know from I., Lecture 2, it is contained in G (recall that G is closed). Let

us prove that the ϑ + 2
√
ϑ times larger concentric ellipsoid W+ contains G; this will result both in the

boundedness of G and in the announced centering property and therefore will complete the proof.

Lemma 3.2.1 Let x ∈ int G and let h be an arbitrary direction with |h|x = 1 such that DF (x)[h] ≥ 0.
Then the point x+ (ϑ+ 2

√
ϑ)h is outside the interior of G.

Note that Lemma 3.2.1 immediately implies the desired inclusion G ⊂ W+, since when x = x∗F is the
minimizer of F , so that DF (x)[h] = 0 for all h, the premise of the lemma is valid for any h with |h|x = 1.
Proof of Lemma. Let φ(t) = D2F (x + th)[h, h] and T = sup{t | x + th ∈ G}. From self-concordance
of F it follows that

φ′(t) ≥ −2φ3/2(t), 0 ≤ t < T,

whence (
φ−1/2(t)

)′
≤ 1,

so that
1√
φ(t)

− 1√
φ(0)

≤ t, 0 ≤ t < T.

In view of φ′′(0) = |h|2x = 1 we come to

φ(t) ≥ 1

(1 + t)2
, 0 ≤ t < T,

which, after integration, results in

DF (x+ rh)[h] ≡
∫ r

0

φ(t)dt ≥
∫ r

0

1

(1 + t)2
dt =

r

1 + r
, 0 ≤ r < T. (3.11)

Now, let t ≥ 1 be such that y = x+ th ∈ G. Then, as we know from the semiboundedness relation (3.2),

(t− r)DF (x+ rh)[h] ≡ DF (x+ rh)[y − (x+ rh)] ≤ ϑ.

Combining the inequalities, we come to

t ≤ r +
(1 + r)ϑ

r
. (3.12)

Taking here r = 1/2, we get certain upper bound on t; thus, T ≡ sup{t | x+ th ∈ G} <∞, and (3.12) is
valid for t = T . If T >

√
ϑ, then (3.12) is valid for t = T , r =

√
ϑ, and we come to

T ≤ ϑ+ 2
√
ϑ; (3.13)

this latter inequality is, of course, valid in the case of T ≤
√
ϑ as well. Thus, T always satisfies (3.13).

By construction, x + Th is not an interior point of G, and, consequently, x + [ϑ + 2
√
ϑ]h also is not an

interior point of G, as claimed.

Corollary 3.2.1 Let h be a recessive direction of G, i.e., such that x + th ∈ G whenever x ∈ G and
t ≥ 0. Then F is nonincreasing in the direction h, and the following inequality holds:

−DF (x)[h] ≥
√
D2F (x)[h, h], ∀x ∈ int G. (3.14)

Proof. Let x ∈ int G; since h is a recessive direction, y = x + th ∈ G for all t > 0, and I. implies
that DF (x)[y − x] = DF (x)[th] ≤ ϑ for all t ≥ 0, whence DF (x)[h] ≤ 0; thus, F indeed is nonincreasing
in the direction h at any point x ∈ int G. To prove (3.14), consider the restriction f(t) of F onto the
intersection of the line x+Rh with G. Since h is a recessive direction for G, the domain of f is certain ray
∆ of the type (−a,∞), a > 0. According to Proposition 3.1.1.(i), f is self-concordant barrier for the ray
∆. It is possible that f is degenerate: Ef 6= {0}. Since f is a function of one variable, it is possible only
if ∆ = Ef = R (see II., Lecture 2), so that f ′′ ≡ 0; in this case (3.14) is an immediate consequence of
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already proved nonnegativity of the left hand side in the relation. Now assume that f is nondegenerate.
In view of V. f does not attain its minimum on ∆ (since f is a nondegenerate self-concordant barrier for
an unbounded domain). From VIII., Lecture 2, we conclude that λ(f, t) ≥ 1 for all t ∈ ∆. Thus,

1 ≤ λ(f, 0) =
(f ′(0))2

f ′′(0)
=

(DF (x)[h])2

D2F (x)[h, h]
,

which combined with already proved nonpositivity of DF (x)[h] results in (3.14).

VI. Geometry of Dikin’s ellipsoids. For x ∈ int G and h ∈ E let

px(h) = inf{r ≥ 0 | x± r−1h ∈ G};

this is nothing but the (semi)norm of h associated with the symmetrization of G with respect to x, i.e.,
the norm with the unit ball

Gx = {y ∈ E | x± y ∈ G}.

One has
px(h) ≤ |h|x ≤ (ϑ+ 2

√
ϑ)px(h). (3.15)

Proof. The first inequality in (3.15) is evident: we know that the closed unit Dikin ellipsoid of F
centered at x is contained in G (since F is self-concordant and G is closed, see I, Lecture 2). In other

words, G contains the unit | · |x ball Ŵ1(x) centered at x; by definition, the unit px(·)-ball centered at x

is the largest symmetric with respect to x subset of G and therefore it contains the set Ŵ1(x), which is
equivalent to the left inequality in (3.15). To prove the right inequality, this is the same as to demonstrate
that if |h|x = 1, then px(h) ≥ (ϑ+ 2

√
ϑ)−1, or, which is the same in view of the origin of p, that at least

one of the two vectors x± (ϑ+ 2
√
ϑ)h does not belong to the interior of G. Without loss of generality, let

us assume that DF (x)[h] ≥ 0 (if it is not the case, one should replace in what follows h with −h). The
pair x, h satisfies the premise of Lemma 3.2.1, and this lemma says to us that the vector x+ (ϑ+ 2

√
ϑ)h

indeed does not belong to the interior of G.

VII. Compatibility of Hessians. Let x, y ∈ int G. Then for any h ∈ E one has

D2F (y)[h, h] ≤

(
ϑ+ 2

√
ϑ

1− πx(y)

)2

D2F (x)[h, h]. (3.16)

Proof. By definition of the Minkowski function, there exists w ∈ G such that

y = x+ πx(y)(w − x) = [1− πx(y)]x+ πx(y)w.

Now, if |h|x ≤ 1, then x+ h ∈ G (since the closed unit Dikin ellipsoid of F centered at x is contained in
G), so that the point

y + [1− πx(y)]h = [1− πx(y)](x+ h) + πx(y)w

belongs to G. We conclude that the centered at y | · |x-ball of the radius 1− πx(y) is contained in G and
therefore is contained in the largest symmetric with respect to x subset of G; in other words, we have

|h|x ≤ 1− πx(y)⇒ py(h) ≤ 1,

or, which is the same,
py(h) ≤ [1− πx(y)]−1|h|x, ∀h.

Combining this inequality with (3.15), we come to (3.16).

We have established the main properties of self-concordant barriers; these properties, along with the
already known to us properties of general self-concordant functions, underly all our further developments.
Let me conclude with the statement of another type:
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VIII. Existence of a self-concordant barrier for a given domain. Let G be a closed convex
domain in Rn. Then there exists a ϑ-self-concordant barrier for G, with

ϑ ≤ O(1)n,

O(1) being an appropriate absolute constant. If G does not contain lines, then the above barrier is given
by

F (x) = O(1) ln Vol{Px(G)},

where O(1) is an appropriate absolute constant, Vol is the n-dimensional volume and

Px(G) = {ξ | ξT (z − x) ≤ 1 ∀z ∈ G}

is the polar of G with respect to x.

I shall not prove this theorem, since we are not going to use it. Let me stress that to apply the theory
we are developing to a particular convex problem, it is necessary and more or less sufficient to point out
an explicit self-concordant barrier for the corresponding feasible domain. The aforementioned theorem
says that such a barrier always exists, and thus gives us certain encouragement. At the same time, the
”universal” barrier given by the theorem usually is too complicated numerically, since straightforward
computation of a multidimensional integral involved into the construction is, typically, an untractable
task. In the mean time we shall develop certain technique for constructing ”computable” self-concordant
barriers; although not that universal, this technique will equip us with good barriers for feasible domains
of a wide variety of interesting and important convex programs.
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3.3 Exercises: Self-concordant barriers

Let us start with a pair of simple exercises which will extend our list of examples of self-concordant
barriers.

Exercise 3.3.1 #+ Let f(x) be a convex quadratic form on Rn, and let the set Q = {x | f(x) < 0} be
nonempty. Prove that

F (x) = − ln(−f(x))

is a 1-self-concordant barrier for G = clQ.

Derive from this observation that if G ⊂ Rn is defined by a system

fi(x) ≤ 0, i = 1, ...,m,

of convex quadratic inequalities which satisfies the Slater condition

∃x : fi(x) < 0, i = 1, ...,m,

then the function

F (x) = −
m∑
i=1

ln(−fi(x))

is an m-self-concordant barrier for G.

Note that the result in question is a natural extension of Corollary 3.1.1.

Exercise 3.3.2 ∗

1) Let G be a bounded convex domain in Rn given by m linear or convex quadratic inequalities
fj(x) ≤ 0 satisfying the Slater condition:

G = {x ∈ Rm | fj(x) ≤ 0, j = 1, ...,m}.

Prove that if m > 2n, then one can eliminate from the system at least one inequality in such a way, that
the remaining system still defines a bounded domain.

2) Derive from 1) that if {Gα}α∈I are closed convex domains in Rn with bounded and nonempty
intersection, then there exist an at most 2n-element subset I ′ of the index set I such that the intersection
of the sets Gα over α ∈ I ′ also is bounded.

Note that the requirement m > 2n in the latter exercise is sharp, as it is immediately demonstrated by
the n-dimensional cube.

Exercise 3.3.3 #+ Prove that the function

F (x) = − ln Det x

is m-self-concordant barrier for the cone Sm+ of symmetric positive semidefinite m×m matrices.

Those who are not afraid of computations, are kindly asked to solve the following

Exercise 3.3.4 Let

K = {(t, x) ∈ R×Rn | t ≥ |x|2}

be the ”ice cream” cone. Prove that the function

F (x) = − ln(t2 − |x|22)

is a 2-self-concordant barrier for K.
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My congratulations, if you have solved the latter exercise! In the mean time we shall develop technique
which will allow to demonstrate self-concordance of numerous barriers (including those given by the three
previous exercises) without any computations; those solved exercises 3.3.1 - 3.3.4, especially the latter
one, will, I believe, appreciate this technique.

Now let us switch to another topic. As it was announced in Lecture 1 and as we shall see in the
mean time, the value of the parameter of a self-concordant barrier is something extremely important:
this quantity is responsible for the Newton complexity (i.e., # of Newton steps) of finding an ε-solution
by the interior point methods associated with the barrier. This is why it is interesting to realize what
the value of the parameter could be.

Let us come to the statement announced in the beginning of Lecture 3:

(P): Let F be ϑ-self-concordant barrier for a closed convex domain G ⊂ Rn. Then either G = Rn and
F = const, or G is a proper subset of Rn and ϑ ≥ 1.

Exercise 3.3.5 #∗ Prove that the only self-concordant barrier for Rn is constant.

Exercise 3.3.6 #∗ Prove that if ∆ is a segment with a nonempty interior on the axis which differs from
the whole axis and f is a ϑ-self-concordant barrier for ∆, then ϑ ≥ 1. Using this observation, complete
the proof of (P).

(P) says that the parameter of any self-concordant barrier for a nontrivial (differing from the whole space)
convex domain G is ≥ 1. This lower bound can be extended as follows:

(Q) Let G be a closed convex domain in Rn and let u be a boundary point of G. Assume that there is
a neighbourhood U of u where G is given by m independent inequalities, i.e., there exist m continuously
differentiable functions g1, ..., gm on U such that

G ∩ U = {x ∈ U | gj(x) ≥ 0, j = 1, ...,m}, gj(u) = 0, j = 1, ...,m,

and the gradients of gj at u are linearly independent. Then the parameter ϑ of any self-concordant barrier
F for G is at least m.

We are about to prove (Q). This is not that difficult, but to make the underlying construction clear, let
us start with the case of a simple polyhedral cone.

Exercise 3.3.7 #∗ Let
G = {x ∈ Rn | xi ≥ 0, i = 1, ...,m},

where xi are the coordinates in Rn and m is certain positive integer ≤ n, and let F be a ϑ-self-concordant
barrier for G. Prove that for any x ∈ int G one has

−xi
∂

∂xi
F (x) ≥ 1, i = 1, ...,m; (3.17)

derive from this observation that the parameter ϑ of the barrier F is at least m.

Now let us look at (Q). Under the premise of this statement G locally is similar to the above polyhedral
cone; to make the similarity more explicit, let us translate G to make u the origin and let us choose
the coordinates in Rn in such a way that the gradients of gj at the origin, taken with respect to these
coordinates, will be simply the first m basic orths. Thus, we come to the situation when G contains the
origin and in certain neighbourhood U of the origin is given by

G ∩ U = {x ∈ U | xi ≥ hi(x), i = 1, ...,m},

where hi are continuously differentiable functions such that hi(0) = 0, h′i(0) = 0.
Those who have solved the latter exercise understand that that what we need in order to prove (Q)

is certain version of (3.17), something like

−r ∂

∂xi
F (x(r)) ≥ 1− α(r), i = 1, ...,m, (3.18)

where x(r) is the vector with the first m coordinates equal to r > 0 and the remaining ones equal to 0
and α(r)→ 0 as r → +0.

Relation of the type (3.18) does exist, as it is seen from the following exercise:
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Exercise 3.3.8 #+ Let f(t) be a ϑ-self-concordant barrier for an interval ∆ = [−a, 0], 0 < a ≤ +∞, of
the real axis. Assume that t < 0 is such that the point γt belongs to ∆, where

γ > (
√
ϑ+ 1)2.

Prove that

−f ′(t)t ≥ 1− (
√
ϑ+ 1)2

γ
(3.19)

Derive from this fact that if F is a ϑ-self-concordant barrier for G ⊂ Rn, z is a boundary point of G and
x is an interior point of G such that z + γ(x− z) ∈ G with γ > (

√
ϑ+ 1)2, then

−DF (x)[z − x] ≥ 1− (
√
ϑ+ 1)2

γ
. (3.20)

Now we are in a position to prove (Q).

Exercise 3.3.9 #∗ Prove (Q).
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Chapter 4

Basic path-following method

The results on self-concordant functions and self-concordant barriers allow us to develop the first poly-
nomial interior point scheme - the path-following one; on the qualitative level, the scheme was presented
in Lecture I.

4.1 Situation

Let G ⊂ Rn be a closed and bounded convex domain, and let c ∈ Rn, c 6= 0. In what follows we deal
with the problem of minimizing the linear objective cTx over the domain, i.e., with the problem

P : minimize cTx s.t. x ∈ G.

I shall refer to problem P as to a convex programming program in the standard form. This indeed is a
universal format of a convex program, since a general-type convex problem

minimize f(u) s.t. gj(u) ≤ 0, j = 1, ...,m, u ∈ H ⊂ Rk

associated with convex continuous functions f , gj on a closed convex set H always can be rewritten as a
standard problem; to this end it clearly suffices to set

x = (t, u), c = (1, 0, 0, ..., 0)T , G = {(t, u) | u ∈ H, gj(u) ≤ 0, j = 1, ...,m, f(x)− t ≤ 0}.

The feasible domain G of the equivalent standard problem is convex and closed; passing, if necessary,
to the affine hull of G, we enforce G to be a domain. In our standard formulation, G is assumed to
be bounded, which is not always the case, but the boundedness assumption is not so crucial from the
practical viewpoint, since we can approximate the actual problem with an unbounded G by a problem
with bounded feasible domain, adding, say, the constraint |x|2 ≤ R with large R.

Thus, we may focus on the case of problem in the standard form P. What we need to solve P by an
interior point method, is a ϑ-self-concordant barrier for the domain, and in what follows we assume that
we are given such a barrier, let it be called F . The exact meaning of the words ”we know F” is that,
given x ∈ int G, we are able to compute the value, the gradient and the Hessian of the barrier at x.

4.2 F -generated path-following method

Recall that the general path-following scheme for solving P is as follows: given convex smooth and
nondegenerate barrier F for the feasible domain G of the problem, we associate with this barrier and the
objective the penalized family

Ft(x) = tcTx+ F (x) : int G→ R,

t > 0 being the penalty parameter, and the path of minimizers of the family

x∗(t) = argmin
int G

Ft(·)

47
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which is well-defined due to nondegeneracy of F and boundedness of G. The method generates a sequence
xi ∈ int G which approximates the sequence x∗(ti) of points of the path along certain sequence of values
of the penalty parameter ti →∞; namely, given current pair (ti, xi) with xi being ”close” to x∗(ti), at an
iteration of the method we replace ti by a larger value of the parameter ti+1 and then update xi into an
approximation xi+1 to our new target point x∗(ti+1). To update xi, we apply to the new function of our
family, i.e., to Fti+1

, a method for smooth unconstrained minimization, xi being the starting point. This
is the general path-following scheme. Note that a self-concordant barrier for a bounded convex domain
does satisfy the general requirements imposed by the scheme; indeed, such a barrier is convex, C3 smooth
and nondegenerate (the latter property is given by V., Lecture 3). The essence of the matter is, of course,
in the specific properties of a self-concordant barrier which make the scheme polynomial.

4.3 Basic path-following scheme

Even with the barrier fixed, the path-following scheme represents a family of methods rather than a single
method; to get a method, one should specify

• policy for updating the penalty parameter;

• what is the ”working horse” - the optimization method used to update x’s;

• what is the stopping criterion for the latter method, or, which is the same, what is the ”closeness
to the path x∗(·)” which is maintained when tracing the path.

In the basic path-following method we are about to present the aforementioned issues are specified as
follows:

• we fix certain parameter γ > 0 - the penalty rate - and update t’s according to the rule

ti+1 = (1 +
γ√
ϑ

)ti; (4.1)

• to define the notion of ”closeness to the path”, we fix another parameter κ ∈ (0, 1) - the path
tolerance - and maintain along the sequence {(ti, xi)} the closeness relation, namely, the predicate

Cκ(t, x) : {t > 0}&{x ∈ int G}&{λ(Ft, x) ≡
√

[∇xFt(x)]T [∇2
xF (x)]−1[∇xFt(x)] ≤ κ} (4.2)

(we write ∇2
xF instead of ∇2

xFt, since F differs from Ft by a linear function);

• the updating xi 7→ xi+1 is given by the damped Newton method:

yl+1 = yl − 1

1 + λ(Fti+1
, yl)

[∇2
xF (yl)]−1∇xFti+1(yl); (4.3)

the recurrency starts at y0 = xi and is continued until the pair (ti+1, y
l) turns out to satisfy the

closeness relation Cκ(·, ·); when it happens, we set xi+1 = yl, thus coming to the updated pair
(ti+1, xi+1).

The indicated rules specify the method, up to the initialization rule - where to take the very first pair
(t0, x0) satisfying the closeness relation; in the mean time we will come to this latter issue. What we are
interested in now are the convergence and the complexity properties of the method.

4.4 Convergence and complexity

The convergence and the complexity properties of the basic path-following method are described by the
following two propositions:
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Proposition 4.4.1 [Rate of convergence] If a pair (t, x) satisfies the closeness relation Pκ with certain
κ ≤ 1/4, then

cTx− c∗ ≤ χ

t
, χ = ϑ+

κ

1− κ
√
ϑ, (4.4)

c∗ being the optimal value in P and ϑ being the parameter of the underlying self-concordant barrier F .
In particular, in the above scheme one has

cTxi − c∗ ≤
χ

t0

[
1 +

γ√
ϑ

]−i
≤ χ

t0
exp{−O(1)

i√
ϑ
}, (4.5)

with positive constant O(1) depending on γ only.

Proof. Let x∗ = x∗(t) be the minimizer of Ft; let us start with proving that

cTx∗ − c∗ ≤ ϑ

t
; (4.6)

in other words, when we are exactly on the trajectory, the residual in terms of the objective admits
an objective-independent upper bound which is inverse proportional to the penalty parameter. This is
immediate; indeed, denoting by x+ a minimizer of our objective cTx over G, we have

∇xFt(x∗) = 0⇒ tc = −F ′(x∗)⇒ t(cTx− cTx+) ≡ t(cTx− c∗) = [F ′(x∗)]T (x+ − x∗) ≤ ϑ

(the concluding inequality is the Semiboundedness property I., Lecture 3, and (4.6) follows.
To derive (4.5) from (4.6), let us act as follows. The function Ft(x) is self-concordant on int G (as

a sum of two self-concordant functions, namely, F and a linear function tcTx, see Proposition 2.1.1.(ii))
and, by assumption, λ ≡ λ(Ft, x) ≤ κ < 1; applying (2.20) (see Lecture 2), we come to

|x− x∗|x∗ ≤
κ

1− κ
, (4.7)

where | · |x∗ is the Euclidean norm defined by the Hessian of Ft, or, which is the same, of F , at x∗. We
now have

tc = −F ′(x∗)⇒

t(cTx− cTx∗) = [F ′(x∗)]T (x∗ − x) ≤ |x∗ − x|x∗ sup{DF (x∗)[h] | |h|x∗ ≤ 1} =

= |x∗ − x|x∗λ(F, x∗) ≤ κ

1− κ
√
ϑ

(the concluding inequality follows from (4.7) and the fact that F is a ϑ-self-concordant barrier for G, so
that λ(F, ·) ≤

√
ϑ). Thus,

|cTx− cTx∗| ≤ κ

t(1− κ)

√
ϑ, (4.8)

which combined with (4.6) results in (4.4).
Now we come to the central result

Proposition 4.4.2 [Newton complexity of a step] The updating recurrency (4.3) is well-defined, i.e.,
it keeps the iterates in int G and terminates after finitely many steps; the Newton complexity of the
recurrency, i.e., the # of Newton steps (4.3) before termination, does not exceed certain constant N
which depends on the path tolerance κ and the penalty rate γ only.

Proof. As we have mentioned in the previous proof, the function Fti+1 is self-concordant on int G and
is below bounded on this set (since G is bounded). Therefore the damped Newton method does keep the
iterates yl in int G and ensures the stopping criterion λ(Fti+1

, yl) ≤ κ after a finite number of steps (IX.,
Lecture 2). What we should prove is the fact that the Newton complexity of the updating is bounded
from above by something depending solely on the path tolerance and the penalty rate. To make clear why
it is important here that F is a self-concordant barrier rather than an arbitrary self-concordant function,
let us start with the following reasoning.

We already have associated with a point x ∈ int G the Euclidean norm

|h|x =
√
hTF ′′(x)h ≡

√
hTF ′′t (x)h;
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in our case F is nondegenerate, so that | · |x is an actual norm, not a seminorm. Let | · |∗x be the conjugate
norm:

|u|∗x = max{uTh | |h|x ≤ 1}.

By definition of the Newton decrement,

λ(Ft, x) = max{[∇xFt(x)]Th | |h|x ≤ 1} = |∇xFt(x)|∗x = |tc+ F ′(x)|∗x, (4.9)

and similarly
λ(F, x) = |F ′(x)|∗x. (4.10)

Now, (ti, xi) satisfy the closeness relation λ(Ft, x) ≤ κ, i.e.

|tic+ F ′(x)|∗xi ≤ κ, (4.11)

and F is ϑ-self-concordant barrier, so that λ(F, xi) ≤
√
ϑ, or, which is the same in view of (4.10),

|F ′(xi)|∗xi ≤
√
ϑ. (4.12)

Combining (4.11) and (4.12), we come to

|tie|∗xi ≤ κ+
√
ϑ,

whence
|(ti+1 − ti)e|∗xi =

γ√
ϑ
|tie|∗xi ≤ γ +

γκ√
ϑ
.

Combining the resulting inequality with (4.11), we come to

λ(Fti+1 , xi) = |ti+1c+ F ′(xi)|∗xi ≤ γ + [1 +
κ√
ϑ

]γ ≤ 3γ (4.13)

(the concluding inequality follows from the fact that the parameter of any nontrivial self-concordant
barrier is ≥ 1, see the beginning of Lecture 3). Thus, the Newton decrement of the new function Fti+1

at the previous iterate xi is at most the quantity 3γ; if γ and κ are small enough, this quantity is ≤ 1/4,
so that xi is within the region of the quadratic convergence of the damped Newton method (see IX.,
Lecture 2), and therefore the method quickly restores the closeness relation. E.g., let the path tolerance
κ and the penalty rate γ be set to the value 0.05. Then the above computation results in

λ(Fti+1
, xi) ≤ 0.15,

and from the description of the local properties of the damped Newton method as applied to a self-
concordant function (see (2.19), Lecture 2) it follows that the Newton iterate y1 of the starting point
y0 = xi, the Newton method being applied to Fti+1 , satisfies the relation

λ(Fti+1
, y1) ≤ 2× (0.15)2 = 0.045 < 0.05 = κ,

i.e., for the indicated values of the parameters a single damped Newton step restores the closeness to the
path after the penalty parameter is updated, so that in this particular case N = 1. Note that the policy
for updating the penalty - which is our presentation looked as something ad hoc - in fact is a consequence
of the outlined reasoning: growth of the penalty given by

t 7→ (1 +
O(1)√
ϑ

)t

is the highest one which results in the relation λ(Fti+1 , xi) ≤ O(1).
The indicated reasoning gives an insight on what is the intrinsic nature of the method: it does not

allow, anyhow, to establish the announced statement in its complete form, since it requires certain bounds
on the penalty rate. Indeed, our complexity results on the behaviour of the damped Newton method
bound the complexity only when the Newton decrement at the starting point is less than 1. To ”globalize”
the reasoning, we should look at the initial residual in terms of the objective the Newton method is applied
to rather than in terms of the initial Newton decrement. To this end let us prove the following



4.4. CONVERGENCE AND COMPLEXITY 51

Proposition 4.4.3 Let t and τ be two values of the penalty parameter, and let (t, x) satisfy the closeness
relation Cκ(·, ·) with some κ < 1. Then

Fτ (x)−min
u
Fτ (u) ≤ ρ(κ) +

κ

1− κ
|1− τ

t
|
√
ϑ+ ϑρ(1− τ

t
), (4.14)

where, as always,
ρ(s) = − ln(1− s)− s.

Proof. The path x∗(τ) is given by the equation

F ′(u) + τc = 0; (4.15)

since F ′′ is nondegenerate, the Implicit Function Theorem says to us that x∗(t) is continuously differen-
tiable, and the derivative of the path can be found by differentiating (4.15) in τ :

(x∗)′(τ) = −[F ′′(x∗(τ))]−1c. (4.16)

Now let
φ(τ) = [τcTx∗(t) + F (x∗(t))]− [τcTx∗(τ) + F (x∗(τ))]

be the residual in terms of the objective Fτ (·) taken at the point x∗(t). We have

φ′(τ) = cTx∗(t)− cTx∗(τ)− [τc+ F ′(x∗(τ))]T (x∗)′(τ) = cTx∗(t)− cTx∗(τ)

(see (4.15)). We conclude that
φ(t) = φ′(t) = 0 (4.17)

and that φ′(·) = cTx∗(t)−cTx∗(τ) is continuously differentiable; differentiating in τ once more and taking
into account (4.16), we come to

φ′′(τ) = −cT (x∗)′(τ) = cT [F ′′(x∗(τ))]−1c,

which combined with (4.15) results in

0 ≤ φ′′(τ) =
1

τ2
[F ′(x∗(τ))]T [F ′′(x∗(τ))]−1F ′(x∗(τ)) =

1

τ2
λ2(F, x∗(τ)) ≤ ϑ

τ2
(4.18)

(we have used the fact that F is ϑ-self-concordant barrier).
From (4.17), (4.18) it follows that

φ(τ) ≤ ϑρ(1− τ

t
). (4.19)

Now let us estimate the residual invloved into our target inequality (4.14):

Fτ (x)−min
u
Fτ (u) = Fτ (x)− Fτ (x∗(τ)) = [Fτ (x)− Fτ (x∗(t))] + [Fτ (x∗(t))− Fτ (x∗(τ))] =

= [Fτ (x)− Fτ(x∗(t))] + φ(τ) = [Ft(x)− Ft(x∗(t))] + (t− τ)cT (x− x∗(t)) + φ(τ); (4.20)

since Ft(·) is self-concordant and λ(Ft, x) ≤ κ < 1, we have Ft(x) − Ft(x∗(t)) = Ft(x) − minu Ft(u) ≤
ρ(λ(Ft, x)) (see (2.16), Lecture 2), whence

Ft(x)− Ft(x∗(t)) ≤ ρ(κ). (4.21)

(4.8) says to us that |cT (x− x∗(t))| ≤ κ(1− κ)−1
√
ϑt−1; combining this inequality, (4.20) and (4.19), we

come to (4.14).
Now we are able to complete the proof of Proposition 4.4.2. Applying (4.14) to x = xi, t = ti and

τ = ti+1 = (1 + γ√
ϑ

)ti, we come to

Fti+1(xi)−min
u
Fti+1(u) ≤ ρ(κ) +

κγ

1− κ
+ ϑρ(

γ√
ϑ

),

and the left hand side of this inequality is bounded from above uniformly in ϑ ≥ 1 by certain function
depending on κ and γ only (as it is immediately seen from the evident relation ρ(s) ≤ O(s2), |s| ≤ 1

2
1).

An immediate consequence of Propositions 4.4.1 and 4.4.2 is the following

1here is the corresponding reasoning: if s ≡ γϑ−1/2 ≤ 1/2, then g ≡ ϑρ(γϑ−1/2) ≤ O(1)γ2 due to 0 ≤ s ≤ 1/2; if
s > 1/2, then ϑ ≤ 4γ2, and consequently g ≤ 4γ2 ln γ; note that ϑ ≥ 1. Thus, in all cases the last term in the estimate is
bounded from above by certain function of γ
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Theorem 4.4.1 Let problem P with a closed convex domain G ⊂ Rn be solved by the path-following
method associated with a ϑ-self-concordant barrier F , let κ ∈ (0, 1) and γ > 0 be the path tolerance and
the penalty rate used in the method, and let (t0, x0) be the starting pair satisfying the closeness relation
Cκ(·, ·). Then the absolute inaccuracy cTxi− c∗ of approximate solutions generated by the method admits
the upper bound

cTxi − c∗ ≤
2ϑ

t0
(1 +

γ√
ϑ

)−i, i = 1, 2, ... (4.22)

and the Newton complexity of each iteration (ti, xi) 7→ (ti+1, xi+1) of the method does not exceed certain
constant N depending on κ and γ only. In particular, the Newton complexity (total # of Newton steps)
of finding an ε-solution to the problem, i.e., of finding x ∈ G such that cTx − c∗ ≤ ε, is bounded from
above by

O(1)
√
ϑ ln

(
ϑ

t0ε
+ 1

)
,

with constant factor O(1) depending solely on κ and γ.

4.5 Initialization and two-phase path-following method

The aforementioned description of the method is uncomplete - we know how to follow the path x∗(·),
provided that we once came close to it, but we do not know yet how to get close to the path to start the
tracing. There are several ways to resolve this initialization difficulty, and the simplest one is as follows.
We know where the path x∗(t) ends, where it tends to as t → ∞ - all cluster points of the path belong
to the optimal set of the problem. Let us look where the path starts, i.e., where it tends as t→ +0. The
answer is evident - as t→ +0, the path

x∗(t) = argmin[tcTx+ F (x)]

tends to the analytic center of G with respect to F , to the minimizer x∗F of F over G (since G is bounded,
we know from V., Lecture 3, that this minimizer does exist and is unique). Thus, all F -generated paths
associated with various objectives c start at the same point - the analytic center of G - and run away
from this point as t→∞, each to the optimal set associated with the corresponding objective. In other
words, the analytic center of G is close to all the paths generated by F , so that it is a good position to
start following the path we are interested in. Now, how to come to this position? An immediate idea
is as follows: the paths associated with various objectives cover the whole interior of G: if x 6= x∗ is an
interior point of G, then a path passing through x is given by any objective of the form

d = −λF ′(x),

λ being positive; the path with the indicated objective passes through x when the value of the penalty
parameter is exactly λ. This observation suggests the following initialization scheme: given a starting
point x̂ ∈ int G, let us follow the artificial path

u∗(τ) = argmin[τdTx+ F (x)], d = −F ′(x̂)

in the ”inverse time”, i.e., decreasing the penalty parameter τ rather than increasing it. The artificial
path clearly passes through the point x̂:

x̂ = u∗(1),

and we can start tracing it with the pair (τ0 = 1, u0 = x̂) which is exactly at the path. When tracing the
path in the outlined manner, we in the mean time come close to the analytic center of G and, consequently,
to the path x∗(t) we are interested in; when it happens, we can switch to tracing this target path.

The outlined ideas underly the

Two-Phase Path-Following Method:

Input: starting point x̂ ∈ int G; path tolerance κ ∈ (0, 1); penalty rate γ > 0.

Phase 0 [approximating the analytic center] Starting with (τ0, u0) = (1, x̂), generate the sequence
{(τi, ui)}, updating (ti, ui) into (τi+1, ui+1) as follows:



4.5. INITIALIZATION AND TWO-PHASE PATH-FOLLOWING METHOD 53

•

τi+1 =

[
1 +

γ√
ϑ

]−1

τi;

• to get ui+1, apply to the function

F̂τi(x) ≡ τdTx+ F (x)

the damped Newton method

yl+1 = yl − 1

1 + λ(F̂τi+1
, yl)

[∇2
xF (yl)]−1∇xF̂τi+1(yl)

starting with y0 = ui. Terminate the method when the pair (τi+1, y
l) turns out to satisfy the

predicate
Ĉκ/2(τ, u) : {τ > 0}&{u ∈ int G}&{λ(F̂τ , u) ≤ κ/2}; (4.23)

when it happens, set
ui+1 = yl;

• after (τi+1, ui+1) is formed, check whether

λ(F, ui+1) ≤ 3

4
κ; (4.24)

if it happens, terminate Phase 0 and call u∗ ≡ ui+1 the result of the phase, otherwise go to the
next step of Phase 0.

Initialization of Phase 1. Given the result u∗ of Phase 0, set

t0 = max{t | λ(Ft, u
∗) ≤ κ}, x0 = u∗, (4.25)

thus obtaining the pair (t0, x0) satisfying the predicate Cκ(·, ·).

Phase 1. [approximating optimal solution to P] Starting with the pair (t0, x0), form the sequence
{(ti, xi)} according to the Basic path-following scheme from Section 4.3, namely, given (ti, xi), update it
into (ti+1, xi+1) as follows:

•
ti+1 =

[
1 +

γ√
ϑ

]
ti;

• to get xi+1, apply to Fti+1
the damped Newton method

yl+1 = yl − 1

1 + λ(Fti+1
, xi)

[∇2
xF (yl)]−1∇xFti+1

(yl), (4.26)

starting with y0 = xi. Terminate the method when the pair (ti+1, y
l) turns out to satisfy the

predicate Cκ(·, ·); when it happens, set
xi+1 = yl,

thus obtaining the updated pair satisfying the predicate Cκ, and go to the next step of Phase 1.

The properties of the indicated method are described in the following statement:

Theorem 4.5.1 Let problem P be solved by the two-phase path-following method associated with a ϑ-
self-concordant barrier for the domain G (the latter is assumed to be bounded). Then

(i) Phase 0 is finite and is comprised of no more than

Nini = O(1)
√
ϑ ln

(
ϑ

1− πx∗
F

(x̂)
+ 1

)
(4.27)



54 CHAPTER 4. BASIC PATH-FOLLOWING METHOD

iterations, with no more than O(1) Newton steps (4.23) at every iteration; here and further O(1) are
constant factors dpending solely on the path tolerance κ and the penalty rate γ used in the method.

(ii) For any ε > 0, the number of iterations of Phase 1 before an ε-solution to P is generated, does
not exceed the quantity

Nmain(ε) = O(1)
√
ϑ ln

(
ϑVarG(c)

ε
+ 1

)
, (4.28)

where
VarG(c) = max

x∈G
cTx−min

x∈G
cTx,

with no more than O(1) Newton steps (4.26) at every iteration.
In particular, the overall Newton complexity (total # of Newton steps of the both phases) of finding

an ε-solution to the problem does not exceed the quantity

Ntotal(ε) = O(1)
√
ϑ ln

(
V
ε

+ 1

)
,

where the data-dependent constant V is given by

V =
ϑVarG(c)

1− πx∗
F

(x̂)
.

Proof.
10. Following the line of argument used in the proof of Proposition 4.4.2, one can immediately verify

that the iterations of Phase 0 are well-defined and maintain along the sequence {(τi, ui)} the predicate

Ĉκ/2(·, ·), while the Newton complexity of every iteration of the phase does not exceed O(1). To complete
the proof of (i), we should establish upper bound (4.27) on the number of iterations of Phase 0. To this

end let us note that Ĉκ/2(τi, ui) means exactly that

λ(F̂τi , ui) = |τid+ F ′(ui)|∗ui ≤ κ/2, (4.29)

(compare with (4.9)), whence

λ(F, ui) = |F ′(ui)|∗ui ≤ κ/2 + τi|d|∗ui = κ/2 + τi|F ′(x̂)|∗ui . (4.30)

We have

|F ′(x̂)|∗x∗
F
≡ max{hTF ′(x̂) | |h|x∗

F
≤ 1} = max{DF (x̂)[h] | D2F (x∗F )[h, h] ≤ 1} ≤

[see IV., Lecture 3, namely, (3.9)]

≤ α ≡ ϑ

1− πx∗
F

(x̂)
.

We see that the variation (the difference between the minumum and the maximum values) of the linear
form f(y) = yTF ′(x̂) over the unit Dikin ellipsoid of F centered at x∗F does not exceed 2α. Consequently,

the variation of the form on the (ϑ+ 2
√
ϑ)-larger concentric ellipsoid W ∗ does not exceed 2α(ϑ+ 2

√
ϑ).

From the Centering property V., Lecture 3, we know that W ∗ contains the whole G; in particular, W ∗

contains the unit Dikin ellipsoid Ŵ1(ui) of F centered at ui (I., Lecture 2). Thus, the variation of the

linear form yTF ′(x̂) over the ellipsoid Ŵ1(ui), and this is nothing but twice the quantity |F ′(x̂)|∗ui , does

not exceed 2α(ϑ+ 2
√
ϑ):

|F ′(x̂)|∗ui ≤ β ≡
ϑ(ϑ+ 2

√
ϑ)

1− πx∗(x̂)
.

Substituting this estimate in (4.30), we come to

λ(F, ui) ≤ κ/2 + τiβ.

Taking into account that τi = (1 + γ√
ϑ

)−i, we conclude that the stopping criterion λ(F, ui) ≤ 3κ/4 for

sure is satisfied when i is O(1) ln(1 + ϑ(1− πx∗
F

(x̂))−1), as claimed in (i).
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20. Now let us verify that

t0 ≥
κVarG(c)

2
. (4.31)

Indeed, since c 6= 0, it follows from the origin of t0 (see (4.25)) that

λ(Ft0 , u
∗) ≡ |t0c+ F ′(u∗)|∗u∗ = κ, (4.32)

while from the termination rule for Phase 0 we know that

λ(F, u∗) ≡ |F ′(u∗)|∗u∗ ≤
3

4
κ;

we immediately conclude that

t0|c|∗u∗ ≥
κ

2
.

Now, as above, |c|∗u∗ is the variation of the linear form yT c over the closed unit Dikin ellipsoid of F
centered at u∗; this ellipsoid is contained in G (I., Lecture 2), whence |c|∗u∗ ≤ VarG(c). Thus,

t0VarG(c) ≥ κ

4
,

and (4.31) follows.
30. In view of (4.32), the starting pair (t0, x0 ≡ u∗) for Phase 1 satisfies the predicate Cκ; applying

Theorem 4.4.1 and taking into account (4.31), we come to (ii).

4.6 Concluding remarks

We have seen that the basic path-following method for solving P associated with a ϑ-self-concordant
barrier F for feasible domain G of the problem finds an ε-solution to P in no more than

N (ε) = O(1)
√
ϑ ln

(
V
ε

)
damped Newton steps; here O(1) depends on the path tolerance κ and the penalty rate γ only, and V is
certain data-dependent quantity (note that we include into the data the starting point x̂ ∈ int G as well).
When κ and γ are once for ever fixed absolute constants, then the above O(1) also is an absolute constant;
in this case we see that if the barrier F is ”computable”, i.e., given x and the data vector D(p) identifying
the problem instance, one can compute F (x), F ′(x) and F ′′(x) in polynomial in l(p) ≡ dim D(p) number
of arithmetic operations M, then the method is polynomial (see Lecture 1), and the arithmetic cost of
finding an ε-solution by the method does not exceed the quantity

M(ε) = O(1)[M+ n3]N (ε)

(the term n3 is responsible for the arithmetic cost of solving the Newton system at a Newton step).
Consider, e.g., a Linear Programming problem

minimize cTx s.t. aTj x ≤ bj , j = 1, ...,m, x ∈ Rn,

and assume that the system of linear inequalities aTj x ≤ bj , j = 1, ...,m, satisfies the Slater condition and
defines a polytope (i.e., a bounded polyhedral set) G. As we know from Corollary 3.1.1, the standard
logarithmic barrier

F (x) = −
m∑
j=1

ln(bj − aTj x)

is m-self-concordant logarithmic barrier for G. Of course, this barrier is ”computable”:

F ′(x) =

m∑
j=1

aj
bj − aTj x

, F ′′(x) =

m∑
j=1

aja
T
j

(bj − aTj x)2
,
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and we see that the arithmetic cost of computing F (x), F ′(x) and F ′′(x) is O(mn2), while the dimension
of the data vector for a problem instance is O(mn). Therefore the path-following method associated with
the standard logarithmic barrier for the polytope G finds an ε-solution to the problem at the cost of

N (ε) = O(1)
√
m ln

(
V
ε

+ 1

)
Newton steps, with the arithmetic cost of a step O(1)mn2 (the arithmetic cost O(n3) of solving the
Newton system is dominated by the cost of assembling the system, i.e., that one of computing F ′ and
F ′′; indeed, since G is bounded, we have m > n). Thus, the overall arithmetic cost of finding an ε-solution
to the problem is

M(ε) = O(1)m1.5n2 ln

(
V
ε

+ 1

)
,

so that the ”arithmetic cost of an accuracy digit” is O(m1.5n3). In fact the latter cost can be reduced to
O(mn2) by proper implementation of the method (the Newton systems arising at the neighbouring steps
of the method are ”close” to each other, which allows to reduce the average over steps arithmetic cost of
solving the Newton systems), but I am not going to speak about these acceleration issues.

What should be stressed is that the outlined method is fine from the viewpoint of its theoretical
complexity; it is, anyhow, far from being appropriate in practice. The main drawback of the method
is its ”short-step” nature: to ensure the theoretical complexity bounds, one is enforced to increase the
penalty parameter at the rate (1 + O(1)ϑ−1/2), so that the number of Newton steps is proportional to√
ϑ. For an LP problem of a not too large size - say, n = 1000, m = 10000, the method would require

solving several hundreds, if not thousands, linear systems with 1000 variables, which will take hours - time
incomparable with that one required by the simplex method; and even moderate increasing of sizes results
in days and months instead of hours. You should not think that these unpleasant practical consequences
are caused by the intrinsic drawbacks of the scheme; they come from our ”pessimistic” approach to the
implementation of the scheme. It turns out that ”most of the time” you can increase the penalty at a
significantly larger rate than that one given by the worst-case theoretical complexity analysis, and still
will be able to restore closeness to the path by a small number - 1-2 - of Newton steps. There are very
good practical implementations of the scheme which use various on-line strategies to control the penalty
rate and result in a very reasonable - 20-40 - total number of Newton steps, basically independent of
the size of the problem; the best examples known to me are the codes developed in the Optimization
Laboratory of our faculty by Gil Roth and Michael Zibulevski. From the theoretical viewpoint, anyhow,
it is important to develop computationally cheap rules for on-line adjusting the penalty rate which ensure
the theoretical O(

√
ϑ) Newton complexity of the method; in the mean time we shall speak about recent

progress in this direction.
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4.7 Exercises: Basic path-following method

The proof of our main rate-of-convergence statement - Proposition 4.4.1 - is based on the following fact:
(*) if x belongs to the path x∗(t) = argminint G[tcTx+ F (x)]: x = x∗(t) for certain t > 0, then

cTx− c∗ ≤ ϑ

t
,

c∗ being the optimal value in P. What is responsible for this remarkable and simple inequality? The
only property of a ϑ-self-concordant barrier F used in the corresponding place of the proof of Proposition
4.4.1 was the semiboundedness property:

DF (x)[y − x] ≤ ϑ ∀x ∈ int G ∀y ∈ G. (4.33)

In turn looking at the proof of this property (0., I., Lecture 3), one can find out that the only properties
of F and G used there were the following ones:

S(ϑ): G ∈ Rn is a closed convex domain; F is a twice continuously differentiable convex function on
int G such that

DF (x)[h] ≤ ϑ1/2{D2F (x)[h, h]}1/2 ∀x ∈ int G ∀h ∈ Rn.

Thus, (4.33) has nothing to do with self-concordance of F .

Exercise 4.7.1 # Verify that S(ϑ) implies (4.33).

Exercise 4.7.2 # Prove that property S(·) is stable with respect to affine substitutions of argument and
with respect to summation; namely, prove that
1) if the pair (G ⊂ Rn, F ) satisfies S(ϑ) and y = A(x) ≡ Ax+ a is an affine mapping from Rk into Rn

with the image intersecting int G, then the pair (A−1(G), F (A(·))) also satisfies S(ϑ);
2) if the pairs (Gi ⊂ Rn, Fi), i = 1, ...,m, satisfy S(ϑi) and G = ∩iGi is a domain, then the pair
(G,

∑
i αiFi), αi ≥ 0, satisfies S(

∑
i αiϑi).

Now let us formulate a simple necessary and sufficient condition for a pair (G,F ) to satisfy S(ϑ).

Exercise 4.7.3 # Let ϑ > 0, and let (G ⊂ Rn, F ) be a pair comprised of a closed convex domain and a
function twice continuously differentiable on the interior of the domain. Prove that (G,F ) sastisfies S(ϑ)
if and only if the function exp{−ϑF} is concave on int G. Derive from this observation and the result of
the previous exercise the following statement (due to Fiacco and McCormic):
let gi, i = 1, ...,m, be convex twice continuously differentiable functions on Rn satisfying the Slater
condition. Consider the logarithmic barrier

F (x) = −
∑
i

ln(−gi(x))

for the domain

G = {x ∈ Rn | gi(x) ≤ 0, i = 1, ...,m}.

Then the pair (G,F ) satisfies S(m), and therefore F satisfies relation (4.33) with ϑ = m. In particular,
let

x ∈ Argmin
u∈int G

[tcTu+ F (u)]

for some positive t; then f(u) ≡ cTu is below bounded on G and

cTx− inf
G
f ≤ m

t
.

The next exercise is an ”exercise” in the direct meaning of the word.
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Exercise 4.7.4 Consider a Quadratically Constrained Quadratic Programming program

minimize f0(x) s.t. fj(x) ≤ 0, j = 1, ...,m, x ∈ Rn,

where
fj(x) = xTAjx+ 2bTj x+ cj , j = 0, ...,m

are convex quadratic forms. Assume that you are given a point x̂ such that fj(x̂) < 0, j = 1, ...,m, and
R > 0 such that the feasible set of the problem is inside the ball {x | |x|2 ≤ R}.
1) reduce the problem to the standard form with a bounded feasible domain and point out an (m+ 2)-self-
concordant barrier for the domain, same as an interior point of the domain;
2) write down the algorithmic scheme of the associated path-following method. Evaluate the arithmetic
cost of a Newton step of the method.

Now let us discuss the following issue. In the Basic path-following method the rate of updating the
penalty parameter, i.e., the penalty ratio

ω = ti+1/ti,

is set to 1 +O(1)ϑ−1/2, ϑ being the parameter of the underlying barrier. This choice of the penalty ratio
results in the best known, namely, proportional to

√
ϑ, theoretical complexity bound for the method. In

Lecture 4 it was explained that this fine theoretically choice of the penalty ratio in practice makes the
method almost useless, since it for sure enforces the method to work according its theoretical worst-case
complexity bound; the latter bound is in many cases too large for actual computations. In practice
people normally take as the initial value of the penalty ratio certain moderate constant, say, 2 or 3, and
then use various routines for on-line adjusting the ratio, slightly increasing/decreasing it depending on
whether the previous updating xi 7→ xi+1 took ”small” or ”large” (say, ≤ 2 or > 2) number of Newton
steps. An immediate theoretical question here is: what can be said about the Newton complexity of a
path-following method where the penalty ratio is a once for ever fixed constant ω > 1 (or, more generally,
varies somehow between once for ever fixed bounds ω− < ω+, with 1 < ω− ≤ ω+ < ∞). The answer is
that in this case the Newton complexity of an iteration (ti, xi) 7→ (ti+1, xi+1) is of order of ϑ rather than
of order of 1.

Exercise 4.7.5 Consider the Basic path-following method from Section 4.3 with rule (4.1) replaced with

ti+1 = ωiti,

where ω− ≤ ωi ≤ ω+ and 1 < ω− ≤ ω+ <∞. Prove that for this version of the method the statement of
Theorem 4.4.1 should be modified as follows: the total # of Newton steps required to find an ε-solution
to P can be bounded from above as

O(1)ϑ ln

(
ϑ

t0ε
+ 1

)
,

with O(1) depending only on κ, ω−, ω+.



Chapter 5

Conic problems and Conic Duality

In the previous lecture we dealt with the Basic path-following interior point method. It was explained
that the method, being fine theoretically, is not too attractive from the practical viewpoint, since it is a
routine with a prescribed (and normally close to 1) rate of updating the penalty parameter; as a result,
the actual number of Newton steps in the routine is more or less the same as the number given by the
theoretical worst-case analysis and for sure is proportional to

√
ϑ, ϑ being the parameter of the underlying

self-concordant barrier. For large-scale problems, ϑ normally is large, and the # of Newton steps turns
out to be too large for practical applications. The source of difficulty is the conceptual drawback of our
scheme: everything is strictly regulated, there is no place to exploit favourable circumstances which may
occur. As we shall see in the mean time, this conceptual drawback can be eliminated, to certain extent,
even within the path-following scheme; there is, anyhow, another family of interior point methods, the so
called potential reduction ones, which are free of this drawback of strict regulation; some of these methods,
e.g., the famous - and the very first - interior point method of Karmarkar for Linear Programming, turn
out to be very efficient in practice. The methods of this potential reduction type are what we are about
to investigate now; the investigation, anyhow, should be preceded by developing a new portion of tools,
interesting in their own right. This development is our today goal.

5.1 Conic problems

In order to use the path-following method from the previous lecture, one should reduce the problem
to the specific form of minimizing a linear objective over convex domain; we called this form standard.
Similarly, to use a potential reduction method, one also needs to represent the problem in certain specific
form, called conic; I am about to introduce this form.

Cones. Recall that a convex cone K in Rn is a nonempty convex set with the property

tx ∈ K whenever x ∈ K and t ≥ 0;

in other words, a cone should contain with any of its points the whole ray spanned by the point. A convex
cone is called pointed, if it does not contain lines.

Given a convex cone K ⊂ Rn, one can define its dual as

K∗ = {s ∈ Rn | sTx ≥ 0 ∀x ∈ K}.

In what follows we use the following elementary facts about convex cones: let K ⊂ Rn be a closed
convex cone and K∗ be its dual. Then

• K∗ is closed convex cone, and the cone (K∗)∗ dual to it is nothing but K.

• K is pointed if and only if K∗ has a nonempty interior; K∗ is pointed if and only if K has a
nonempty interior. The interior of K∗ is comprised of all vectors s strictly positive on K, i.e., such
that sTx > 0 for all nonzero x ∈ K.

• s ∈ K∗ is strictly positive on K if and only if the set K(s) = {x ∈ K | sTx ≤ 1} is bounded.

59
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An immediate corollary of the indicated facts is that a closed convex cone K is pointed and possesses a
nonempty interior if and only if its dual shares these properties.

Conic problem. Let K ⊂ Rn be a closed pointed convex cone with a nonempty interior. Consider
optimization problem

(P) : minimize cTx s.t. x ∈ {b+ L} ∩K,

where

• L is a linear subspace in Rn;

• b is a vector from Rn.

Geometrically: we should minimize a linear objective (cTx) over the intersection of an affine plane (b+L)
with the cone K. This intersection is a convex set, so that (P) is a convex program; let us refer to it as
to convex program in the conic form.

Note that a program in the conic form strongly resembles a Linear Programming program in the
standard form; this latter problem is nothing but (P) with K specified as the nonnegative orthant Rn

+.
On the other hand, (P) is a universal form of a convex programming problem. Indeed, it suffices to
demonstrate that a standard convex problem

(S) minimize dTu s.t. u ∈ G ⊂ Rk,

G being a closed convex domain, can be equivalently rewritten in the conic form (P). To this end it
suffices to represent G as an intersection of a closed convex cone and an affine plane, which is immediate:
identifying Rk with the affine hyperplane

Γ = {x = (t, u) ∈ Rk+1 | t = 1},

we can rewrite (S) equivalently as

(Sc) minimize cTx s.t. x ∈ Γ ∩K,

where

c =

(
0
d

)
and

K = cl{(t, x) | t > 0, t−1x ∈ G}

is the conic hull of G. It is easily seen that (S) is equivalent to (Sc) and that the latter problem is
conic (i.e., K is a closed convex pointed cone with a nonempty interior), provided that the closed convex
domain G does not contain lines (whih actually is not a restriction at all). Thus, (P) indeed is a universal
form of a convex program.

5.2 Conic duality

The similarity between conic problem (P) and a Linear Programming problem becomes very clear when
the duality issues are concerned. This duality, which is important for developing potential reduction
methods and interesting in its own right, is our now subject.

5.2.1 Fenchel dual to (P)
We are about to derive the Fenchel dual of conic problem (P), and let me start with recalling you what
is the Fenchel duality.

Given a convex, proper, and closed function f on Rn taking values in the extended real
axis R∪ {+∞} (”proper” means that the domain domf of the function f , i.e., the set where
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f is finite, is nonempty; ”closed” means that the epigraph of the function is closed1, one can
define its congugate (the Legendre transformation)

f∗(s) = sup
x∈Rn

{sTx− f(x)} = sup
x∈domf

{sTx− f(x)},

which again is a convex, proper and closed function; the conjugacy is an involution: (f∗)∗ = f .
Now, let f1, ..., fk be convex proper and closed functions on Rn such that the relative

interiors of the domains of the functions (i.e., the interiors taken with respect to the affine
hulls of the domains) have a point in common. The Fenchel Duality theorem says that if the
function

f(x) =

k∑
i=1

fi(x)

is below bounded, then

− inf f = min
s1,...,sk:s1+...+sk=0

{f∗1 (s1) + ...+ f∗k (sk)} (5.1)

(note this min in the right hand side: the theorem says, in particular, that it indeed is
achieved). The problem

minimize

k∑
i=1

f∗i (si) s.t.
∑
i

si = 0

is called the Fenchel dual to the problem

minimize
∑
i

fi(x).

Now let us derive the Fenchel dual to the conic problem (P). To this end let us set

f1(x) = cTx; f2(x) =

{
0, x ∈ b+ L
+∞, otherwise

; f3(x) =

{
0, x ∈ K
+∞, otherwise

;

these functions clearly are convex, proper and closed, and (P) evidently is nothing but the problem of
minimizing f1 +f2 +f3 over Rn. To write down the Fenchel dual to the latter problem, we should realize
what are the functions f∗i , i = 1, 2, 3. This is immediate:

f∗1 (s) = sup{sTx− cTx | x ∈ Rn} =
{

0, s = c
+∞ otherwise

;

f∗2 (s) = sup{sTx− 0 | x ∈ domf2 ≡ b+ L} =

{
sT b, s ∈ L⊥
+∞, otherwise

,

where L⊥ is the orthogonal complement to L;

f∗3 (s) = sup{sTx− 0 | x ∈ domf3 ≡ K} =

{
0, s ∈ −K∗
+∞, otherwise

,

where K∗ is the cone dual to K.
Now, in the Fenchel dual to (P), i.e., in the problem of minimizing f∗1 (s1) + f∗2 (s2) + f∗3 (s3) over

s1, s2, s3 subject to s1 + s2 + s3 = 0, we clearly can restrict si to be in domf∗i without violating the
optimal solution; thus, we may restrict ourselves to the case when s1 = c, s2 ∈ L⊥ and s3 ∈ −K∗, while
s1 + s2 + s3 = 0; under these restrictions the objective in the Fenchel dual is equal to sT2 b. Expressing
s1, s2, s3 in terms of s = s1 + s2 ≡ −s3, we come to the following equivalent reformulation of the Fenchel
dual to (P):

(D) minimize bT s s.t. s ∈ {c+ L⊥} ∩K∗.
1equivalently: f is lower semicontinuous, or: the level sets {x | f(x) ≤ a} are closed for every a ∈ R
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Note that the actual objective in the Fenchel dual is sT2 b ≡ sT b + cT b; writing down (D), we omit the
constant term cT b (this does not influence the optimal set, although varies the optimal value). Problem
(D) is called the conic dual to the primal conic problem (P).

Note that K is assumed to be closed convex and pointed cone with a nonempty interior; therefore
the dual cone K∗ also is closed, pointed, convex and with a nonempty interior, so that the dual problem
also is conic. Bearing in mind that (K∗)∗ = K, one can immediately verify that the indicated duality is
completely symmetric: the problem dual to dual is exactly the primal one. Note also that in the Linear
Programming case the conic dual is nothing but the usual dual problem written down in terms of slack
variables.

5.2.2 Duality relations

Now let us establish several useful facts about conic duality; all of them are completely similar to what
we know from LP duality.

0. Let (x, s) be a primal-dual feasible pair, i.e., a pair comprised of feasible solutions to (P) and (D).
Then

cTx+ bT s− cT b = xT s ≥ 0.

The left hand side of the latter relation is called the duality gap; 0. says that the duality gap is equal to
xT s and always is nonnegative. The proof is immediate: since x is primal feasible, x− b ∈ L, and since
s is dual feasible, s− c ∈ L⊥, whence

(x− b)T (s− c) = 0,

or, which is the same,
cTx+ bT s− cT b = xT s;

the right hand side here is nonnegative, since x ∈ K and s ∈ K∗.

I. Let P∗ and D∗ be the optimal values in the primal and the dual problem, respectively (optimal value
is +∞, if the problem is unfeasible, and −∞, if it is below unbounded). Then

P∗ +D∗ ≥ cT b,

where, for finite a, ±∞ + a = ±∞, the sum of two infinities of the same sign is the infinity of this sign
and (+∞) + (−∞) = +∞.

This is immediate: take infimums in primal feasible x and dual feasible s in the relation cTx+ bT s ≥ cT b
(see 0.).

II. If the dual problem is feasible, then the primal is below bounded2; if the primal problem is feasible,
then the dual is below bounded.

This is an immediate corollary of I.: if, say, D∗ is < +∞, then P∗ > −∞, otherwise D∗ + P∗ would be
−∞, which is impossible in view of I.

III. Conic Duality Theorem. If one of the problems in the primal-dual pair (P), (D) is strictly feasible
(i.e., possesses feasible solutions from the interior of the corresponding cone) and is below bounded, then
the second problem is solvable, the optimal values in the problems are finite and optimal duality gap
P∗ +D∗ − cT b is zero.

If both of the problems are strictly feasible, then both of them are solvable, and a pair (x∗, s∗)
comprised of feasible solutions to the problems is comprised of optimal solutions if and only if the duality
gap cTx∗ + bT s∗ − cT b is zero, and if and only if the complementary slackness (x∗)T s∗ = 0 holds.

Proof. Let us start with the first statement of the theorem. Due to primal-dual symmetry, we can
restrict ourselves with the case when the strictly feasible below bounded problem is (P). Strict feasibility
means exactly that the relative interiors of the domains of the functions f1, f2, f3 (see the derivation of
(D)) have a point in common, due to the description of the domains of f1 (the whole space), f2 (the affine
plane b+L), f3 (the cone K). The below boundedness of (P) means exactly that the function f1 +f2 +f3

is below bounded. Thus, the situation is covered by the premise of the Fenchel duality theorem, and

2i.e., P∗ > −∞; it may happen, anyhow, that (P) is unfeasible
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according to this theorem, the Fenchel dual to (P), which can be obtained from (D) by substracting the
constant cT b from the objective, is solvable. Thus, (D) is solvable, and the sum of optimal values in (P)
and (D) (which is by cT b greater than the zero sum of optimal values stated in the Fenchel theorem) is
CT b, as claimed.

Now let us prove the second statement of the theorem. Under the premise of this statement both
problems are strictly feasible; from II. we conclude that both of them are also below bounded. Applying
the first statement of the theorem, we see that both of the problems are solvable and the sum of their
optimal values is cT b. It immediately follows that a primal-dual feasible pair (x, s) is comprised of primal-
dual optimal solutions if and only if cTx + bT s = cT b, i.e., if and only if the duality gap at the pair is
0; since the duality gap equals also to xT s (see 0.), we conclude that the pair is comprised of optimal
solutions if and only if xT s = 0.

Remark 5.2.1 The Conic duality theorem, although very similar to the Duality theorem in LP, is a
little bit weaker than the latter statement. In the LP case, already (feasibility + below boundedness),
not (strict feasibility + below boundedness), of one of the problems implies solvability of both of them
and characterization of the optimality identical to that one given by the second statement of the Conic
duality theorem. A ”word by word” extension of the LP Duality theorem fails to be true for general cones,
which is quite natural: in the non-polyhedral case we need certain qualification of constrains, and strict
feasibility is the simplest (and the strongest) form of this qualification. From the exercises accompanying
the lecture you can find out what are the possibilities to strengthen the Conic duality theorem, on one
hand, and what are the pathologies which may occur if the assumptions are weakened too much, on the
other hand.

Let me conclude this part of the lecture by saying that the conic duality is, as we shall see, useful for
developing potential reduction interior point methods. It also turned out to be powerful tool for analytical
- on paper - processing a problem; in several interesting cases, as we shall see in the mean time, it allows
to derive (completely mechanically!) nontrivial and informative reformulations of the initial setting.

5.3 Logarithmically homogeneous barriers

To develop potential reduction methods, we need deal with conic formulations of convex programs and
should equip the corresponding cones with specific self-concordant barriers - the logarithmically homo-
geneous ones. This latter issue is our current goal.

Definition 5.3.1 Let K ⊂ Rn be a a convex, closed and pointed cone with a nonempty interior, and
let ϑ ≥ 1 be a real. A function F : int K → R is called ϑ-logarithmically homogeneous self-concordant
barrier for K, if it is self-concordant on int K and satisfies the identity

F (tx) = F (x)− ϑ ln t ∀x ∈ int K ∀t > 0. (5.2)

Our terminology at this point looks confusing: it is not clear whether a ”logarithmically homogeneous
self-concordant barrier” for a cone is a ”self-concordant barrier” for it. This temporary difficulty is
resolved by the following statement.

Proposition 5.3.1 A ϑ-logarithmically homogeneous self-concordant barrier F for K is a nondegenerate
ϑ-self-concordant barrier for K. Besides this, F satisfies the following identities (x ∈ int K, t > 0):

F ′(tx) = t−1F ′(x); (5.3)

F ′(x) = −F ′′(x)x; (5.4)

λ2(F, x) ≡ −xTF ′(x) ≡ xTF ′′(x)x ≡ ϑ. (5.5)

Proof. Since, by assumption, K does not contain lines, F is nondegenerate (II., Lecture 2). Now let us
prove (5.3) - (5.5). Differentiating the identity

F (tx) = F (x)− ϑ ln t (5.6)
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in x, we come to (5.3); differentiating (5.3) in t and setting t = 1, we obtain (5.4). Differentiating (5.6)
in t and setting t = 1, we come to

−xTF ′(x) = ϑ.

Due to already proved (5.4), this relation implies all equalities in (5.5), excluding the very first of them;
this latter follows from the fact that x, due to (5.4), is the Newton direction −[F ′′(x)]−1F ′(x) of F at x,
so that λ2(F, x) = −xTF ′(x) (IVa., Lecture 2).

Form (5.5) it follows that the Newton decrement of F is identically equal to
√
ϑ; since, by definition,

F is self-concordant on int K, F is ϑ-self-concordant barrier for K.
Let us list some examples of self-concordant barriers.

Example 5.3.1 The standard logarithmic barrier

F (x) = −
n∑
i=1

lnxi

for the nonnegative orthant Rn
+ is n-logarithmically homogeneous self-concordant barrier for the orthant.

Example 5.3.2 The function

F (x) = − ln(t2 − |x|22)

is 2-logarithmically homogeneous self-concordant barrier for the ice-cream cone

K2
n = {(t, x) ∈ Rn+1 | t ≥ |x|2}.

Example 5.3.3 The function

F (x) = − ln Det x

is n-logarithmically self-concordant barrier for the cone Sn+ of symmetric positive semidefinite n × n
matrices.

Indeed, self-concordance of the functions listed in the above examples is given, respectively, by Corollary
2.1.1, Exercise 3.3.4 and Exercise 3.3.3; logarithmic homogeneity is evident.

The logarithmically homogeneous self-concordant barriers admit combination rules completely similar
to those for self-concordant barriers:

Proposition 5.3.2 (i) [stability with respect to linear substitutions of the argument] Let F be ϑ-
logerithmically homogeneous self-concordant barrier for cone K ⊂ Rn, and let x = Ay be a linear
homogeneous mapping from Rk into Rn, with matrix A being of the rank k, such that the image of
the mapping intersects int K. Then the inverse image K+ = A−1(K) of K under the mapping is convex
pointed and closed cone with a nonempty interior in Rk, and the function F (Ay) is ϑ-logarithmically
homogeneous self-concordant barrier for K+.

(ii) [stability with respect to summation] Let Fi, i = 1, ..., k, be ϑi-logarithmically homogeneous self-
concordant barriers for cones Ki ⊂ Rn, and let αi ≥ 1. Assume that the cone K = ∩ki=1Ki possesses a

nonempty interior; then the function
∑k
i=1 αiFi is (

∑
i αiϑi)-logarithmically homogeneous self-concordant

barrier for K.
(iii) [stability with respect to direct summation] Let Fi, i = 1, ..., k, be ϑi-self-concordant barriers for

cones Ki ⊂ Rni . Then the direct sum

F1(x1) + ...+ Fk(xk)

of the barriers is (
∑
i ϑi)-logarithmically homogeneous self-concordant barrier for the direct product K1×

...×Kk of the cones.

The proposition is an immediate corollary of Proposition 3.1.1 and Definition 5.3.1.
In what follows we heavily exploit the following property of logatrithmically homogeneous self-

concordant barriers:
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Proposition 5.3.3 Let K ⊂ Rn be a convex pointed closed cone with a nonempty interior, and let F be
a ϑ-logarithmically homogeneous self-concordant barrier for K. Then

(i) The domain DomF ∗ of the Legendre transformation of F ∗ of the barrier F is exactly the interior
of the cone −K∗ anti-dual to K and F ∗ is ϑ-logarithmically homogeneous self-concordant barrier for this
anti-dual cone. In particular, the mapping

x 7→ F ′(x) (5.7)

is a one-to-one mapping of int K onto − int K∗ with the inverse given by s 7→ (F ∗)′(s).
(ii) For any x ∈ int K and s ∈ int K∗ the following inequality holds:

F (x) + F ∗(−s) + ϑ ln(xT s) ≥ ϑ lnϑ− ϑ. (5.8)

This inequality is equality if and only if
s = −tF ′(x) (5.9)

for some positive t.

Proof.
10. From Proposition 5.3.2 we know that F is nondegenerate; therefore F ∗ is self-concordant on its

domain Q, and the latter is nothing but the image of int K under the one-to-one mapping (5.7), the
inverse to the mapping being s 7→ (F ∗)′(s) (see Lecture 2, (L.1)-(L.3) and VII.). Further, from (5.3) it
follows that Q is an (open) cone; indeed, any point s ∈ Q, due to already proved relation Q = F ′(int K),
can be represented as F ′(x) for some x ∈ int K, and then ts = F ′(t−1x) also belongs to Q. It follows
that K+ = clQ is a closed convex cone with a nonempty interior.

20. Let us prove that K+ = −K∗. This is exactly the same as to prove that the interior of −K∗
(which is comprised of s strictly negative on K, i.e., with sTx being negative for any nonzero x ∈ K, see
Section 5.1) coincides with Q ≡ F ′(int K):

F ′(int K) = − int K∗. (5.10)

20.1. The inclusion
F ′(int K) ⊂ − int K∗ (5.11)

is immediate: indeed, we should verify that for any x ∈ int K F ′(x) is strictly negative on K, i.e., that
yTF ′(x) is negative whenever y ∈ K is nonzero. This is readily given by Corollary 3.2.1: since K is a
cone, y ∈ K is a recessive direction for K, and, due to the Corollary,

−yTF ′(x) ≡ −DF (x)[y] ≥ {D2F (x)[y, y]}1/2;

the concluding quantity here is strictly positive, since y is nonzero and F , as we already know, is nonde-
generate.

20.2. To complete the proof of (5.10), we need to verify the inclusion inverse to (5.11), i.e., we should
prove that if s is strictly negative on K, then s = F ′(x) for certain x ∈ int K. Indeed, since s is strictly
negative on K, the cross-section

Ks = {y ∈ K | sT y = −1} (5.12)

is bounded (Section 5.1). The restirction of F onto the relative interior of this cross-section is a self-
concordant function on rintKs (stability of self-concordance with respect to affine substitutions of argu-
ment, Proposition 2.1.1.(i)). Since Ks is bounded, F attains its minimum on the relative interior of Ks

at certain point y, so that
F ′(y) = λs

for some λ, The coefficient λ is positive (since yTF ′(y) = λyT s is negative in view of (5.5) and yT s = −1
also is negative (recall that y ∈ Ks). Since λ is positive and F ′(y) = λs, we conclude that F ′(λ−1y) = s
(5.3), and s indeed is F ′(x) for some x ∈ int K (namely, x = λ−1y). The inclusion (5.10) is proved.

30. Summarising our considerations, we see that F ∗ is self-concordant on the interior of the cone
−K∗; to complete the proof of (i), it suffices to verify that

F ∗(ts) = F (s)− ϑ ln t.



66 CHAPTER 5. CONIC PROBLEMS AND CONIC DUALITY

This is immediate:

(F ∗)(ts) = sup
x∈int K

{tsTx− F (x)} = sup
y≡tx∈int K

{sT y − F (y/t)} =

= sup
y∈int K

{sT y − [F (y)− ϑ ln(1/t)]} = F ∗(s)− ϑ ln t.

(i) is proved.
40. Let us prove (ii). First of all, for x ∈ int K and s = −tF ′(x) we have

F (x) + F ∗(−s) + ϑ ln(xT s) = F (x) + F ∗(tF ′(x)) + ϑ ln(−txTF ′(x)) =

[since F ∗ is ϑ-logarithmically homogeneous due to (i) and −xTF ′(x) = ϑ, see (5.5)]

= F (x) + F ∗(F ′(x)) + ϑ lnϑ =

[since F ∗(F ′(x)) = xTF ′(x)− F (x) due to the definition of the Legendre transformation]

= xTF ′(x) + ϑ lnϑ = ϑ lnϑ− ϑ

(we have used (5.5)). Thus, (5.8) indeed is equality when s = −tF ′(x) with certain t > 0.
50. To complete the proof of (5.8), it suffices to demonstrate that if x and s are such that

V (x, s) = F (x) + F ∗(−s) + ϑ ln(sTx) ≤ ϑ lnϑ− ϑ, (5.13)

then s is proportional, with positive coefficient, to −F ′(x). To this end consider the cross-section of K
as follows:

Ks = {y ∈ K | sT y = sTx}.

The restriction of V (·, s) onto the relative interior of Ks is, up to additive constant, equal to the restriction
of F , i.e., it is self-concordant (since Ks is cross-section of K by an affine hyperplane passing through
an interior point of K; we have used similar reasoning in 20.2). Since Ks is bounded (by virtue of
s ∈ int K∗), F , and, consequently, V (·, s) attains its minimum on the relative interior of Ks, and this
minimum is unique (since F is nondegenerate). At the minimizer, let it be y, one should have

F ′(y) = −λs;

taking here inner product with y and using (5.5) and the inclusion y ∈ Ks, we get λ > 0. As we alerady
know, the relation F ′(y)−−λs with positive λ implies that V (y, s) = ϑ lnϑ−ϑ; now from (5.13) it follows
that V (y, s) ≥ V (x, s). Since, by construction, x ∈ rintKs and y is the unique minimizer of V (·, s) on
the latter set, we conclude that x = y, so that F ′(x) = −λs, and we are done.
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5.4 Exercises: Conic problems

The list of below exercises is unusually large; you are kindly asked at least to look through the formula-
tions.

5.4.1 Basic properties of cones

Those not familiar with some of the facts on convex cones used in the lecture (see Section 5.1), are
recommended to solve the exercises from this subsection; in these exercises, K ⊂ Rn is a closed convex
cone and K∗ is its dual.

Exercise 5.4.1 #+ Prove that K∗ is closed cone and (K∗)∗ = K.

Exercise 5.4.2 #+ Prove that K possesses a nonempty interior if and only if K∗ is pointed, and that
K∗ possesses a nonempty interior if and only if K is pointed.

Exercise 5.4.3 #+ Let s ∈ Rn. Prove that the following properties of s are equivalent:
(i) s is strictly positive on K, i.e., sTx > 0 whenever x ∈ K is nonzero;
(ii) The set K(s) = {x ∈ K | sTx ≤ 1} is bounded;
(iii) s ∈ int K∗.
Formulate ”symmetric” characterization of the interior of K.

5.4.2 More on conic duality

Here we list some duality relations for the primal-dual pair (P), (D) of conic problems (see Lecture 5).
The goal is to realize to which extent the standard properties of LP duality preserve in the general case.
The forthcoming exercises are not accompanied by solutions, although some of then are not so simple.

Given a conic problem, let it be called (T ), with the data Q (the cone), r (the objective), d+M (the
feasible plane; M is the corresponding linear subspace), denote by D(T ) the feasible set of the problem
and consider the following properties:

• (F): Feasibility: D(T ) 6= ∅;

• (B): Boundedness of the feasible set (D(T ) is bounded, e.g., empty);

• (SB): Boundedness of the solution set (the set of optimal solutions to (T ) is nonempty and bounded);

• (BO): Boundedness of the objective (the objective is below bounded on D(T ), e.g., due to D(T ) =
∅);

• (I): Existence of a feasible interior point (D(T ) intersects int Q);

• (S): Solvability ((T ) is solvable);

• (WN): Weak normality (both (T ) and its conic dual are feasible, and the sum of their optimal
values equals to rT d).

• (N): Normality (weak normality + solvability of both (T ) and its conic dual).

Considering a primal-dual pair of conic problems (P), (D), we mark by superscript p, d, that the property
in question is shared by the primal, respectively, the dual problem of the pair; e.g., (Sd) is abbreviation
for the property ”the dual problem (D) is solvable”.

Good news about conic duality:

Exercise 5.4.4 Prove the following implications:
1) (Fp)⇒ (BOd)

”if primal is feasible, then the dual is below bounded”; this is II., Lecture 5; this is exactly as in LP;
2) [(Fp) & (Bp)] ⇒ [(Sp) & (WN)]
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”if primal is feasible and its feasible set is bounded, then primal is solvable, dual is feasible and below
bounded, and the sum of primal and dual optimal values equals to cT b”; in LP one can add to the
conclusion ”the dual is solvable”;

3) [(Ip) & (BOp)] ⇒ [(Sd) & (WN)]
this is exactly the Conic duality theorem;

4) (SBp) ⇒ (WN)
”if primal is solvable and its optimal set is bounded, then dual is feasible and below bounded, and the
sum of primal and dual optimal values equals to cT b”; in LP one can omit ”optimal set is bounded” in
the premise and add ”dual is solvable” to the conclusion.

Formulate the ”symmetric” versions of these implications, by interchanging the primal and the dual
problems.

Bad news about conic duality:

Exercise 5.4.5 Demonstrate by examples, that the following situations (which for sure do not occur in
LP duality) are possible:

1) the primal problem is strictly feasible and below bounded, and at the same time it is unsolvable (cf.
Exercise 5.4.4, 2));

2) the primal problem is solvable, and the dual is unfeasible (cf. Exercise 5.4.4, 2), 3), 4));
3) the primal problem is feasible with bounded feasible set, and the dual is unsolvable (cf. Exercise

5.4.4, 2), 3));
3) both the primal and the dual problems are solvable, but there is nonzero duality gap: the sum of

optimal values in the problems is strictly greater than cT b (cf. Exercise 5.4.4, 2), 3)).

The next exercise is of some interest:

Exercise 5.4.6 ∗ Assume that both the primal and the dual problem are feasible. Prove that the feasible
set of at least one of the problems is unbounded.

5.4.3 Complementary slackness: what it means?

The Conic duality theorem says that if both the primal problem (P) and the dual problem (D), see
Lecture 5, are strictly feasible, then both of them are solvable, and the pair (x, s) of feasible solutions
to the problems is comprised of optimal solutions if and only if xT s = 0. What does the latter relation
actually mean, it depends on analytic structure of the underlying cone K. Let us look what happens in
several specific cases which are responsible for a wide spectrum of applications.

Recall that in Lecture 5 we have mentioned three particular (families of) cones:

• the cone Rn
+ - the n-dimensional nonnegative orthant in Rn; the latter space from now on is

equipped with the standard Euclidean structure given by the inner product xT y;

• the cone Sn+ of positive semidefinite symmetric n× n matrices in the space Sn of symmetric n× n
matrices; this latter space from now on is equipped with the Frobenius Euclidean structure given by
the inner product 〈x, y〉 = Tr{xy}, Tr being the trace; this is nothing but the sum, over all entries,
of the products of the corresponding entries in x and in y;

• the ”ice-cream” (more scientific name - second-order) cone

K2
n = {x ∈ Rn+1 | xn+1 ≥

√
x2

1 + ...+ x2
n};

this is a cone in Rn+1, and we already have said what is the Euclidean structure the space is
equipped with.

Exercise 5.4.7 # Prove that each of the aforementioned cones is closed, pointed, convex and with a
nonempty interior and, besides this, is self-dual, i.e., coincides with its dual cone3.

3self-duality, of course, makes sense only with respect to certain Euclidean structure on the embedding linear space,
since this structure underlies the construction of the dual cone. We have already indicated what are these structures for
the spaces where our cones live
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Now let us look what means complementary slackness in the case of our standard cones.

Exercise 5.4.8 # Let K be a cone, K∗ be a dual cone and let x, s satisfy the complementary slackness
relation

S(K) : {x ∈ K}&{s ∈ K∗}&{xT s = 0}.
Prove that

1) in the case of K = Rn
+ the relation S says exactly that x and s are nonnegative n-dimensional

vectors with the zero dot product x× s = (x1s1, ..., xnsn)T ;
2)+ in the case of K = Sn+ the relation S says exactly that x and s are positive semidefinite symmetric

matrices with zero product xs; if it is the case, then x and s commutate and possess, therefore, a common
eigenbasis, and the dot product of the diagonals of x and s in this basis is zero;

3)+ in the case of K = K2
n the relation S says exactly that xn+1 =

√
x2

1 + ...+ x2
n, sn+1 =

√
s2

1 + ...+ s2
n

and
x1 : s1 = x2 : s2 = ... = xn : sn = −[xn+1 : sn+1].

We have presented the ”explicit characterization” of complementary slackness for our particular cones
which often occur in applications, sometimes as they are, and sometimes - as certain ”building blocks”.
I mean that there are decomposable situations where the cone in question is a direct product:

K = K1 × ...×Kk,

and the Euclidean embedding space for K is the direct product of Euclidean embedding spaces for the
”component cones” Ki. In such a situation the complementary slackness is ”componentwise”:

Exercise 5.4.9 # Prove that in the aforementioned decomposable situation

K∗ = K∗1 × ...×K∗k ,

and a pair x = (x1, ..., xk), s = (s1, ..., sk) possesses the complementary slackness property S(K) if and
only if each of the pairs xi, si possesses the property S(Ki), i = 1, ..., k.

Thus, if we are in a decomposable situation and the cones Ki belong each to its own of our three standard
families, then we are able to interpret explicitly the complementary slackness relation.

Let me complete this section with certain useful observation related to the three families of cones
in question. We know form Lecture 5 that these cones admit explicit logarithmically homogeneous self-
concordant barriers; on the other hand, we know that the Legendre transformation of a logarithmically
homogeneous self-concordant barrier for a cone is similar barrier for the anti-dual cone. It is interesting
to look what are the Legendre transformations of the particular barriers known to us. The answer is as
it should be: these barriers are, basically, ”self-adjoint” - their Legendre transformations coincide with
the barriers, up to negating the argument and adding a constant:

Exercise 5.4.10 # Prove that
1) the Legendre transformation of the standard logarithmic barrier

F (x) = −
n∑
i=1

lnxi

for the cone Rn
+ is

F ∗(s) = F (−s)− n, DomF ∗ = −Rn
+;

2) the Legendre transformation of the standard barrier

F (x) = − ln Det x

for the cone Sn+ is
F ∗(s) = F (−s)− n, DomF ∗ = −Sn+;

3) the Legendre transformation of the standard barrier

F (x) = − ln(x2
n+1 − x2

1 − ...− x2
n)

for the cone K2
n is

F ∗(s) = F (−s) + 2 ln 2− 2, DomF ∗ = −K2
n.
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5.4.4 Conic duality: equivalent form

In many applications the ”natural” form of a conic problem is

(P) : minimize χT ξ s.t. ξ ∈ Rl, P (ξ − p) = 0, A(ξ) ∈ K,

where ξ is the vector of design variables, P is given k × l matrix, p is given l-dimensional vector, χ ∈ Rl

is the objective,
A(ξ) = Aξ + b

is an affine embedding of Rl into Rn and K is a convex, closed and pointed cone with a nonempty interior
in Rn. Since A is an embedding (different ξ’s have different images), the objective can be expressed in
terms of the image x = A(ξ) of the vector ξ under the embedding: there exists (not necessarily unique)
c ∈ Rn such that

cTA(ξ) = cTA(0) + χT ξ

identically in ξ ∈ Rl.
It is clear that (P) is equivalent to the problem

(P′) : minimize cTx s.t. x ∈ {β + L} ∩K,

where the affine plane β + L is nothing but the image of the affine space

{ξ ∈ Rl | P (ξ − p) = 0}

under the affine mapping A. Problem (P’) is a conic program in our ”canonical” form, and we can
write down the conic dual to it, let this dual be called (D). A useful thing (which saves a lot of time in
computations with conic duality) is to know how to write down this dual directly in terms of the data
involved into (P), thus avoiding the necessity to compute c.

Exercise 5.4.11 # Prove that (D) is as follows:

minimize βT s s.t. s ∈ K∗, AT s = χ+ PT r for some r ∈ Rk, (5.14)

with
β = b+Ap. (5.15)
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5.5 Exercises: Truss Topology Design via Conic duality

It was said in Lecture 5 that conic duality is a powerful tool for mathematical processing a convex
problem. Let us illustrate this point by considering an interesting example - Truss Topology Design
problem (TTD).

”Human” formulation. We should design a truss - a construction, like the Eifel Tower, comprised of
thin bars linked with each other at certain points - nodes of the truss. The construction is subject to
loads, i.e., external forces acting at the nodes. A particular collection of these forces - each element of
the collection specifying the external force acting at the corresponding node - is called loading scenario.
A given load causes certain deformation of the truss - nodes move a little bit, the bars become shorter
or longer. As a result, the truss capacitates certain energy - the compliance. It is reasonable to regard
this compliance as the measure of rigidity of the truss under the loading in question - the larger is the
compliance, the less rigid is the construction. For a given loading scenario, the compliance depends on
the truss - on how thick are the bars linking the nodes. Now, the rigidity of a truss with respect to a
given set of loading scenarios is usually defined as its largest, over the scenarios, compliance. And the
problem is to design, given the set of scenarios and restrictions on the total mass of the construction, the
most rigid truss.

More specifically, when solving the problem you are given a finite 2D or 3D set of tentative nodes,
same as the finite set of tentative bars; for each of these bars it is said at which node it should start
and at which node end. To specify a truss is the same as to choose the volumes ti, i = 1, ...,m, of the
tentative bars (some of these volumes may be 0, which means that the corresponding bar in fact does not
present in the truss); the sum V of these volumes (proportional to the total mass of the construction) is
given in advance.

Mathematical formulation. Given are

• loading scenarios f1, ..., fk - vectors from Rn; here n is the total number of degrees of freedom of
the nodes (i.e., the dimension of the space of virtual nodal displacements), and the entries of f are
the components of the external forces acting at the nodes.

n is something like twice (for 2D constructions) or 3 times (for 3D ones) the number of nodes;
”something like”, because some of the nodes may be partially or completely fixed (say, be in the
fundament of the construction), which reduces the total # of freedom degrees;

• bar-stiffness matrices - n × n matrices Ai, i = 1, ...,m, where m is the number of tentative bars.
The meaning of these matrices is as follows: for a truss with bar volumes ti virtual displacement
x ∈ Rn of the nodes result in reaction forces

f = A(t)x, A(t) = t1A1 + ...+ tmAm.

Under reasonable mechanical hypothesis, these matrices are symmetric positive semidefinite with
positive definite sum, and in fact even dyadic:

Ai = bib
T
i

for certain vectors bi ∈ Rn (these vectors are defined by the geometry of the nodal set). These
assumptions on Ai are crucial for what follows4.

• total bar volume V > 0 of the truss.

Now, the vector x of nodal displacements caused by loading scenario f satisfies the equilibrium equation

A(t)x = f

(which says that the reaction forces A(t)x caused by the deformation of the truss under the load should
balance the load; if the equilibrium equation has no solution, that means that the truss is unable to carry
the load in question). The compliance, up to an absolute constant factor, turns out to be

xT f.

4crucial are positive semidefiniteness and symmetry of Ai, not the fact that they are dyadic; this latter assumption,
quite reasonable for actual trusses, is not too important, although simplifies some relations
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Thus, we come to the following problem of Multi-Loaded Truss Topology Design:

(TTDini): find vector t ∈ Rm of bar volumes satisfying the constraints

t ≥ 0;

m∑
i=1

ti = V (5.16)

and the displacement vectors xj ∈ Rn, j = 1, ..., k, satisfying the equilibrium equations

A(t)xj = fj , j = 1, ..., k, (5.17)

which minimize the worst-case compliance

C(t, x1, ..., xk) = max
j=1,...,k

xTj fj .

From our initial formulation it is not even seen that the problem is convex (since equality constraints
(5.17) are bilinear in t and xj). It is, anyhow, easy to demonstrate that in fact the problem is convex. The
motivation of the reasoning is as follows: when t is strictly positive, A(t) is positive definite (since Ai are
positive semidefinite with positive definite sum), and the equilibrium equations can be solved explicitly:

xj = A−1(t)fj ,

so that j-th compliance, as a function of t > 0, is

cj(t) = fTj A
−1(t)fj .

This function is convex in t > 0, since the interior of its epigraph

Gj = {(τ, t) | t > 0, τ > fTj A
−1(t)fj}

is convex, due to the following useful observation:

(*): a block-diagonal symmetric matrix

(
τ fT

f A

)
(τ and A are l× l and n×n symmetric matrices, f is

n× l matrix) is positive definite if and only if both the matrices A and τ − fTA−1f are positive definite.
The convexity of Gj is an immediate consequence of this observation, since, due to it (applied with l = 1
and f = fj) Gj is the intersection of the convex set {(τ, t) | t > 0} and the inverse image of a convex set
(the cone of positive definite (n+ 1)× (n+ 1) matrices) under the affine mapping

(τ, t) 7→
(
τ fTj
fj A(t)

)

Exercise 5.5.1 # Prove (*).

The outlined reasoning is unsufficient for our purposes: it does not say what happens if some of ti’s
are zero, which may cause degeneracy of A(t). In fact, of course, nothing happens: the epigraph of the
function ”compliance with respect to j-th load”, regarded as a function of t ≥ 0, is simply the closure of
the above Gj (and is therefore convex). Instead of proving this latter fact directly, we shall come to the
same conclusion in another way.

Exercise 5.5.2 Prove that the linear equation

Ax = f

with symmetric positive semidefinite matrix A is solvable if and only if the concave quadratic form

qf (z) = 2zT f − zTAz
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is above bounded, and if this is the case, then the quantity xT f , x being an arbitrary solution to the
equation, coincides with maxz qf (z).

Derive from this observation that one can eliminate from (TTDini) the displacements xj by passing
to the problem

(TTD1): find vector t of bar volumes subject to the constraint (5.16) which minimizes the objective

c(t) = max
j=1,...,k

cj(t), cj(t) = sup
z∈Rn

[2zT fj − zTA(t)z].

Note that cj(t) are closed and proper convex functions (as upper bounds of linear forms; the fact that
the functions are proper is an immediate consequence of the fact that A(t) is positive definite for strictly
positive t), so that (TTD1) is a convex program.

Our next step will be to reduce (TTD1) to a conic form. Let us first make the objective linear. This
is immediate: by introducing an extra variable τ , we can rewrite (TTD1) equivalently as

(TTD2): minimize τ by choice of t ∈ Rn and τ subject to the constraints (5.16) and

τ + zTA(t)z − 2zT fj ≥ 0, ∀z ∈ Rn ∀j = 1, ..., k. (5.18)

((5.18) clearly express the inequalities τ ≥ cj(t), j = 1, ..., k).
Our next step is guided by the following evident observation:

the inequality

τ + zTAz − 2zT f,

τ being real, A being symmetric n×n matrix and f being a n-dimensional vector, is valid for all z ∈ Rn

if and only if the symmetric (n+ 1)× (n+ 1) matrix(
τ fT

f A

)
≥ 0

is positive semidefinite.

Exercise 5.5.3 Prove the latter statement. Derive from this statement that (TTD2) can be equivalently
written down as

(TTDp): minimize τ by choice of s ∈ Rm and τ ∈ R subject to the constraint

A(τ, s) ∈ K;

m∑
i=1

si = 0,

where

• K is the direct product of Rm
+ and k copies of the cone Sn+1

+ ;

• the affine mapping A(τ, s) is as follows: the Rn
+-component of A is

At(τ, s) = s+m−1(V, ..., V )T ≡ s+ e;

the component of A associated with j-th of the copies of the cone Sn+1
+ is

Aj(τ, s) =

(
τ fTj
fj A(e) +A(s)

)
.

Note that At(τ, s) is nothing but our previous t; the constraint At(τ, s) ∈ Rm
+ (which is the part of

the constraint A(τ, s) ∈ K) together with the constraint
∑
i si = 0 give equivalent reformulation of the

constraint (5.16), while the remaining components of the constraint A(τ, s) ∈ K, i.e., the inclusions
Aj(τ, s) ∈ Sn+1

+ , represent the constraints (5.18).
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Note that the problem (TTDp) is in fact in the conic form (cf. Section 5.4.4). Indeed, it requires to
minimize a linear objective under the constraints that, first, the design vector (τ, s) belongs to sertain
linear subspace E (given by

∑
i si = 0) and, second, that the image of the design vector under a given

affine mapping belongs to certain cone (closed, pointed, convex and with a nonempty interior). Now, the
objective evidently can be respresented as a linear form cTu of the image u = A(τ, s) of the design vector
under the mapping, so that our problem is exactly in minimizing a linear objective over the intersection
of an affine plane (namely, the image of the linear subspace E under the affine mapping A) and a given
cone, which is a conic problem.

To the moment we acted in certain ”clever” way; from now on we act in completely ”mechanical”
manner, simply writing down and straightforwardly simplifying the conic dual to (TTDp).

First step: writing down conic dual to (TTDp). What we should do is to apply to (TTDp) the
general construction from Lecture 5 and look at the result. The data in the primal problem are as follows:

• K is the direct product of Kt = Rm
+ and k copies Kj of the cone Sn+1

+ ; the embedding space for
this cone is

E = Rn × Sn+1 × ...× Sn+1;

we denote a point from this latter space by u = (t, p1, ..., pk), t ∈ Rm and pj being (n+ 1)× (n+ 1)
symmetric matrices, and denote the inner product by (·, ·);

• c ∈ E is given by c = (0, χ, ...χ), where

χ =

(
k−1 0

0 0

)
is (n+ 1)× (n+ 1) matrix with the only nonzero entry, which ensures the desired relation

(c,A(τ, s)) ≡ τ ;

note that there are many other ways to choose c in accordance with this relation;

• L is the image of E under the homogeneous part of the affine mapping A;

• b = A(0, 0) = (e, φ1, ..., φk), where

φj =

(
0 fTj
fj A(e)

)
.

Now let us build up the dual problem. We know that the cone K is self-dual (as a direct product of
self-dual cones, see Exercises 5.4.7, 5.4.9), so that K∗ = K. We should realize only what is L⊥, in other
words, what are the vectors

s = (r, q1, ..., qk) ∈ E

which are orthogonal to the image of E under the homogeneous part of the affine mapping A. This
requires nothing but completely straightforward computations.

Exercise 5.5.4 + Prove that feasible plane c + L⊥ of the dual problem is comprised of exactly those
w = (r, q1, ..., qk) for which the symmetric (n+ 1)× (n+ 1) matrices qj, j = 1, ..., k, are of the form

qj =

(
λj zTj
zj σj

)
, (5.19)

with λj satisfying the relation
k∑
j=1

λj = 1 (5.20)

and the n×n symmetric matrices σ1, ..., σk, along with the n-dimensional vector r, and a real ρ, satisfying
the equations

ri +

k∑
j=1

bTi σjbi = ρ, i = 1, ...,m. (5.21)
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(bi are the vectors involved into the representation Ai = bib
T
i , so that bTi σjbi = Tr{Aiσj}).

Derive from this observation that the conic dual to (TTDp) is the problem

(TTDd): minimize the linear functional

2

k∑
j=1

zTj fj + V ρ (5.22)

by choice of positive semidefinite matrices qj of the form (5.19), nonnegative vector r ∈ Rn and real ρ
under the constraints (5.20) and (5.21).

Second step: simplifying the dual problem. Now let us simplify the dual problem. It is immediately
seen that one can eliminate the ”heavy” matrix variables σj and the vector r by performing partial
optimization in these variables:

Exercise 5.5.5 + Prove that in the notation given by (5.19), a collection

(λ1, ..., λk; z1, ..., zk; ρ)

can be extended to a feasible plan (r; q1, ..., qk; ρ) of problem (TTDd) if and only if the collection satisfies
the following requirements:

λj ≥ 0;

k∑
j=1

λj = 1; (5.23)

ρ ≥
k∑
j=1

(bTi zj)
2

λj
∀i (5.24)

(a fraction with zero denominator from now on is +∞), so that (TTDd) is equivalent to the problem of
minimizing linear objective (5.22) of the variables λ·, z·, ρ under constraints (5.23), (5.24).

Eliminate ρ from this latter problem to obtain the following equivalent reformulation of (TTDd):

(TTDd): minimize the function

max
i=1,...,m

k∑
j=1

[
2zTj fj + V

(bTi zj)
2

λj

]
(5.25)

by choice of λj, j = 1, ..., k, and zj ∈ Rn subject to the constraint

λj ≥ 0;

k∑
j=1

λj = 1. (5.26)

Note that in the important single-load case k = 1 the problem (TTDd) is simply in minimizing, with
respect to z1 ∈ Rn, the maximum over i = 1, ...,m of the quadratic forms

ψi(z1) = 2zT1 f1 + V (bTi z1)2.

Now look: the initial problem (TTDp) contained m-dimensional design vector (τ, s) (the ”formal”
dimension of the vector is m + 1, but we remember that the sum of si should be 0). The dual problem
(TTDd) has k(n + 1) − 1 variables (there are k n-dimensional vectors zj and k reals λj subject to a
single linear equation). In the ”full topology TTD” (it is allowed to link by a bar any pair of nodes), m
is of order of n2 and n is at least of order of hundreds, so that m is of order of thousands and tens of
thousands. In contrast to these huge numbers, the number k of loading scenarios is, normally, a small
integer (less than 10). Thus, the dimension of (TTDd) is by order of magnitudes less than that one
of (TTDp). At the same time, solving the dual problem one can easily recover, via the Conic duality
theorem, the optimal solution to the primal problem. As a kind of ”penalty” for relatively small # of
variables, (TTDd) has a lot of inequality constraints; note, anyhow, that for many methods it is much
easier to struggle with many constraints than with many variables; this is, in particular, the case with
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the Newton-based methods5. Thus, passing - in a completely mechanical way! - from the primal problem
to the dual one, we improve the ”computational tractability” of the problem.

Third step: back to primal. And now let us demonstrate how duality allows to obtain a better
insight on the problem. To this end let us derive the problem dual to (TTDd). This looks crazy: we
know that dual to dual is primal, the problem we started with. There is, anyhow, an important point:
(TTDd) is equivalent to the conic dual to (TTDp), not the conic dual itself; therefore, taking dual to
(TTDd), we should not necessarily obtain the primal problem, although we may expect that the result
will be equivalent to this primal problem.

Let us implement our plan. First, we rewrite (TTDd) in an equivalent conic form. To this end we
introduce extra variables yij ∈ R, i = 1, ...,m, j = 1, ..., k, in order to ”localize” nonlinearities, and an
extra variable f to represent the objective (5.25) (look: a minute ago we tried to eliminate as many
variables as possible, and now we go in the opposite direction... This is life, isn’t it?) More specifically,
consider the system of constraints on the variables zj , λj , yij , f (i runs from 1 to m, j runs from 1 to k):

yij ≥
(bTi zj)

2

λj
; λj ≥ 0, i = 1, ...,m, j = 1, ..., k; (5.27)

f ≥
k∑
j=1

[
2zTj fj + V yij

]
, i = 1, ...,m; (5.28)

k∑
j=1

λj = 1. (5.29)

It is immediately seen that (TTDd) is equivalent to minimization of the variable f under the constraints
(5.27) - (5.29). This latter problem is in the conic form (P) of Section 5.4.4, since (5.27) can be equivalently
rewritten as (

yij bTi zj
bTi zj λj

)
≥ 0, i = 1, ...,m, j = 1, ..., k (5.30)

(”≥ 0” for symmetric matrices stands for ”positive semidefinite”); to justify this equivalence, think what
is the criterion of positive semidefiniteness of a 2× 2 symmetric matrix.

We see that (TTDd) is equivalent to the problem of minimizing f under the constraints (5.28) - (5.30).
This problem, let it be called (π), is of form (P), Section 5.4.4, with the following data:

• the design vector is
ξ = (f ;λ·; y·; z·);

• K is the direct product of Rm
+ and mk copies of the cone S2

+ of symmetric positive semidefinite
2 × 2 matrices; we denote the embedding space of the cone by F , the vectors from F by η =
(ζ, {πij}i=1,...,m,j=1,...,k), ζ being m-dimensional and πij being 2 × 2 matrices, and equip F with
the natural inner product

(η′, η′′) = (ζ ′)T ζ ′′ +
∑
i,j

Tr{π′ijπ′′ij};

• A is the homogeneous linear mapping with the components

(Aζ)i = f −
k∑
j=1

[
2zTj fj + V yij

]
,

Aπij =

(
yij bTi zj
bTi zj λj

)
;

• χ is the vector with the only nonzero component (associated with the f -component of the design
vector) equal to 1.

5since the number of constraints influences only the complexity of assembling the Newton system, and the complexity is
linear in this number; in contrast to this, the # of variables defines the size of the Newton system, and the complexity of
solving the system is cubic in # of variables
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• The system P (ξ− p) = 0 is
∑
j λj = 1, so that PT r, r ∈ R, is the vector with λ·-components equal

to r and remaining components equal to 0, and p is PT 1
k .

Exercise 5.5.6 + Prove that the conic dual, in the sense of Section 5.4.4, to problem (π) is equivalent
to the following program:

(ψ): minimize

max
j=1,...,k

[
m∑
i=1

β2
ij

φi

]
(5.31)

by choice of m-dimensional vector φ and mk reals βij subject to the constraints

φ ≥ 0;

m∑
i=1

φi = V ; (5.32)

m∑
i=1

βijbi = fj , j = 1, ..., k. (5.33)

Fourth step: from primal to primal. We do not know what is the actual relation between problem
(ψ) and our very first problem (TTDini) - what we can say is:

”(ψ) is equivalent to the problem which is conic dual to the problem which is equivalent to the conic
dual to the problem which is equivalent to (TTDini)”;
it sounds awkful, especially taking into account that the notion of equivalency between problems has no
exact meaning. At the same time, looking at (ψ), namely, at equation (5.32), we may guess that φi are
nothing but our bar volumes ti - the design variables we actually are interested in, so that (ψ) is a ”direct
reformulation” of (TTDini) - the φ-component of optimal solution to (ψ) is nothing but the t-component
of the optimal solution to (TTDini). This actually is the case, and the proof could be given by tracing
the chain wich leaded us to (ψ). There is, anyhow, a direct, simple and instructive way to establish
equivalency between the initial and the final problems in our chain, which is as follows.

Given a feasible solution (t, x1, ..., xk) to (TTDini), consider the bar forces

βij = tix
T
j bi;

these quantities are magnitudes of the reaction forces caused by elongations of the bars under the corre-
sponding loads. The equilibrium equations

A(t)xj = fj

in view of A(t) =
∑
i tiAi ≡

∑
i tibib

T
i say exactly that∑

i

βijbi = fj , j = 1, ..., k; (5.34)

thus, we come to a feasible plan
(φ, β·) : φ = t, βij = tix

T
j bi (5.35)

to problem (ψ). What is the value of the objective of the latter problem at the indicated plan? Multiplying
(5.34) by xTj and taking into account the origin of βij , we see that j-th compliance cj = xTj fj is equal to

∑
i

βijx
T
j bi =

∑
i

ti(x
T
j bi)

2 =
∑
i

β2
ij

ti
=
∑
i

β2
ij

φi
,

so that the value of the objective of (TTDini) at (t, x1, ..., xk), which is maxj cj , is exactly the value of
the objective (5.31) of the problem (ψ) at the feasible plan (5.35) of the latter problem. Thus, we have
establish the following proposition:

A. Transformation (5.35) maps a feasible plan (t, x1, ..., xk) to problem (TTSini) into feasible plan (φ, β·)
to problem (ψ), and the value of the objective of the first problem at the first plan is equal to the value
of the objective of the second problem at the second plan.



78 CHAPTER 5. CONIC PROBLEMS AND CONIC DUALITY

Are we done? Have we established the desired equivalence between the problems? No! Why do we know
that images of the feasible plans to (TTDini) under mapping (5.35) cover the whole set of feasible plans
of (ψ)? And if it is not the case, how can we be sure that the problems are equivalent - it may happen
that optimal solution to (ψ) corresponds to no feasible plan of the initial problem!

And the image of mapping (5.35) indeed does not cover the whole feasible set of (ψ), which is clear by
dimension reasons: the dimension of the feasible domain of (TTDini), regarded as a nonlinear manifold,
is m− 1 (this is the # of independent ti’s; xj are functions of t given by the equilibrium equations); and
the dimension of the feasible domain of (ψ), also regarded as a manifold, is m−1 (# of independent φi’s)
plus mk (# of βij) minus nk (# of scalar linear equations (5.33)), i.e., it might be by order of magnitudes
greater than the dimension of the feasible domain of (TTDini) (recall that normally m >> n). In
other words, transformation (5.35) allows to obtain only those feasible plans of (ψ) where the β-part is
determined, via the expressions

βij = tix
T
j bi,

by k n-dimensional vectors xj (which is also clear from the origin of the problem: the actual bar forces
should be caused by certain displacements of the nodes), and this is in no sense a consequence of the
constraints of problem (ψ): relations (5.33) say only that the sum of the reaction forces balances the
external load, and says nothing on the ”mehcanical validity” of the reaction forces, i.e., whether or not
they are caused by certain displacements of the nodes. Our dimension analysis demonstrates that the
reaction forces caused by nodal displacements - i.e., those valid mechanically - form a very small part of
all reaction forces allowed by equations (5.33).

In spite of these pessimistic remarks, we know that the optimal value in (ψ) - which is basically dual
to dual to (TTDini) - is the same one as that one in (TTDini), so that in fact the optimal solution to (ψ) is
in the image of mapping (5.35). Can we see it directly, without referring to the chain of transformations
which leaded us to (ψ)? Yes! It is very simple to verify that the following proposition holds:

B. Let (φ, β·) be a feasible plan to (ψ) and ω be the corresponding value of the objective. Then φ can
be extended to a feasible plan (t = φ, x1, ..., xk) to (TTDini), and the maximal, over the loads f1, ..., fk,
compliance of the truss t is ≤ ω.

Exercise 5.5.7 + Prove B.

From A. and B. it follows, of course, that problems (TTDini) and (ψ) are equivalent - ε-solution to
any of them can be immediately transformed into ε-solution to another.

Concluding remarks. Let me make several comments on our ”truss adventure”.

• Our main effort was to pass from the initial form (TTDini) of the Truss Topology Design problem
to its dual (TTDd) and then - to the ”dual to dual” bar forces reformulation (ψ) of the initial
problem. Some steps seemed to be ”clever” (convex reformulation of (TTDini); conic reformulation
of of (TTDd) in terms of cones of positive semidefinite 2 × 2 matrices), but most of them were
completely routine - we used in a straightforward manner the general scheme of conic duality. In fact
the ”clever” steps also are completely routine; small experience suffices to see immediately that the
epigraph of the compliance can be represented in terms of nonnegativity of certain quadratic forms
or, which is the same, in terms of positive semidefiniteness of certain matrices linearly depending
on the control vectors; this is even easier to do with the constraints (5.30). I would qualify our
chain of reformulations as a completely straightforward.

• Let us look, anyhow, what are the results of our effort. There are two of them:

(a) ”compressed”, as far as # of variables is concerned, form (TTDd) of the problem; as it was
mentioned, reducing # of variables, we get better possibilities for numerical processing the problem;

(b) very instructive ”bar forces” reformulation (ψ) of the problem.

• After the ”bar forces” formulation is guessed, one can easily establish its equivalence to the initial
formulation; thus, if our only goal were to replace (TTDini) by (ψ), we could restrict ourselves with
the fourth step of our construction and skip the preceding three steps. The question, anyhow, how
to guess that (ψ) indeed is equivalent to (TTDini). This is not that difficult to look what are the
equilibrium equations in terms of the bar forces βij = tix

T
j bi; but one hardly could be courageous
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enough (and, to the best of our knowledge, in fact was not courageous) to conjecture that the ”heart
of the situation” - the restriction that the bar forces should be caused by certain displacements of the
nodes - simply is redundant: in fact we can forget that the bar forces should belong to an ”almost
negligible”, as far as dimensions are concerned, manifold (given by the equations βij = tix

T
j bi),

since this restriction on the bar forces is automatically satisfied at any optimal solution to (ψ) (this
is what actually is said by B.).

Thus, the things are as they should be: routine transformations result in something which, in
principle, could be guessed and proved directly and quickly; the bottleneck is in this ”in principle”:
it is not difficult to justify the answer, it is difficult to guess what the answer is. In our case, this
answer was ”guessed” via straightforward applications of a quite routine general scheme, scheme
useful in other cases as well; to demonstrate the efficiency of this scheme and some ”standard”
tricks in its implementation, this is exactly the goal of this text.

• To conclude, let me say several words on the ”bar forces” formulation of the TTD problem. First
of all, let us look what is this formulation in the single-load case k = 1. Here the problem becomes

minimize
∑
i

β2
i

φi

under the constraints
φ ≥ 0;

∑
i

φi = V ;
∑
i

βibi = f.

We can immediately perform partial optimization in φi:

φi = V |β|i

[∑
i

|βi|

]−1

.

The remaining optimization in βi, i.e., the problem

minimize V −1

[∑
i

|βi|

]2

s.t.
∑
i

βibi = f,

can be immediately reduced to an LP program.

Another useful observation is as follows: above we dealt with A(t) =
∑m
i=1 tiAi, Ai = bib

T
i ; in

mechanical terms, this is the linear elastic model of the material. For other mechanical models,
other types of dependencies A(t) occur, e.g.,

A(t) =

m∑
i=1

tκi Ai, Ai = bib
T
i ,

where κ > 0 is given. In this case the ”direct” reasoning establishing the equivalence between
(TTDini) and (ψ) remains valid and results in the following ”bar forces” setting:

minimize max
j=1,...,k

m∑
i=1

β2
ij

tκi

under the constraints
t ≥ 0;

∑
i

ti = V ;
∑
i

βijbi = fj , j = 1, ..., k.

A bad news here is that the problem turns out to be convex in (t, β·) if and only if κ ≥ 1, and from
the mechanical viewpoint, the only interesting case in this range of values of κ is that one of linear
model (κ = 1).
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Chapter 6

The method of Karmarkar

The goal of this lecture is to develop the method which extends onto the general convex case the very
first polynomial time interior point method - the method of Karmarkar. Let me say that there is no
necessity to start with the initial LP method and then pass to the extensions, since the general scheme
seems to be more clear than its particular LP implementation.

6.1 Problem setting and assumptions

The method in question is for solving a convex program in the conic form:

(P) : minimize cTx s.t. x ∈ {b+ L} ∩K, (6.1)

where

• K is a closed convex pointed cone with a nonempty interior in Rn;

• L is a linear subspace in Rn;

• b and c are given n-dimensional vectors.

We assume that

A: the feasible set

Kf = {b+ L} ∩K

of the problem is bounded and intersects the interior of the cone K.

B: we are given in advance a strictly feasible solution x̂ to the problem, i.e., a feasible solution
belonging to the interior of K;

Assumptions A and B are more or less standard for the interior point approach. The next assumption
is specific for the method of Karmarkar:

C: the optimal value, c∗, of the problem is known.

Assumption C. might look rather restrictive; in the mean time we shall see how one can eliminate it.

Our last assumption is as follows:

D: we are given a ϑ-logarithmically homogeneous self-concordant barrier F for the cone K.

As in the case of the path-following method, ”we are given F” means that we are able, for any x ∈ Rn,
to decide whether x ∈ DomF ≡ int K, and if it is the case, can compute the value F (x), the gradient
F ′(x) and the Hessian F ′′(x) of the barrier at x. Note that the barrier F is the only representation of
the cone used in the method.

81
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6.2 Homogeneous form of the problem

To proceed, let us note that the feasible affine plane b + L of problem (P) can be, by many ways,
represented as an intersection of a linear space M and an affine hyperplane Π = {x ∈ Rn | eTx = 1}.
Indeed, our feasible affine plane always can be represented as the plane of solutions to a system

Px = p

of, say, m + 1 linear equations. Note that the system for sure is not homogeneous, since otherwise the
feasible plane would pass through the origin; and since, in view of A, it intersects also the interior of
the cone, the feasible set Kf would be a nontrivial cone, which is impossible, since Kf is assumed to be
bounded (by the same A). Thus, at least one of the equations, say, the last of them, is with a nonzero
right hand side; normalizing the equation, we may think that it is of the form eTx = 1. Substracting this
equation, with properly chosen coefficient, from the remaining m equations of the system, we may make
these equations homogeneous, thus reducing the system to the form

Ax = 0; eTx = 1;

now b+ L is represented in the desired form

b+ L = {x ∈M | cTx = 1}, M = {x | Ax = 0}.

Thus, we can rewrite (P) as

minimize cTx s.t. x ∈ K ∩M, eTx = 1,

with M being a linear subspace in Rn.
It is convenient to convert the problem into an equivalent one where the optimal value of the objective

(which, according to C, is known in advance) is zero; to this end it suffices to replace the initial objective
c with a new one

σ = c− c∗e;
since on the feasible plane of the problem eTx is identically 1, this updating indeed results in equivalent
problem with the optimal value equal to 0.

Thus, we have seen that (P) can be easily rewritten in the so called Karmarkar format

(PK) minimize σTx s.t. x ∈ K ∩M, eTx = 1, (6.2)

with M being a linear subspace in Rn and the optimal value in the problem being zero; this transformation
preserves, of course, properties A, B.

Remark 6.2.1 In the original description of the method of Karmarkar, the problem from the very
beginning is assumed to be in the form (PK), with K = Rn

+; moreover, Karmarkar assumes that

e = (1, ..., 1)T ∈ Rn

and that the given in advance strictly feasible solution x̂ to the problem is the barycenter n−1e of the
standard simplex; thus, in the original version of the method it is assumed that the feasible set Kf of the
problem is the intersection of the standard simplex

∆ = {x ∈ Rn
+ |

n∑
i=1

xi ≡ eTx = 1}

and a linear subspace of Rn passing through the barycenter n−1e of the simplex and, besides this, that
the optimal value in the problem is 0.

And, of course, in the Karmarkar paper the barrier for the cone K = Rn
+ underlying the whole

construction is the standard n-logarithmically homogeneous barrier

F (x) = −
n∑
i=1

lnxi

for the nonnegative orthant.

In what follows we refer to the particular LP situation presented in the above remark as to the Karmarkar
case.
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6.3 The Karmarkar potential function

In what follows we assume that the objective cTx, or, which is the same, our new objective σTx is
nonconstant on the feasible set of the problem (otherwise there is nothing to do: σT x̂ = 0, i.e., the
initial strictly feasible solution, same as any feasible solution, is optimal). Since the new objective is
nonconstant on the feasible set and its optimal value is 0, it follows that the objective is strictly positive
at any strictly feasible solution to the problem, i.e., on the relative interior rintKf of Kf (due to A, this
relative interior is nothing but the intersection of the feasible plane and the interior of K, i.e., nothing
but the set of all strictly feasible solutions to the problem). Since σTx is strictly positive on the relative
interior of Kf , the following Karmarkar potential

v(x) = F (x) + ϑ ln(σTx) : Dom v ≡ {x ∈ int K | σTx > 0} → R (6.3)

is well-defined on rintKf ; this potential is the main hero of our story.
The first observation related to the potential is that when x is strictly feasible and the potential at x

is small (negative with large absolute value), then x is a good approximate solution.
The exact statement is as follows:

Proposition 6.3.1 Let x ∈ int K be feasible for (PK). Then

σTx ≡ cTx− c∗ ≤ V exp{−v(x̂)− v(x)

ϑ
}, V = (cT x̂− c∗) exp{

F (x̂)−minrintKf F

ϑ
}; (6.4)

note that minrintKf F is well defined, since Kf is bounded (due to A) and the restriction of F onto the
relative interior of Kf is self-concordant barrier for Kf (Proposition 3.1.1.(i)).

The proof is immediate:

v(x̂)− v(x) = ϑ[ln(σT x̂)− ln(σTx)] + F (x̂)− F (x) ≤

≤ ϑ[ln(σT x̂)− ln(σTx)] + F (x̂)− min
rintKf

F,

and (6.4) follows.
The above observation says to us that all we need is certain rule for updating strictly feasible solution

x into another strictly feasible solution x+ with a ”significantly less” value of the potential; iterating this
updating, we obtain a sequence of strictly feasible solutions with the potential tending to −∞, so that
the solutions converge in terms of the objective. This is how the method works; and the essence of the
matter is, of course, the aforementioned updating which we are about to represent.

6.4 The Karmarkar updating scheme

The updating of strictly feasible solutions
K : x 7→ x+

which underlies the method of Karmarkar is as follows:

1) Given strictly feasible solution x to problem (PK), compute the gradient F ′(x) of the barrier F ;

2) Find the Newton direction ex of the ”partially linearized” potential

vx(y) = F (y) + ϑ
σT (y − x)

σTx
+ ϑ ln(σTx)

at the point x along the affine plane

Ex = {y | y ∈M, (y − x)TF ′(x) = 0}

tangent to the corresponding level set of the barrier, i.e., set

ex = argmin{hT∇yvx(x) +
1

2
hT∇2

yvx(x)h | h ∈M, hTF ′(x) = 0};
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3) Compute the reduced Newton decrement

ω =
√
−eTx∇yvx(x)

and set

x′ = x+
1

1 + ω
ex.

4) The point x′ belongs to the intersection of the subspace M and the interior of K. Find a point x′′

from this intersection such that

v(x′′) ≤ v(x′)

(e.g., set x′′ = x′) and set

x+ = (eTx′′)−1x′′,

thus completing the updating x 7→ x+.

The following proposition is the central one.

Proposition 6.4.1 The above updating is well defined, maps a strictly feasible solution x to (P)K into
another strictly feasible solution x+ to (P) and decreases the Karmarkar potential at least by absolute
constant:

v(x+) ≤ v(x)− χ, χ =
1

3
− ln

4

3
> 0. (6.5)

Proof.
00. Let us start with the following simple observations:

y ∈ int K ∩M ⇒ eT y > 0; (6.6)

y ∈ int K ∩M ⇒ σT y > 0. (6.7)

To prove (6.6), assume, on contrary, that there exists y ∈ int K ∩M with eT y ≤ 0. Consider the linear
function

φ(t) = eT [x̂+ t(y − x̂)], 0 ≤ t ≤ 1.

This function is positive at t = 0 (since x̂ is feasible) and nonpositive at t = 1; therefore it has a unique
root t∗ ∈ (0, 1] and is positive to the left of this root. We conclude that the points

xt = φ−1(t)[x̂+ t(y − x̂)], 0 ≤ t < t∗,

are well defined and, moreover, belong to Kf (indeed, since both x and y are in K∩M and φ(t) is positive
for 0 ≤ t < t∗, the points xt also are in K ∩M ; to establish feasibility, we should verify, in addition, that
eTxt = 1, which is evident).

Thus, xt, 0 ≤ t < t∗, is certain curve in the feasible set. Let us prove that |xt|2 → ∞ as t → t∗ − 0;
this will be the desired contradiction, since Kf is assumed to be bounded (see A). Indeed, φ(t) → 0
as t → t∗ − 0, while x + t(y − x) has a nonzero limit x + t∗(y − x) (this limit is nonzero as a convex
combination of two points from the interior of K and, therefore, a point from this interior; recall that K
is pointed, so that the origin is not in its interior).

We have proved (6.6); (6.7) is an immediate consequence of this relation, since if there were y ∈
int K ∩M with σT y ≤ 0, the vector [eT y]−1y would be a strictly feasible solution to the problem (since
we already know that eT y > 0, so that the normalization y 7→ [eT y]−1y would keep the point in the
interior of the cone) with nonnegative value of the objective, which, as we know, is impossible.

10. Let us set

G = K ∩ Ex ≡ K ∩ {y | y ∈M, (y − x)TF ′(x) = 0};

since x ∈M is an interior point of K, G is a closed convex domain in the affine plane Ex (this latter plane
from now on is regarded as the linear space G is embedded to); the (relative) interior of G is exactly the
intersection of Ex and the interior of the cone K.
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20. Further, let f(·) be the restriction of the barrier F on rintG; due to our combination rules for self-
concordant barriers, namely, that one on affine substitutions of argument, f is ϑ-self-concordant barrier
for G.

30. By construction, the ”partially linearized” potential, regarded as a function on rintG, is the sum
of the barrier f and a linear form:

vx(y) = f(y) + pT (y − x) + q,

where the linear term pT (y − x) + q is nothing but the first order Taylor expansion of the function

ϑ ln(σT y)

at the point y = x. From (6.7) it immediately follows that this function (and therefore v(·)) is well-defined
onto int K ∩M and, consequently, on rintG; besides this, the function is concave in y ∈ rintG. Thus,
we have

v(y) ≤ vx(y), y ∈ rintG; v(x) = vx(x). (6.8)

40. Since vx is sum of a self-concordant barrier and a linear form, it is self-concordant on the set rintG.
From definition of e and ω it is immediately seen that ex is nothing but the Newton direction of vx(y)
(regarded as a function on rintG) at the point y = x, and ω is the corresponding Newton decrement;
consequently (look at rule 3)) x′ is the iterate of y = x under the action of the damped Newton method.
From Lecture 2 we know that this iterate belongs to rintG and that the iteration of the method decreases
vx ”significantly”, namely, that

vx(x)− vx(x′) ≥ ρ(−ω) = ω − ln(1 + ω).

Taking into account (6.8), we conclude that
x′ belongs to the intersection of the subspace M and the interior of the cone K and

v(x)− v(x′) ≥ ρ(−ω). (6.9)

50. Now comes the first crucial point of the proof: the reduced Newton decrement ω is not too small,
namely,

ω ≥ 1

3
. (6.10)

Indeed, x is the analytic center of G with respect to the barrier f (since, by construction, Ex is orthogonal
to the gradient F ′ of the barrier F at x, and f is the restriction of F onto Ex). Since f , as we just have
mentioned, is ϑ-self-concordant barrier for G, and f is nondegenerate (as a restriction of a nondegenerate
self-concordant barrier F , see Proposition 5.3.1), the enlarged Dikin ellipsoid

W+ = {y ∈ Ex | |y − x|x ≤ ϑ+ 2
√
ϑ}

(| · |x is the Euclidean norm generated by F ′′(x)) contains the whole G (the Centering property, Lecture
3, V.). Now, the optimal solution x∗ to (PK) satisfies the relation σTx∗ = 0 (the origin of σ) and is a
nonzero vector from K ∩M (since x∗ is feasible for the problem). It follows that the quantity (x∗)TF ′(x)
is negative (since F ′(x) ∈ int (−K∗), Proposition 5.3.3.(i)), and therefore the ray spanned by x∗ intersects
G at certain point y∗ (indeed, G is the part of K ∩M given by the linear equation yTF ′(x) = xTF ′(x),
and the right hand side in this equation is −ϑ, see (5.5), Lecture 5, i.e., is of the same sign as (x∗)TF ′(x)).
Since σTx∗ = 0, we have σT y∗ = 0; thus,

there exists y∗ in G, and, consequently, in the ellipsoid W+, with σT y∗ = 0.
We conclude that the linear form

ψ(y) = ϑ
σT y

σTx

which is equal to ϑ at the center x of the ellipsoid W+, attains the zero value somewhere in the ellipsoid,
and therefore its variation over the ellipsoid is at least 2ϑ. Consequently, the variation of the form over
the centered at x unit Dikin ellipsoid of the barrier f is at least 2ϑ(ϑ+ 2

√
ϑ)−1 ≥ 2/3:

max{ϑσ
Th

σTx
| h ∈M,hTF ′(x) = 0, |h|x ≤ 1} ≥ 1

3
.
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But the linear form in question is exactly ∇yvx(x), since ∇yf(x) = 0 (recall that x is the analytic center
of G with respect to f), so that the left hand side in the latter inequality is the Newton decrement of
vx(·) (as always, regarded as a function on rintG) at x, i.e., it is nothing but ω.

60. Now comes the concluding step: the Karmarkar potential v is constant along rays: v(tu) = v(t)
whenever u ∈ Dom v and t > 0 [this is an immediate consequence of ϑ-logarithmic homogeneity of the
barrier F ]1. As we just have seen,

v(x′) ≤ v(x)− ρ(−1

3
);

by construction, x′′ is a point from int K ∩M such that

v(x′′) ≤ v(x′).

According to (6.6), when passing from x′′ to x+ = [eTx′′]−1x′′, we get a strictly feasible solution to the
problem, and due to the fact that v remains constant along rays, v(x+) = v(x′′). Thus, we come to
v(x+) ≤ v(x)− ρ(− 1

3 ), as claimed.

6.5 Overall complexity of the method

As it was already indicated, the method of Karmarkar as applied to problem (PK) simply iterates the
updating K presented in Section 6.4, i.e., generates the sequence

xi = K(xi−1), x0 = x̂, (6.11)

x̂ being the initial strictly feasible solution to the problem (see B).
An immediate corollary of Propositions 6.3.1 and 6.4.1 is the following complexity result:

Theorem 6.5.1 Let problem (PK) be solved by the method of Karmarkar associated with ϑ-logarithmically
homogeneous barrier F for the cone K, and let assumptions A - C be satisfied. Then the iterates xi gen-
erated by the method are strictly feasible solutions to the problem and

cTxi − c∗ ≤ V exp{−v(x̂)− v(xi)

ϑ
} ≤ V exp{− iχ

ϑ
}, χ =

1

3
− ln

4

3
, (6.12)

with the data-dependent scale factor V given by

V = (cT x̂− c∗) exp{
F (x̂)−minrintKf F

ϑ
}. (6.13)

In particular, the Newton complexity (# of iterations of the method) of finding an ε-solution to the
problem does not exceed the quantity

NKarm(ε) = O(1)ϑ ln

(
V
ε

+ 1

)
+ 1, (6.14)

O(1) being an absolute constant.

Comments.

• We see that the Newton complexity of finding an ε-solution by the method of Karmarkar is pro-
portional to ϑ; on the other hand, the restriction of F on the feasible set Kf is a ϑ-self-concordant
barrier for this set (Proposition 3.1.1.(i)), and we might solve the problem by the path-following
method associated with this restriction, which would result in a better Newton complexity, namely,
proportional to

√
ϑ. Thus, from the theoretical complexity viewpoint the method of Karmarkar is

significantly worse than the path-following method; why should we be interested in the method of
Karmarkar?

1and in fact the assumption of logarithmic homogeneity of F , same as the form of the Karmarkar potential, originate
exactly from the desire to make the potential constant along rays
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The answer is: due to the potential reduction nature of the method, the nature which underlies the
excellent practical performance of the algorithm. Look: in the above reasoning, the only thing we
are interested in is to decrease as fast as possible certain explicitly given function - the potential. The
theory gives us certain ”default” way of updating the current iterate in a manner which guarantees
certain progress (at least by an absolute constant) in the value of the potential at each iteration,
and it does not forbid as to do whatever we want to get a better progress (this possibility was
explicitly indicated in our construction, see the requirements on x′′). E.g., after x′ is found, we can
perform the line search on the intersection of the ray [x, x′) with the interior of G in order to choose
as x′′ the best, in terms of the potential, point of this intersection rather than the ”default” point
x′. There are strong reasons to expect that in some important cases the line search decreases the
value of the potential by much larger quantity than that one given by the above theoretical analysis
(see exercises accompanying this lecture); in accordance with these expectations, the method in
fact behaves itself incomparably better than it is said by the theoretical complexity analysis.

• What is also important is that all ”common sense” improvements of the basic Karmarkar scheme,
like the aforementioned line search, do not spoil the theoretical complexity bound; and from the
practical viewpoint a very attractive property of the method is that the potential gives us a clear
criterion to decide what is good and what is bad. In contrast to this, in the path-following scheme
we either should follow the theoretical recommendations on the rate of updating the penalty - and
then for sure will be enforced to perform a lot of Newton steps - or could increase the penalty at
a significantly higher rate, thus destroying the theoretical complexity bound and imposing a very
difficult questions of how to choose and to tune this higher rate.

• Let me say several words about the original method of Karmarkar for LP. In fact this is exactly
the particular case of the aforementioned scheme for the sutiation described in Remark 6.2.1;
Karmarkar, anyhow, presents the same method in a different way. Namely, instead of processing
the same data in varying, from iteration to iteration, plane Ex, he uses scaling - after a new iterate
xi is found, he performs fractional-linear substitution of the argument

x 7→ X−1
i x

eTX−1
i x

, Xi = Diag{xi}

(recall that in the Karmarkar situation e = (1, ..., 1)T ). With this substitution, the problem becomes
another problem of the same type (with new objective σ and new linear subspace M), and the image
of the actual iterate xi becomes the barycenter n−1e of the simplex ∆. It is immediately seen that
in the Karmarkar case to decrease by something the Karmarkar potential for the new problem at
the image n−1e of the current iterate is the same as to decrease by the same quantity the potential
of the initial problem at the actual iterate xi; thus, scaling allows to reduce the question of how
to decrease the potential to the particular case when the current iterate is the barycenter of ∆;
this (specific for LP) possibility to deal with certain convenient ”standard configuration” allows to
carry out all required estimates (which in our approach were consequences of general properties
of self-concordant barriers) via direct analysis of the behaviour of the standard logarithmic barrier
F (x) = −

∑
i lnxi in a neighbourhood of the point n−1e, which is quite straightforward.

Let me also add that in the Karmarkar situation our general estimate becomes

cTxi − c∗ ≤ (cT x̂− c∗) exp{− iχ
n
},

since the parameter of the barrier in the case in question is ϑ = n and the starting point x̂ = n−1e
is the minimizer of F on ∆ and, consequently, on the feasible set of the problem.

6.6 How to implement the method of Karmarkar

To the moment our abilities to solve conic problems by the method of Karmarkar are restricted by the
assumptions A - C. Among these assumptions, A (strict feasibility of the problem and boundedness of
the feasible set) is not that restrictive. Assumption B (a strictly feasible solution should be known in
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advance) is not so pleasant, but let me postpone discussing this issue - this is a common problem in
interior point methods, and in the mean time we shall speak about it. And what in fact is restrictive,
is assumption C - we should know in advance the optimal value in the problem. There are several ways
to eliminate this unpleasant hypothesis; let me present to you the simplest one - the sliding objective
approach. Assume, instead of C, that

C∗: we are given in advance a lower bound c∗0 for the unknown optimal value c∗

(this, of course, is by far less restrictive than the assumption that we know c∗ exactly). In this case we
may act as follows: at i-th iteration of the method, we use certain lower bound c∗i−1 for c∗ (the initial
lower bound c∗0 is given by C∗). When updating xi into xi+1, we begin exactly as in the original method,
but use, instead of the objective

σ = c− c∗e,
the ”current objective”

σi−1 = c− c∗i−1e.

Now, after the current ”reduced Newton decrement” ω = ωi is computed, we check whether it is ≥ 1
3 . If

it is the case, we proceed exactly as in the original scheme and do not vary the current lower bound for
the optimal value, i.e., set

c∗i = c∗i−1

and, consequently,
σi = σi−1.

If it turns out that ωi < 1/3, we act as follows. The quantity ω given by rule 3) depends on the objective
σ the rules 1)-3) are applied to:

ω = Ωi(σ).

In the case in question we have

Ωi(c− te) <
1

3
when t = c∗i−1. (6.15)

The left hand side of this relation is certain explicit function of t (square root of a nonnegative fractional-
quadratic form of t); and as we know from the proof of Proposition 6.4.1,

Ωi(c− c∗e) ≥
1

3
. (6.16)

It follows that the equation Ωi(c − te) = 1
3 is solvable, and its closest to c∗i−1 root to the right of c∗i−1

separates c∗ and c∗i−1, i.e., this root (which can be immediately computed) is an improved lower bound
for c∗. This is exactly the lower bound which we take as c∗i ; after it is found, we set

σi = c− c∗i e

and update xi into xi+1 by the basic scheme applied to this ”improved” objective (for which this scheme,
by construction, results in ω = 1

3 ).
Following the line of argument used in the proofs of Propositions 6.3.1, 6.4.1, one can verify that the

modification in question produces strictly feasible solutions xi and nondecreasing lower bounds c∗i ≤ c∗

of the unknown optimal value in such a way that the sequence of local potentials

vi(xi) = F (xi) + ϑ ln(σTi xi) ≡ F (xi) + ϑ ln(cTxi − c∗i )

decreases at a reasonable rate:

vi(xi) ≤ vi−1(xi−1)− ρ(−1

3
),

which, in turn, ensures the rate of convergence

cTxi − c∗ ≤ V exp{−v0(x0)− vi(xi)
ϑ

} ≤ V exp{− iχ
ϑ
},

V = (cT x̂− c∗0) exp{
F (x̂)−minrintKf F

ϑ
}

completely similar to that one for the case of known optimal value.
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6.7 Exercises on the method of Karmarkar

Our first exercise is quite natural.

Exercise 6.7.1 #. Justify the sliding objective approach presented in Section 6.6.

Our next story gives a very instructive equivalent description of the method of Karmarkar (in the
LP case, this description is due to Bayer and Lagarias). At a step of the method the situation is as
follows: we are given a strictly feasible solution x to (PK) and are struggling for updating it into a new
strictly feasible solution with ”significantly less” value of the potential. Now, strictly feasible solutions
are in one-to-one correspondence with strictly feasible rays - i.e., rays r = {ty | t > 0} generated by
y ∈ M ∩ int K. Indeed, any strictly feasible solution x spans a unique ray of this type, and any strictly
feasible ray intersects the relative interior of the feasible set in a unique point (since, as we know from
(6.6), the quantity eT y is positive whenever y ∈ M ∩ int K and therefore the normalization [eT y]−1y is
a strictly feasible solution to the problem). On the other hand, the Karmarkar potential v is constant
along rays, and therefore it can be thought of as a function defined on the space R of strictly feasible
rays. Thus, the goal of a step can be reformulated as follows:

given a strictly feasible ray r, find a new ray r+ of this type with ”significantly less” value of the
potential.

Now let us make the following observation: there are many ways to identify strictly feasible rays with
points of certain set; e.g., given a linear functional gTx which is positive on M ∩ int K, we may consider
the cross-section Kg of M ∩K by the hyperplane given by the equation gTx = 1. It is immediately seen
that any strictly feasible ray intersects the relative interior of Kg and, vice versa, any point from this
relative interior spans a strictly feasible ray. What we used in the initial representation of the method,
was the ”parameterization” of the space R of strictly feasible rays by the points of the relative interior
of the feasible set Kf (i.e., by the set Ke associated, in the aforementioned sense, with the constraint
functional eTx). Now, what happens if we use another parameterization of R? Note that we have
a natural candidate on the role of g - the objective σ (indeed, we know that σTx is positive at any
strictly feasible x and therefore is positive on M ∩ int K). What is the potential in terms of our new
parameterization of R, where a strictly feasible ray r is represented by its intersection y(r) with the plane
{y | σT y = 1}? The answer is immediate:

v(y(r)) = F (y(r)).

In other words, the goal of a step can be equivalently reformulated as follows:

given a point y from the relative interior of the set

Kσ = {z ∈M ∩K | σT z = 1},

find a new point y+ of this relative interior with F (y+) being ”significantly less” than F (y).

Could you guess what is the ”linesearch” (with x′′ = argminy=x+t(x′−x) v(y)) version of the Karmarkar
updating K in terms of this new parameterization of R?

Exercise 6.7.2 # Verify that the Karmarkar updating with linesearch is nothing but the Newton iteration
with linesearch as applied to the restriction of F onto the relative interior of Kσ.

Now, can we see from our new interpretation of the method why it converges at the rate given by
Theorem 6.5.1? This is immediate:

Exercise 6.7.3 #+ Prove that

• the set Kσ is unbounded;

• the Newton decrement λ(φ, u) of the restriction φ of the barrier F onto the relative interior of Kσ

is ≥ 1 at any point u ∈ rintKσ;

• each damped Newton iteration (and therefore - Newton iteration with linesearch) as applied to φ
decreases φ at least by 1− ln 2 > 0.
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Conclude from these observations that each iteration of the Karmarkar method with linesearch reduces
the potential at least by 1− ln 2.

Now we understand what in fact goes on in the method of Kramarkar. We start from the problem of
minimizing a linear objective over a closed and bounded convex domain Kf ; we know the optimal value,
i.e., we know what is the hyperplane {cTx = c∗} which touches the feasible set; what we do not know and
what should be found, is where the plane touches the feasible set. What we do is as follows (the below
explanation is illustrated by a picture at the next page): we perform projective transformation of the
affine hull of Kf which moves the target plane {cTx = c∗} to infinity (this is exactly the transformation
of Kf onto Kσ given by the receipt: to find an image of x ∈ rintKf , take the intersection of the ray
spanned by x with the hyperplane {σT y = 1}). The image of the feasible set Kf of the problem is an
unbounded convex domain Kσ, and our goal is to go to infinity, staying within this image (the inverse
image of the point moving in Kσ will then stay within Kf and approach the target plane {cTx = c∗}).
Now, in order to solve this latter problem, we take a self-concordant barrier φ for Kσ and apply to this
barrier the damped Newton method (or the Newton method with linesearch). As explained in Exercise
6.7.3, the routine decreases φ at every step at least by absolute constant, thus enforcing φ to tend to
−∞ at certain rate. Since φ is convex (and therefore below bounded on any bounded subset of Kσ), this
inevitably enforces the iterate to go to infinity. Rather sophisticated way to go far away, isn’t it?

Our last story is related to a quite different issue - to the anitcipated behaviour of the method of
Karmarkar. The question, unformally, is as follows: we know that a step of the method decreases the
potential at least by an absolute constant; this is given by our theoretical worst-case analysis. What is
the ”expected” progress in the potential?

It hardly makes sense to pose this question in the general case. In what follows we restrict ourselves
to the case of semidefinite programming, where

K = Sn+

is the cone of positive semidefinite symmetric n× n matrices and

F (x) = − ln Det x

is the standard n-logarithmically homogeneous self-concordant barrier for the cone (Lecture 5, Example
5.3.3); the below considerations can be word by word repeated for the case of LP (K = Rn

+, F (x) =
−
∑
i lnxi).

Consider a step of the method of Karmarkar with linesearch, the method being applied to a semidef-
inite program. Let x be the current strictly feasible solution and x+ be its iterate given by a single step
of the linesearch version of the method. Let us pose the following question:

(?) what is the progress α = v(x)− v(x+) in the potential at the step in question?

To answer this question, it is convenient to pass to certain ”standard configuration” - to perform
scaling. Namely, consider the linear transformation

u 7→ Xu = x−1/2ux−1/2

in the space of symetric n× n matrices.

Exercise 6.7.4 # Prove that the scaling X possesses the following properties:

• it is a one-to-one mapping of int K onto itself;

• it ”almost preserves” the barrier:

F (Xu) = F (u) + const(x);

in particular,

|Xh|Xu = |h|u, u ∈ int K,h ∈ Sn;
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• the scaling maps the feasible set Kf of problem (PK) onto the feasible set of another problem (P ′K)
of the same type; the updated problem is defined by the subspace

M ′ = XM,

the normalizing equation (e′, x) = 1 with

e′ = x1/2ex1/2

and the objective
σ′ = x1/2σx1/2;

this problem also satisfies the assumptions A - C;

• let v(·) be the potential of the initial problem, and v′ be the potential of the new one. Then the
potentials at the corresponding points coincide, up to an additive constant:

Dom v′ = X (Dom v); v′(Xu)− v(u) ≡ const, , u ∈ Dom v;

• X maps the point x onto the unit matrix I, and the iterate x+ of x given by the linesearch version
of the method as applied to the initial problem into the similar iterate I+ of I given by the linesearch
version of the method as applied to the transformed problem.

From Exercise 6.7.4 it is clear that in order to answer the question (?), it suffices to answer the similar
question (of course, not about the initial problem itself, but about a problem of the same type with
updated data) for the particular case when the current iterate is the unit matrix I. Let us consider this
special case. In what follows we use the original notation for the data of the transformed problem; this
should not cause any confusion, since we shall speak about exactly one step of the method.

Now, what is the situation in our ”standard configuration” case x = I? It is as follows:

we are given a linear subspace M passing through x = I and the objective σ; what we know is that2

I. (σ, u) ≥ 0 whenever u ∈ int K ∩M and there exists a nonzero matrix x∗ ∈ int K ∩M such that
(σ, x∗) = 0;

II. In order to update x = I into x+, we compute the steepest descent direction ξ of the Karmarkar
potential v(·) at the point x along the affine plane

Ex = {y ∈M | (F ′(x), y − x) = 0},

the metric in the subspace being |h|x ≡ (F ′′(x)h, h)1/2, i.e., find among the unit, with respect to the
indicated norm, directions parallel to Ex that one with the smallest (e.g., the ”most negative”) inner
product onto v′(x). Note that the Newton direction ex is proportional, with positive coefficient, to the
steepest descent direction ξ. Note also, that the steepest descent direction of v at x is the same as the
similar direction for the function n ln((σ, u)) at u = x (recall that for the barrier in question ϑ = n), since
x is the minimizer of the remaining component F (·) of v(·) along Ex.

Now, in our standard configuration case x = i we have F ′(x) = −I, and |h|x = (h, h)1/2 is the usual
Frobenius norm3; thus, ξ is the steepest descent direction of the linear form

φ(h) = n(σ, h)/(σ, I)

(this is the differential of n ln((σ, u)) at u = I) taken along the subspace

Π = M ∩ {h : Trh ≡ (F ′(I), h) = 0}

with respect to the standard Euclidean structure of our universe Sn. In other words, ξ is proportional,
with negative coefficient, to the orthogonal projection η of

S ≡ (σ, I)−1σ

2from now on we denote the inner product on the space in question, i.e., on the space Sn of symmetric n× n matrices,
by (x, y) (recall that this is the Frobenius inner product Tr{xy}), in order to avoid confusion with the matrix products like
xT y

3due to the useful formulae for the derivatives of the barrier F (u) = − ln Det u: F ′(u) = −u−1, F ′′(u)h = u−1hu−1;
those solved Exercise 3.3.3, for sure know these formulae, and all others are kindly asked to derive them
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onto the subspace Π.
From these observations we conclude that
III. Tr η = 0; TrS = 1 (since η ∈ Π and Π is contained in the subspace of matrices with zero trace,

and due to the origin of S, respectively);
IVa. (S, u) > 0 for all positive definite u of the form I + rη, r ∈ R (an immediate consequence of I.);
IVb. There exists positive semidefinite matrix χ∗ such that χ∗ − I ∈ Π and (S, χ∗) = 0 (χ∗ is

proportional to x∗ with the coefficient given by the requirement that (F ′(I), χ∗− I) = 0, or, which is the
same, by the requirement that Trχ∗ = n; recall that F ′(I) = −I).

Now, at the step we choose t∗ as the minimizer of the potential v(I− tη) over the set t of nonnegative
T such that I − tη ∈ Dom v, or, which is the same in view of I., such that I − tη is positive definite4, and
define x+ as (e, x′′)−1x′′, x′′ = I − t∗η; the normalization x′′ 7→ x+ does not vary the potential, so that
the quantity α we are interested in is simply v(I)− v(x′′).

To proceed, let us look at the potential along our search ray:

v(I − tη) = − ln Det (I − tη) + n ln((S, I − tη)).

III. says to us that (S, I) = 1; since η is the orthoprojection of S onto Π (see II.), we have also
(S, η) = (η, η). Thus,

φ(t) ≡ v(I − tη) = − ln Det (I − tη) + n ln(1− t(η, η)) = −
n∑
i=1

ln((1− tgi) + n ln(1− t|g|22), (6.17)

where g = (g1, ..., gn)T is the vector comprised of the eigenvalues of the symmetric matrix η.

Exercise 6.7.5 #+ Prove that
1)
∑n
i=1 gi = 0;

2) |g|∞ ≥ n−1.

Now, from (6.17) it turns out that the progress in the potential is given by

α = φ(0)−min
t∈T

φ(t) = max
t∈T

[

n∑
i=1

ln(1− tgi)− n ln(1− t|g|22)], (6.18)

where T = {t ≥ 0 | 1− tgi > 0, i = 1, ..., n}.

Exercise 6.7.6 #+ Testing the value of t equal to

τ ≡ n

1 + n|g|∞
,

demonstrate that

α ≥ (1− ln 2)

(
|g|2
|g|∞

)2

. (6.19)

The conclusion of our analysis is as follows:

each step of the method of Karmarkar with linesearch applied to a semidefinite program can be
associated with an n-dimensional vector g (depending on the data and the iteration number) in such a
way that the progress in the Karmarkar potential at a step is at least the quantity given by (6.19).

Now, the worst case complexity bound for the method comes from the worst case value of the right
hand side in (6.19); this latter value (equal to 1−ln 2) corresponds to the case when |g|2|g|−1

∞ ≡ π(g) attains
its minimum in g (which is equal to 1); note that π(g) is of order of 1 only if g is an ”orth-like” vector - its
2-norm comes from O(1) dominating coordinates. Note, anyhow, that the ”typical” n-dimensional vector
is far from being an ”orth-like” one, and the ”typical” value of π(g) is much larger than 1. Namely, if g
is a random vector in Rn with the direction uniformly distributed on the unit sphere, than the ”typical
value” of π(g) is of order of

√
n/ lnn (the probability for π to be less than certain absolute constant

4recall that ex is proportional, with positive coefficient, to ξ and, consequently, is proportional, with negative coefficient,
to η
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times this square root tends to 0 as n → ∞; please prove this simple statement). If (if!) we could use
this ”typical” value of π(g) in our lower bound for the progress in the potential, we would come to the
progress per step equal to O(n/ lnn) rather than to the worst-case value O(1); as a result, the Newton
complexity of finding ε-solution would be proportional to lnn rather than to n, which would be actually
excellent! Needless to say, there is no way to prove something definite of this type, even after we equip
the family of problems in question by a probability distribution in order to treat the vectors g arising
at sequential steps as a random sequence. The diffuculty is that the future of the algorithm is strongly
predetermined by its past, so that any initial symmetry seems to be destroyed as the algorithm goes on.

Note, anyhow, that impossibility to prove something does not necessarily imply impossibility to
understand it. The ”anticipated” complexity of the method (proportional to lnn rather than to n)
seems to be quite similar to its empirical complexity; given the results of the above ”analysis”, one
hardly could be too surprised by this phenomenon.
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Chapter 7

The Primal-Dual potential reduction
method

We became acquainted with the very first of the potential reduction interior point methods - with the
method of Karmarkar. Theoretically, a disadvantage of the method is in not so good complexity bound -
it is proportional to the parameter ϑ of the underlying barrier, not to the square root of this parameter, as
in the case of the path-following method. There are, anyhow, potential reduction methods with the same
theoretical O(

√
ϑ) complexity bound as in the path-following scheme; these methods combine the best

known theoretical complexity with the practical advantages of the potential reduction algorithms. Our
today lecture is devoted to one of these methods, the so called Primal-Dual algorithm; the LP prototype
of the construction is due to Todd and Ye.

7.1 The idea

The idea of the method is as follows. Consider a convex problem in the conic form

(P) : minimize cTx s.t. x ∈ {b+ L} ∩K

along with its conic dual

(D) : minimize bT s s.t. s ∈ {c+ L⊥} ∩K∗,

where

• K is a cone (closed, pointed, convex and with a nonempty interior) in Rn and

K∗ = {s ∈ Rn | sTx ≥ 0 ∀x ∈ K}

is the cone dual to K;

• L is a linear subspace in Rn, L⊥ is its orthogonal complement and c, b are given vectors from Rn

- the primal objective and the primal translation vector, respectively.

From now on, we assume that

A: both primal and dual problems are strictly feasible, and we are given an initial strictly feasible
primal-dual pair (x̂, ŝ) [i.e., a pair of strictly feasible solutions to the problems].

This assumption, by virtue of the Conic duality theorem (Lecture 5), implies that both the primal
and the dual problem are solvable, and the sum of the optimal values in the problems is equal to cT b:

P∗ +D∗ = cT b. (7.1)

Besides this, we know from Lecture 5 that for any pair (x, s) of feasible solutions to the problems one has

δ(x, s) ≡ cTx+ bT s− cT b = sTx ≥ 0. (7.2)

95
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Substracting from this identity equality (7.1), we come to the following conclusion:

(*): for any primal-dual feasible pair (x, s), the duality gap δ(x, s) is nothing but the sum of inaccu-
racies, in terms of the corresponding objectives, of x regarded as an approximate solution to the primal
problem and s regarded as an approximate solution to the dual one.

In particular, all we need is to generate somehow a sequence of primal-dual feasible pairs with the
duality gap tending to zero.

Now, how to enforce the duality gap to go to zero? To this end we shall use certain potential; to
construct this potential, this is our first goal.

7.2 Primal-dual potential

From now on we assume that

B: we know a ϑ-logarithmically homogeneous self-concordant barrier F for the primal cone K along
with its Legendre transformation

F ∗(s) = sup
x∈int K

[sTx− F (x)].

(”we know”, as usual, means that given x, we can check whether x ∈ DomF and if it is the case, can
compute F (x), F ′(x), F ′′(x), and similarly for F ∗).

As we know from Lecture 5, F ∗ is ϑ-logarithmically homogeneous self-concordant barrier for the cone
−K∗ anti-dual to K, and, consequently, the function

F+(s) = F ∗(−s)

is a ϑ-logarithmically homogeneous self-concordant barrier for the dual cone K∗ involved into the dual
problem. In what follows I refer to F as to the primal, and to F+ - as to the dual barrier.

Now let us consider the following aggregate:

V0(x, s) = F (x) + F+(s) + ϑ ln(sTx) (7.3)

This function is well-defined on the direct product of the interiors of the primal and the dual cones, and,
in particular, on the direct product

rintKp × rintKd

of the relative interiors of the primal and dual feasible sets

Kp = {b+ L} ∩K, Kd = {c+ L⊥} ∩K∗.

The function V0 resembles the Karmarkar potential; indeed, when s ∈ rintKd is fixed, this function,
regarded as a function of primal feasible x, is, up to an additive constant, the Karmarkar potential of the
primal problem, where one should replace the initial objective c by the objective s 1.

Note that we know something about the aggregate V0: Proposition 5.3.3 says to us that

(**) for any pair (x, s) ∈ DomV0 ≡ int (K ×K∗), one has

V0(x, s) ≥ ϑ lnϑ− ϑ, (7.4)

the inequality being equality if and only if ts+ F ′(x) = 0 for some positive t.

Now comes the crucial step. Let us choose a positive µ and pass from the aggregate V0 to the potential

Vµ(x, s) = V0(x, s) + µ ln(sTx) ≡ F (x) + F+(s) + (ϑ+ µ) ln(sTx).

My claim is that this potential possesses the same fundamental property as the Karmarkar potential:
when it is small (i.e., negative with large absolute value) at a strictly feasible primal-dual pair (x, s), then
the pair is comprised of good primal and dual approximate solutions.

1by the way, this updating of the primal objective varies it by a constant (it is an immediate consequence of the fact
that s is dual feasible)
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The reason for this claim is clear: before we had added to the aggregate V0 the ”penalty term”
µ ln(sTx), the aggregate was below bounded, as it is said by (7.4); therefore the only way for the potential
to be small is to have small (negative of large modulus) value of the penalty term, which, in turn, may
happen only when the duality gap (which at a primal-dual feasible pair (x, s) is exactly sTx, see (7.2)) is
close to zero.

The quantitive expression of this observation is as follows:

Proposition 7.2.1 For any strictly feasible primal-dual pair (x, s) one has

δ(x, s) ≤ Γ exp{Vµ(x, s)

µ
}, Γ = exp{−µ−1ϑ(lnϑ− 1)}. (7.5)

The proof is immediate:

ln δ(s, x) = ln(sTx) =
Vµ(x, s)− V0(x, s)

µ
≤

[due to (7.4)]

≤ Vµ(x, s)

µ
− µ−1ϑ(lnϑ− 1).

Thus, enforcing the potential to go to −∞ along a sequence of strictly feasible primal-dual pairs, we
enforce the sequence to converge to the primal-dual optimal set. Similarly to the method of Karmarkar,
the essence of the matter is how to update a strictly feasible pair (x, s) into another strictly feasible pair
(x+, s+) with ”significantly less” value of the potential. This is the issue we come to.

7.3 The primal-dual updating

The question we address to in this section is:

given a strictly feasible pair (x, s), how to update it into a new strictly feasible pair (x+, s+) in a way
which ensures ”significant” progress in the potential Vµ?

It is natural to start with investigating possibilities to reduce the potential by changing one of our
two - primal and dual - variables, not both of them simultaneously. Let us look what are our abilities to
improve the potential by changing the primal variable.

The potential Vµ(y, v), regarded as a function of the primal variable, resembles the Karmarkar po-
tential, and it is natural to improve it as it was done in the method of Karmarkar. There is, anyhow,
important difference: the Karmarkar potential was constant along primal feasible rays, and in order to
improve it, we first pass from the ”unconvenient” fesible set Kp of the original primal problem to a more
convenient set G (see Lecture 6), which is in fact the projective image of Kp. Now the potential is not
constant along rays, and we should reproduce the Karmarkar construction in the actual primal feasible
set. Well, there is nothing difficult in it. Let us write down the potential as the function of the primal
variable:

v(y) ≡ Vµ(y, s) = F (y) + ζ ln sT y + const(s) : rintKp → R,

where
ζ = ϑ+ µ, const(s) = F+(s).

Now, same as in the method of Karmarkar, let us linearize the logarithmic term in v(·), i.e., form the
function

vx(y) = F (y) + ζ
sT y

sTx
+ const(x, s) : rintKp → R, (7.6)

where, as it is immediately seen,

const(x, s) = const(s) + ζ ln sTx− ζ.

Same as in the Karmarkar situation, vx is an upper bound for v:

vx(y) ≥ v(y), y ∈ rintKp; vx(x) = v(x), (7.7)
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so that in order to update x into a new strictly feasible primal solution x+ with improved value of the
potential v(·), it suffices to improve the value of the upper bound vx(·) of the potential. Now, vx is the
sum of a self-concordant barrier for the primal feasible set (namely, the restriction of F onto this set)
and a linear form, and therefore it is self-concordant on the relative interior rintKp of the primal feasible
set; consequently, to decrease the function, we may use the damped Newton method. Thus, we come to
the following

Rule 1. In order to update a given strictly feasible pair (x, s) into a new strictly feasible pair (x′, s)
with the same dual component and with better value of the potential Vµ, act as follows:

1) Form the ”partially linearized” reduced potential vx(y) according to (7.6);
2) Update x into x′ by damped Newton iteration applied to vx(·), i.e.,
- compute the (reduced) Newton direction

ex = argmin{hT∇yvx(x) +
1

2
hT∇2

yvx(x)h | h ∈ L} (7.8)

and the (reduced) Newton decrement

ω =
√
−eTx∇yvx(x); (7.9)

- set

x′ = x+
1

1 + ω
ex.

As we know from Lecture 2, the damped Newton step keeps the iterate within the domain of the
function, so that x′ ∈ rintKp, and decreases the function at least by ρ(−ω) ≡ ω − ln(1 + ω). This is the
progress in vx; from (7.7) it follows that the progress in the potential v(·), and, consequently, in Vµ, is at
least the progress in vx. Thus, we come to the following conclusion:

I. Rule 1 transforms the initial strictly feasible primal-dual pair (x, s) into a new strictly feasible
primal-dual pair (x′, s), and the potential Vµ at the updated pair is such that

Vµ(x, s)− Vµ(x′, s) ≥ ω − ln(1 + ω), (7.10)

ω being the reduced Newton decrement given by (7.8) - (7.9).

Now, in the method of Karmarkar we proceeded by proving that the reduced Newton decrement is
not small. This is not the case anymore; the quantity ω can be very close to zero or even equal to zero.
What should we do in this unpleasant sutiation where Rule 1 fails? Here again our experience with the
method of Karmarkar gives the answer. Look, the potential

Vµ(y, s) = F (y) + F+(s) + ζ ln sT y

regarded as a function of the strictly feasible primal solution y is nothing but

F (y) + F+(s) + ζ ln(cT y − [cT b− bT s]),

since for primal-dual feasible (y, s) the product sT y is nothing but the duality gap cT y + bT s − cT b
(Lecture 5). The duality gap is always nonnegative, so that the quantity

cT b− bT s

associated with a dual feasible s is a lower bound for the primal optimal value. Thus, the potential Vµ,
regarded as a function of y, resembles the ”local” potential used in the sliding objective version of the
method of Karmarkar - the Karmarkar potential where the primal optimal value is replaced by its lower
bound. Now, in the sliding objective version of the method of Karmarkar we also met with the situation
when the reduced Newton decrement was small, and, as we remember, in this situation we were able to
update the lower bound for the primal optimal value and thus got the possibility to go ahead. This is
more or less what we are going to do now: we shall see in a while that if ω turns out to be small, then
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there is a possibility to update the current dual strictly feasible solution s into a new solution s′ of this
type and to improve by this ”significantly” the potential.

To get the idea how to update the dual solution, consider the ”worst” for Rule 1 case - the reduced
Newton decrement ω is zero. What happens in this situation? The reduced Newton decrement is zero if
and only if the gradient of vx, taken at x along the primal feasible plane, is 0, or, which is the same, if
the gradient taken with respect to the whole primal space is orthogonal to L, i.e., if and only if

F ′(x) + ζ
s

sTx
∈ L⊥. (7.11)

This is a very interesting relation. Indeed, let

s∗ ≡ −s
Tx

ζ
F ′(x) (7.12)

The above inclusion says that −s∗ + s ∈ L⊥, i.e., that s∗ ∈ s + L⊥; since s ∈ c + L⊥, we come to the
relation

s∗ ≡ −s
Tx

ζ
F ′(x) ∈ c+ L⊥. (7.13)

The latter relation says that the vector−F ′(x) can be normalized, by multiplication by a positive constant,
to result in a vector s∗ from the dual feasible plane. On the other hand, s∗ belongs to the interior of
the dual cone K∗, since −F ′(x) does (Proposition 5.3.3). Thus, in the case in question (when ω = 0),
a proper normalization of the vector −F ′(x) gives us a new strictly feasible dual solution s′ ≡ s∗. Now,
what happens with the potential when we pass from s to s∗ (and do not vary the primal solution x)?
The answer is immediate:

Vµ(x, s) = V0(x, s) + µ ln sTx ≥ ϑ lnϑ− ϑ+ µ ln sTx;

Vµ(x, s∗) = V0(x, s∗) + µ ln(s∗)Tx = ϑ lnϑ− ϑ+ µ ln(s∗)Tx

(indeed, we know from (**) that V0(y, u) ≥ ϑ lnϑ − ϑ, and that this inequality is an equality when
u = −tF ′(y), which is exactly the case for the pair (x, s∗)). Thus, the progress in the potential is at least
the quantity

α = µ[ln sTx− ln(s∗)Tx] = µ[ln sTx− ln

(
sTx

ζ
(−F ′(x))Tx

)
] =

= µ ln
ζ

(−F ′(x))Tx
= µ ln

ζ

ϑ
= µ ln(1 +

µ

ϑ
) (7.14)

(the second equality in the chain is (7.12), the fourth comes from the identity (5.5), see Lecture 5). Thus,
we see that in the particular case ω = 0 updating

(x, s) 7→ (x, s∗ = −s
Tx

ζ
F ′(x))

results in a strictly feasible primal-dual pair and decreases the potential at least by the quantity µ ln(1 +
µ/ϑ).

We have seen what to do in the case of ω = 0, when Rule 1 does not work at all. This is unsifficient:
we should understand also what to do when Rule 1 works, but works bad, i.e., when ω is small, although
nonzero. But this is more or less clear: what is good for the limiting case ω = 0, should work also when
ω is small. Thus, we get an idea to use, in the case of small ω, the updating of the dual solution given
by (7.12). This updating, anyhow, cannot be used directly, since in the case of positive ω it results in
s∗ which is unfeasible for the dual problem. Indeed, dual feasibility of s∗ in the case of ω = 0 was a
consequence of two facts:

1. Inclusion s∗ ∈ int K∗ - since s∗ is proportional, with negative coefficient, to F ′(x), and all vectors
of this type do belong to int K∗ (Proposition 5.3.3); the inclusion s∗ ∈ int K∗ is therefore completely
independent of whether ω is large or small;

2. Inclusion s∗ ∈ c+ L⊥. This inclusion came from (7.11), and it does use the hypothesis that ω = 0
(and in fact is equivalent to this hypothesis).
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Thus, we meet with the difficulty that 2. does not remain valid when ω is positive, although small.
Ok, if the only difficulty is that s∗ given by (7.12) does not belong to the dual feasible plane, we can
correct s∗ - replace it by a properly chosen projection s′ of s∗ onto the dual feasible plane. When ω = 0,
s∗ is in the dual feasible plane and in the interior of the cone K∗; by continuity reasons, for small ω s∗

is close to the dual feasible plane and the projection will be close to s∗ and therefore, hopefully, will be
still in the interior of the dual cone (so that s′, which by construction is in the dual feasible plane, will be
strictly dual feasible), and, besides this, the updating (x, s) 7→ (x, s′) would result in ”almost” the same
progress in the potential as in the above case ω = 0.

The outlined idea is exactly what we are going to use. The implementation of it is as follows.

Rule 2. In order to update a strictly feasible primal-dual pair (x, s) into a new strictly feasible
primal-dual pair (x, s′), act as follows. Same as in Rule 1, compute the reduced Newton direction ex, the
reduced Newton decrement ω and set

s′ = −s
Tx

ζ
[F ′(x) + F ′′(x)ex]. (7.15)

Note that in the case of ω = 0 (which is equivalent to ex = 0), updating (7.15) becomes exactly
the updating (7.12). As it can be easily seen2, s′ is the projection of s∗ onto the dual feasible plane in
the metric given by the Hessian (F+)′′(s∗) of the dual barrier at the point s∗; in particular, s′ always
belong to the dual feasible plane, although not necesarily to the interior of the dual cone K∗; this latter
inclusion, anyhow, for sure takes place if ω < 1, so that in this latter case s′ is strictly dual feasible.
Moreover, in the case of small ω the updating given by Rule 2 decreases the potential ”significantly”, so
that Rule 2 for sure works well when Rule 1 does not, and choosing the best of these two rules, we come
to the updating which always works well.

The exact formulation of the above claim is as follows:

II. (i) The point s′ given by (7.15) always belongs to the dual feasible plane.
(ii) The point s′ is in the interior of the dual cone K∗ (and, consequently, is dual strictly feasible)

whenever ω < 1, and in this case one has

Vµ(x, s)− Vµ(x, s′) ≥ µ ln
ϑ+ µ

ϑ+ ω
√
ϑ
− ρ(ω), ρ(r) = − ln(1− r)− r, (7.16)

and the progress in the potential is therefore positive for all small enough positive ω.

Proof.
10. By definition, ex is the minimizer of the quadratic form

Q(h) = hT [F ′(x) + γs] +
1

2
hTF ′′(x)h,

γ =
ζ

sTx
≡ ϑ+ µ

sTx
, (7.17)

over h ∈ L; note that
hT [F ′(x) + γs] = hT∇yvx(x), h ∈ L.

Writing down the optimality condition, we come to

F ′′(x)ex + [F ′(x) + γs] ≡ ξ ∈ L⊥; (7.18)

multiplying both sides by ex ∈ L, we come to

ω2 ≡ −eTx∇yvx(x) = −eTx [F ′(x) + γs] = eTxF
′′(x)ex. (7.19)

20. From (7.18) and (7.15) it follows that

s′ ≡ − 1

γ
[F ′(x) + F ′′(x)ex] = s− γ−1ξ ∈ s+ L⊥, (7.20)

2we skip verification, since we do not use this fact; those interested can make the corresponding computation
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and since s ∈ c+ L⊥ (recall that s is dual feasible), we conclude that s′ ∈ c+ L⊥, as claimed in (i).
Besides this,

s∗ = − 1

γ
F ′(x) (7.21)

(see (7.12), (7.17)), so that the equivalence in (7.20) says that

s′ = s∗ − 1

γ
F ′′(x)ex. (7.22)

30. Since F+(u) = F ∗(−u) is ϑ-logarithmically homogeneous self-concordant barrier for K∗ (Propo-
sition 5.3.3), we have

(F+)′(tu) = t−1(F+)′(u), u ∈ int K, t > 0

(see (5.3), Lecture 5); differentiating in u, we come to

(F+)′′(tu) = t−2(F+)′′(u).

Substituting u = −F ′(s) and t = 1/γ and taking into account the relation between F+ and the Legendre
transformation F ∗ of the barrier F , we come to

(F+)′′(s∗) = γ2(F+)′′(−F ′(x)) = γ2(F ∗)′′(F ′(x)).

But F ∗ is the Legendre transformation of F , and therefore (see (L.3), Lecture 2)

(F ∗)′′(F ′(x)) = [F ′′(x)]−1;

thus, we come to
(F+)′′(s∗) = γ2[F ′′(x)]−1. (7.23)

Combining this observation with relation (7.22), we come to

[s′ − s∗]T (F+)′′(s∗)[s′ − s∗] = [F ′′(x)ex]T [F ′′(x)]−1[F ′′(x)ex] = eTxF
′′(x)ex = ω2

(the concluding equality is given by (7.19)). Thus, we come to the following conclusion:

IIa. The distance |s′ − s∗|F+,s∗ between s∗ and s′ in the Euclidean metric given by the Hessian
(F+)′′(s∗) of the dual barrier F+ at the point s∗ is equal to the reduced Newton decrement ω. In
particular, if this decrement is < 1, s′ belongs to the centered at s∗ open unit Dikin ellipsoid of the
self-concordant barrier F+ and, consequently, s′ belongs to the domain of the barrier (I., Lecture 2), i.e.,
to int K∗. Since we already know that s′ always belongs to the dual feasible plane (see 20), s′ is strictly
dual feasible whenever ω < 1.

We have proved all required in (i)-(ii), except inequality (7.16) related to the progress in the potential.
This is the issue we come to, and from now on we assume that ω < 1, as it is stated in (7.16).

40. Thus, let us look at the progress in the potential

α = Vµ(x, s)− Vµ(x, s′) = V0(x, s)− V0(x, s′)− µ ln
xT s′

xT s
. (7.24)

We have
V0(x, s′) = F (x) + F+(s′) + ϑ lnxT s′ =

[
F (x) + F+(s∗) + ϑ lnxT s∗

]
1

+

+

[
F+(s′)− F+(s∗) + ϑ ln

xT s′

xT s∗

]
2

; (7.25)

since s∗ = −tF ′(x) with some positive t, (**) says to us that

[·]1 = ϑ lnϑ− ϑ. (7.26)

Now, s′, as we know from IIa., is in the open unit Dikin ellipsoid of F+ centered at s∗, and the
corresponding local distance is equal to ω; therefore, applying the upper bound (2.4) from Lecture 2
(recall that F+ is self-concordant), we come to

F+(s′)− F+(s∗) ≤ [s′ − s∗]T (F+)′(s∗) + ρ(ω), ρ(r) = − ln(1− r)− r. (7.27)
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We have s∗ = −γ−1F ′(x), and since F+ is ϑ-logarithmically homogeneous,

(F+)′(s∗) = γ(F+)′(−F ′(x))

((5.3), Lecture 5); since F+(u) = F ∗(−u), F ∗ being the Legendre transformation of F , we have

(F+)′(−F ′(x)) = −(F ∗)′(F ′(x)),

and the latter quantity is −x ((L.2), Lecture 2). Thus,

(F+)′(s∗) = −γx.

Now, by (7.22) we have s′ − s∗ = −γ−1F ′′(x)ex, so that

[s′ − s∗]T (F+)′(s∗) = xTF ′′(x)ex.

From this observation and (7.27) we conclude that

[·]2 ≤ x
TF ′′ex + ρ(ω) + ϑ ln

xT s′

xT s∗
,

which combined with (7.25) and (7.26) results in

V0(x, s′) ≤ ϑ lnϑ− ϑ+ xTF ′′(x)ex + ρ(ω) + ϑ ln
xT s′

xT s∗
. (7.28)

On the other hand, we know from (**) that V0(x, s) ≥ ϑ lnϑ − ϑ; combining this inequality, (7.24) and
(7.28), we come to

α ≥ −xTF ′′(x)ex − ρ(ω)− ϑ ln
xT s′

xT s∗
− µ ln

xT s′

xT s
. (7.29)

50. Now let us find appropriate representations for the inner products involved into (7.29). To this
end let us set

π = −xTF ′′(x)ex. (7.30)

In view of (7.22) we have

xT s′ = xT s∗ − 1

γ
xTF ′′(x)ex = xT s∗ +

π

γ

and, besides this,

xT s∗ = − 1

γ
xTF ′(x) =

ϑ

γ

(see (7.21) and (5.5), Lecture 5). We come to

xT s′ =
ϑ+ π

γ
, xT s∗ =

ϑ

γ
,

whence
xT s′

xT s∗
= 1 +

π

ϑ
, (7.31)

and
xT s′

xT s
=
ϑ+ π

γxT s
=
ϑ+ π

ϑ+ µ
(7.32)

(the concluding equality follows from the definition of γ, see (7.17)).
Substituting (7.31) and (7.32) into (7.29), we come to the following expression for the progress in

potential:

α ≥ π − ρ(ω)− ϑ ln
(

1 +
π

ϑ

)
− µ ln

ϑ+ π

ϑ+ µ
. (7.33)

Taking into account that ln(1 + z) ≤ z, we derive from this inequality that

α ≥ µ ln
ϑ+ µ

ϑ+ π
− ρ(ω). (7.34)
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Our last task is to evaluate π, which is immediate:

|π| = |xTF ′′(x)ex| ≤
√
xTF ′′(x)x

√
eTxF

′′(x)ex ≤ ω
√
ϑ

(we have used (7.19) and identity (5.5), Lecture 5). With this estimate we derive from (7.34) that

α ≥ µ ln
ϑ+ µ

ϑ+ ω
√
ϑ
− ρ(ω), (7.35)

as claimed in II.

7.4 Overall complexity analysis

We have presented two rules - Rule 1 and Rule 2 - for updating a strictly feasible primal-dual pair (x, s)
into a new pair of the same type. The first of the rules always is productive, although the progress in the
potential for the rule is small when the reduced Newton decrement ω is small; the second of the rules,
on contrary, is for sure productive when ω is small, although for large ω it may result in an unfeasible s′.
And, of course, what we should do is to apply both of the rules and choose the best of the results. Thus,
we come to the

Primal-Dual Potential Reduction method PD(µ):

form the sequence of strictly feasible primal-dual pairs (xi, si), starting with the initial pair (x0 =
x̂, s0 = ŝ) (see A), as follows:

1) given (xi−1, si−1), apply to the pair Rules 1 and 2 to get the updated pairs (x′i−1, si−1) and
(xi−1, s

′
i−1), respectively.

2) Check whether s′i−1 is strictly dual feasible. If it is not the case, forget about the pair (xi−1, s
′
i−1)

and set (x+
i , s

+
i ) = (x′i−1, si−1), otherwise choose as (x+

i , s
+
i ) the best (with the smallest value of the

potential Vµ) of the two pairs given by 1).

3) The pair (x+
i , s

+
i ) for sure is a strictly feasible primal-dual pair, and the value of the potential Vµ at

the pair is less than at the pair (xi−1, si−1). Choose as (xi, si) an arbitrary strictly feasible primal-dual
pair such that the potential Vµ at the pair is not greater than at (x+

i , s
+
i ) (e.g., set xi = x+

i , si = s+
i )

and loop.

The method, as it is stated now, involves the parameter µ, which in principle can be chosen as an
arbitrary positive real. Let us find out what is the reasonable choice of the parameter. To this end let
us note that what we are intersted in is not the progress p in the potential Vµ per step, but the quantity
β = π/µ, since this is this ratio which governs the exponent in the accuracy estimate (7.5). Now, at a
step it may happen that we are in the situation ω = O(1), say, ω = 1, so that the only productive rule
is Rule 1 and the progress in the potential, according to I., is of order of 1, which results in β = O(1/µ).
On the other hand, we may come to the situation ω = 0, when the only productive rule is Rule 2, and
the progress in the potential is p = µ ln(1 + µ/ϑ), see (7.16), i.e., β = ln(1 + µ/ϑ). A reasonable choice
of µ should balance the values of β for these two cases, which leads to

µ = κ
√
ϑ,

κ being of order of 1. The complexity of the primal-dual method for this - ”optimal” - choice of µ is
given by the following

Theorem 7.4.1 Assume that the primal-dual pair of conic problems (P), (D) (which satisfies assump-
tion A) is solved by the primal-dual potential reduction method associated with ϑ-logarithmically self-
concordant primal and dual barriers F and F+, and that the parameter µ of the method is chosen ac-
cording to

µ = κ
√
ϑ,
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with certain κ > 0. Then the method generates a sequence of strictly feasible primal-dual pairs (xi, si),
and the duality gap δ(xi, xi) (equal to the sum of residuals, in terms of the corresponding objectives, of
the components of the pair) admits the following upper bound:

δ(xi, si) ≤ V exp{−Vµ(x̂, ŝ)− Vµ(xi, si)

κ
√
ϑ

} ≤ V exp{− iΩ(κ)

κ
√
ϑ
}, (7.36)

where

Ω(κ) = min

{
1− ln 2; inf

0≤ω<1
max{ω − ln(1 + ω);κ ln(1 + κ)− (κ− 1)ω + ln(1− ω)}

}
(7.37)

is positive continuous function of κ > 0; the data-dependent scale factor V is given by

V = δ(x̂, ŝ) exp{V0(x̂, ŝ)− [ϑ lnϑ− ϑ]

κ
√
ϑ

}. (7.38)

In particular, the Newton complexity (# of iterations of the method) of finding ε-solutions to the primal
and the dual problems does not exceed the quantity

NPrDl(ε) ≤ Oκ(1)
√
ϑ ln

(
V
ε

+ 1

)
+ 1, (7.39)

with the constant factor Oκ(1) depending on κ only.

The proof is immediate. Indeed, we know from Proposition 7.2.1 that

δ(xi, si) ≤ Γ exp{Vµ(xi, si)

µ
} = [Γ exp{Vµ(x̂, ŝ)

µ
}] exp{−Vµ(x̂, ŝ)− Vµ(xi, si)

µ
},

which, after substituting the value of Γ from (7.5), results in the first inequality in (7.36), with V given
by (7.38).

To prove the second inequality in (7.36), it suffices to demonstrate that the progress in the potential
Vµ at a step of the method is at least the quantity Ω(κ) given by (7.37). To this end let us note that, by
construction, this progress is at least the progress given by each of the rules 1 and 2 (when Rule 2 does
not result in a strictly feasible dual solution, the corresponding progress is −∞). Let ω be the reduced
Newton decrement at the step in question. If ω ≥ 1, then the progress related to Rule 1 is at least 1− ln 2,
see I., which clearly is ≥ Ω(κ). Now consider the case when ω < 1. Here both of the rules 1 and 2 are
productive, and the corresponding reductions in the potential are, respectively,

p1 = ω − ln(1 + ω)

(see I.) and

p2 = µ ln
ϑ+ µ

ϑ+ ω
√
ϑ

+ ln(1− ω) + ω = κ
√
ϑ ln

1 + κ/
√
ϑ

1 + ω/
√
ϑ

+ ln(1− ω) + ω

(see II.). We clearly have

p2 = κ
√
ϑ ln(1 + κ/

√
ϑ)− κ

√
ϑ ln(1 + ω/

√
ϑ) + ln(1− ω) + ω ≥

[since ln(1 + z) ≤ z]
≥ κ
√
ϑ ln(1 + κ/

√
ϑ)− κω + ln(1− ω) + ω ≥

[since, as it is immediately seen, z ln(1 + a/z) ≥ ln(1 + a) whenever z ≥ 1 and a > 0]

≥ κ ln(1 + κ)− κω + ln(1− ω) + ω,

and we come to the inequality

max{p1, p2} ≥ max{ω − ln(1 + ω);κ ln(1 + κ)− (κ− 1)ω + ln(1− ω)},

so that the progress in the potential in the case of ω < 1 is at least the quantity given by (7.37).
The claim that the right hand side of (7.37) is a positive continuous function of κ > 0 is evidently

true. The complexity bound (7.39) is an immediate consequence of (7.36).
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7.5 Large step strategy

To conclude the presentation of the primal-dual method, let me briefly outline how one could exploit
the advantages of the potential reduction nature of the method. Due to this nature, the only thing we
are interested in is ”significant” progress in the potential at a step, same as it was in the method of
Karmarkar. In this latter method, the simplest way to get a better progress than that one given by
the ”default” theoretical step, was to perform linesearch in the direction of this default step and to find
the best, in terms of the potenital, point in this direction. What is the analogy of linesearch for the
primal-dual method? It is as follows. Applying Rule 1, we get certain primal feasible direction x′ − x,
which we can extend in the trivial way to a primal-dual feasible direction (i.e., a direction from L×L⊥)
d1 = (x′− x, 0); shifting the current strictly feasible pair (x, s) in this direction, we for sure get a strictly
feasible pair with better (or, in the case of ω = 0, the same) value of the potential. Similraly, applying
Rule 2, we get another primal-dual feasible direction d2 = (0, s′ − s); shifting the current pair in this
direction, we always get a pair from the primal-dual feasible plane L = {b+L}×{c+L⊥}, although not
necessarily belonging to the interior of the primal-dual cone K = K×K∗, What we always get, is certain
2-dimensional plane D (passing through (x, s) parallel to the directions d1, d2) which is contained in the
primal-dual feasible plane L, and one (or two, depending on whether Rule 2 was or was not productive)
strictly feasible primal-dual pairs - candidates to the role of the next iterate; what we know from our
theoretical analysis, is that the value of the potential at one of the candidate pairs is ”significantly” -
at least by the quantity Ω(κ) - less that the value of the potential at the previous iterate (x, s). Given
this situation, a resonable policy to get additional progress in the potential at the step is 2-dimensional
minimization of the potential over the intersection of the plane D with the interior of the cone K ×K∗.
The potential is not convex, and it would be difficult to ensure a prescribed quality of its minimization
even over the 2-dimensional plane D, but this is not the point where we must get a good minimizer; for
our purposes it suffices to perform a once for ever fixed (and small) number of steps of any relaxation
method for smooth minimization (the potential is smooth), running the method from the best of our
candidate pairs. In the case of LP, same as in some other interesting cases, there are possibilities to
implement this 2-dimensional search in a way which almost does not increase the total computational
effort per step3, and at the same time accelerates the method dramatically.

3this total effort normally is dominated by the cost of computing the reduced Newton direction ex
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7.6 Exercises: Primal-Dual method

The subject of the forthcoming problems is implementation of the primal-dual method. We shall start
with some remarks related to the general situation and then consider a particular problem coming from
Control.

When speaking about implementation, i.e., about algorithmical issues, we should, of course, fix some-
how the way the data are represented; for a conic problem, this is, basically, the question of how the fea-
sible subspace L is described. In most of applications known to me the situation is as follows. b+L ⊂ Rn

is defined as the image of certain subspace

{ξ ∈ Rl | P (ξ − p) = 0}

(ξ is the vector of the design variables) under a given affine mapping

x = A(ξ) ≡ Aξ + b,

A being n × l and P being k × l matrices; usually one can assume that A is of full column rank, i.e.,
that its columns are linearly independent, and that P is of full row rank, i.e., the rows of P are linearly
independent; from now on we make this regularity assumption. As far as the objective is concerned, it is
a linear form χT ξ of the design vector.

Thus, the typical for applications form of the primal problem is

(P) : minimize χT ξ s.t. ξ ∈ Rl, P (ξ − p) = 0, x ≡ Aξ + b ∈ K,

K being a pointed closed and convex cone with a nonempty interior in Rn. This is exactly the setting
presented in Section 5.4.4.

As we know from Exercise 5.4.11, the problem dual to (P) is

(D) : minimize βT s s.t. AT s = χ+ PT r, s ∈ K∗,

where the control vector is comprised of s ∈ Rn and r ∈ Rk, K∗ is the cone dual to K, and β = A(p).
In what follows F denotes the primal barrier - ϑ-logarithmically homogeneous self-concordant barrier

for K, and F+ denotes the dual barrier (see Lecture 7).

Let us look how the primal-dual method could be implemented in the case when the primal-dual pair
of problems is in the form (P) - (D). We should answer the following basic questions

• how to represent the primal and the dual solutions;

• how to perform the updating (xi, si) 7→ (xi+1, si+1).

As far as the first of this issues is concerned, the most natural decision is

to represent x’s of the form A(ξ) (note that all our primal feasible x’s are of this type) by storing
both x (as an n-dimensional vector) and ξ (as an l-dimensional one);

to represent s’s and r’s ”as they are” - as n- and k-dimensional vectors, respectively.

Now, what can be said about the main issue - how to implement the updating of strictly feasible primal-
dual pairs? In what follows we speak about the basic version of the method only, not discussing the large
step strategy from Section 7.5, since implementation of the latter strategy (and even the possibility to
implement it) heavily depends on the specific analytic structure of the problem.

Looking at the description of the primal-dual method, we see that the only nontrivial issue is how to
compute the Newton direction

ex = argmin{hT g +
1

2
hTF ′′(x)h | h ∈ L},

where (x, s) is the current iterate to be updated and g = F ′(x) + ϑ+µ
sT x

s. Since L is the image of the linear
space

L′ = {ζ ∈ Rl | Pζ = 0}
under the mapping ζ 7→ Aζ, we have

ex = Aηx

for certain ηx ∈ L′, and the problem is how to compute ηx.
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Exercise 7.6.1 # Prove that ηx is uniquely defined by the linear system of equations(
Q PT

P 0

)(
η
u

)
=

(
−q
0

)
(7.40)

where
Q = ATF ′′(x)A, q = AT g, (7.41)

so that ηx is given by the relation

ηx = −Q−1
[
AT g − PT [PQ−1PT ]−1PQ−1AT g

]
; (7.42)

in the particular case when P is absent (formally, k = 0), ηx is given by

ηx = −Q−1AT g. (7.43)

Note that normally k is a small integer, so that the main effort in computing ηx is to assemble and to
invert the matrix Q. Usually this is the main part of the overall effort per iteration, since other actions,
like computing F (x), F ′(x), F ′′(x), are relatively cheap.

7.6.1 Example: Lyapunov Stability Analysis

The goal of the forthcoming exercises is to develop the (principal elements of) algorithmic scheme of the
primal-dual method as applied to the following interesting and important problem coming from Control
theory:

(C) given a ”polytopic” linear time-varying ν-dimensional system

v′(t) = V (t)v(t), V (t) ∈ Conv{V1, ..., Vm},

find a quadratic Lyapunov function vTLv which demonstrates stability of the system.

Let us start with explaining what we are asked to do. The system in question is a time-varying linear
dynamic system with uncertainty: v(t) is ν-dimensional vector-function of time t - the trajectory, and
V (t) is the time-varying matrix of the system. Note that we do not know in advance what this matrix
is; all we know is that, for every t, the matrix V (t) belongs to the convex hull of a given finite set of
matrices Vi, i = 1, ...,m.

Now, the system in question is called stable, if v(t) → 0 as t → ∞ for all trajectories. A good
sufficient condition for stability is the existence of a positive definite quadratic Lyapunov function vTLv
for the system, i.e., a positive definite symmetric ν × ν matrix L such that the derivative in t of the
quantity vT (t)Lv(t) is strictly negative for every t and every trajectory v(t) with nonzero v(t). This
latter requirement, in view of v′(t) = V (t)v(t), is equivalent to

[V (t)v(t)]TLv(t) < 0 whenever v(t) 6= 0 and V (t) ∈ Conv{V1, ..., Vm},

or, which is the same (since for a given t v(t) can be an arbitrary vector and V (t) can be an arbitrary
matrix from Conv{V1, ..., Vm}), is equivalent to the requirement

vTV TLv =
1

2
vT [V TL+ LV ]v < 0, v 6= 0, V ∈ Conv{V1, ..., Vm}.

In other words, L should be a positive definite symmetric matrix such that all the matrices of the form
V TL + LV associated with V ∈ Conv{V1, ..., Vm} are negative definite; matrix L with these properties
will be called appropriate.

Our first (and extremely simple) task is to characterize the appopriate matrices.

Exercise 7.6.2 # Prove that a symmetric ν × ν matrix L is appropriate if and only if it is positive
definite and the matrices

V Ti L+ LVi, i = 1, ...,m

are negative definite.
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We see that to find an appropriate matrix (and to demonstrate by this stability of (C) via a quadratic
Lyapunov function) is the same as to find a solution to the following system of strict matrix inequalities

L > 0; V Ti L+ LVi < 0, i = 1, ...,m, (7.44)

where inequalities with symmetric matrices are understood as positive definiteness (for strict inequalities)
or semidefiniteness (for non-strict ones) of the corresponding differences.

We can immediately pose our problem as a conic problem with trivial objective; to this end it suffices
to treat L as the design variable (which varies over the space Sν of symmetric ν × ν matrices) and
introduce the linear mapping

B(L) = Diag{L;−V T1 L− LV1; ...;−V TmL− LVm}

from this space into the space (Sν)m+1 - the direct product of m + 1 copies of the space Sν , so that
(Sν)m+1 is the space of symmetric block-diagonal [(m+ 1)ν]× [(m+ 1)ν] matrices with m+ 1 diagonal
blocks of the size ν × ν each. Now, (Sν)m+1 contains the cone K of positive semidefinite matrices of the
required block-diagonal structure; it is clearly seen that L is appropriate if and only if B(L) ∈ int K,
so that the set of appropriate matrices is the same as the set of strictly feasible solutions to the conic
problem

minimize 0 s.t. B(L) ∈ K

with trivial objective.
Thus, the problem in question is reduced to a conic problem involving the cone of positive semidefinite

matrices of certain block-diagonal structure; the problems of this type are called semidefinite programs
or optimization under LMI’s (Linear Matrix Inequality constraints).

Of course, we could try to solve the problem by an interior point potential reduction method known
to us, say, by the method of Karmarkar or by the primal-dual method; we immdeiately discover, anyhow,
that the technique developed so far cannot be applied to our problem - indeed, in all methods known to us
it was required at least to know in advance a strictly feasible solution to the problem, and in our particular
case such a solution is exactly what should be finally found. There is, anyhow, a straightforward way to
avoid the difficulty. First of all, our system (7.44) is homogeneous in L; therefore we can normalize L to
be ≤ I (I stands for the unit matrix of the context-determined size) and pass from the initial system to
the new one

L > 0; L ≤ I; V Ti L+ LVi < 0, i = 1, ...,m. (7.45)

Now let us extend our design vector L by one variable t, so that the new design vector becomes

ξ = (t, L) ∈ E ≡ R× Sn,

and consider the semidefinite program

minimize t s.t. L+ tI ≥ 0; I − L ≥ 0; tI − V Ti L− LVi ≥ 0, i = 1, ...,m. (7.46)

Clearly, to solve system (7.45) is the same as to find a feasible solution to optimization problem (7.46)
with negative value of the objective; on the other hand, in (7.46) we have no difficulties with an initial
strictly feasible solution: we may set L = 1

2I and then choose t large enough to make all remaining
inequalities strict.

It is clear that (7.46) is of the form (P) with the data given by the affine mapping

A(ξ) ≡ A(t, L) = Diag{L+ tI; I − L; tI − V T1 L− LV1; ...; tI − V TmL− LVm} : E → E ,

E being the space (Sν)m+2 of block-diagonal symmetric matrices with m+ 2 diagonal blocks of the size
ν × ν each; the cone K in our case is the cone of positive semidefinite matrices from E , and matrix P is
absent, so that our problem is

(Pr) minimize t s.t. A(t, L) ∈ K.

Now let us form the method.
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Exercise 7.6.3 #+ Prove that
1) the cone K is self-dual;
2) the function

F (x) = − ln Det x

is a (m+ 2)ν-logarithmically homogeneous self-concordant barrier for the cone K;
3) the dual barrier F+ associated with the barrier F is, up to an additive constant, the barrier F

itself:
F+(s) = − ln Det s− (m+ 2)ν.

Thus, we are equipped with the primal and the dual barriers required to solve (Pr) via the primal-dual
method. Now let us look what the method is. First of all, what is the dual to (Pr) problem (Dl)?

Exercise 7.6.4 # Prove that when the primal problem (P) is specified to be (Pr), the dual problem (D)
becomes

(Dl) minimize Tr{s0} under choice of m+ 2 symmetric ν × ν matrices s−1, ..., sm s.t.

s−1 − s0 −
m∑
i=1

[Visi + siV
T
i ] = 0;

Tr{s−1}+

m∑
i=1

Tr{si} = 1.

It is time now to think of the initialization. Could we in fact point out strictly feasible solutions x̂
and ŝ to the primal and to the dual problems? As we just have mentioned, as far as the primal problem
(Pr) is concerned, there is nothing to do: we can set

x̂ = A(t̂, L̂),

where L̂ is < I, e.g., L̂ = 1
2I, and t̂ is large enough to ensure that L+ t̂I > 0, t̂I > V Ti L̂+L̂Vi, i = 1, ...,m.

Exercise 7.6.5 # Point out a strictly feasible solution ŝ to (Dl).

It remains to realize what are the basic operations at a step of the method.

Exercise 7.6.6 # Verify that in the case in question the quantities involved into the description of the
primal-dual method can be specified as follows:

1) The quantities related to F are given by

F ′(x) = −x−1; F ′′(x)h = x−1hx−1;

2) The matrix Q involved into the system for finding ηx (see Exercise 7.6.1), taken with respect to
certain orthonormal basis {eα}α=1,...,N in the space E, is given by

Qαβ = Tr{Aαx−1Aβx
−1}, Aα = Aeα.

Think about the algorithmic implementation of the primal-dual method and, in particular, about the
following issues:

• What is the dimension N of the ”design space” E? What is the dimension M of the ”image space”
E?

• How would you choose a ”natural” orthonormal basis in E?

• Is it necessary/reasonable to store F ′′(x) as an M ×M square array? How to assemble the matrix
Q? What is the arithmetic cost of the assembling?

• Is it actually necessary to invert Q explicitly? Which method of Linear Algebra would you choose
to solve system (7.40)?
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• What is the arithmetic cost of the step in the basic version of the primal-dual method? Where the
dominating expenses come from?

• Are there ways to implement at a relatively low cost a large step strategy? How would you do it?

• When would you terminate the computations? How could you recognize that the optimal value in
the problem is positive, so that you are unable to find a quadratic Lyapunov function which proves
the stability? Is it possible that running the method you never will be able neither to present an
appropriate L nor to come to the conclusion that it does not exist?

Last exercise is as follows:

Exercise 7.6.7 #∗ Is it reasonable to replace (Pr) by ”less redundant” problem

(Pr′) minimize t s.t. L ≥ I; tI − V Ti L− LVi ≥ 0, i = 1, ...,m

(here we normalize L in (7.44) by L ≥ I and, same as in (Pr), add the ”slack” variable t to make the
problem ”evidently feasible”)?



Chapter 8

Long-Step Path-Following Methods

To the moment we are acquainted with three particular interior point algorithms, namely, with the short-
step path-following method and with two potential reduction algorithms. As we know, the main advantage
of the potential reduction scheme is not of theoretical origin (in fact one of the potential reduction
routines, the method of Karmarkar, is even worse theoretically than the path-following algorithm), but
in possibility to implement ”long step” tactics. Recently it became clear that such a possibility also exists
within the path-following scheme; and the goal of this lecture is to present to you the ”long step” version
of the path-following method.

8.1 The predictor-corrector scheme

Recall that in the path-following scheme (Lecture 4) we were interested in the problem

minimize cTx s.t. x ∈ G, (8.1)

G being a closed and bounded convex domain in Rn. In order to solve the problem, we take a ϑ-self-
concordant barrier F for the feasible domain G and trace the path

x∗(t) = argmin
x∈int G

Ft(x), Ft(x) = tcTx+ F (x), (8.2)

as the penalty parameter t tends to infinity. More specifically, we generate a sequence of pairs (ti, xi)
κ-close to the path, i.e., satisfying the predicate

{t > 0}& {x ∈ int G}& {λ(Ft, x) ≡
√

[∇xFt(x)]T∇2
xFt(x)∇xFt(x) ≤ κ}, (8.3)

the path tolerance κ < 1 being the parameter of the method. The policy of tracing the path in the basic
scheme of the method was very simple: in order to update (t, x) ≡ (ti−1, xi−1) into (t+, x+) = (ti, xi),
we first increased, in certain prescribed ratio, the value of the penalty, i.e., set

t+ = t+ δt, dt =
γ√
ϑ
t, (8.4)

and then applied to the new function Ft+(·) the damped Newton method in order to update x into x+:

yl+1 = yl − 1

1 + λ(Ft+ , yl)
[∇2

xF (yl)]−1∇xFt+(yl); (8.5)

we initialized this reccurency by setting y0 = x and terminated it when the closeness to the path was
restored, i.e., when λ(Ft+ , y

l) turned out to be ≤ κ, and took the corresponding yl as x+.
Looking at the scheme, we immediately see at least two weak points of it: first, we use a once for ever

fixed penalty rate and do not try to use larger dt’s; second, when applying the damped Newton method
to the function Ft+ , we start the reccurency at y0 = x; why do not we use a better forecast for our target
point x∗(t+ dt)? Let us start with discussing this second point. The path x∗(·) is smooth (at least two

111
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times continuously differentiable), as it is immediately seen from the Implicit Function Theorem applied
to the equation

tc+ F ′(x) = 0 (8.6)

which defines the path. Given a tight approximation x to the point x∗(t) of the path, we could try to
use the first-order prediction

xf (dt) = x+ x′dt

of our target point x∗(t+ dt); here x′ is some approximation of the derivative d
dtx
∗(·) at the point t. The

simplest way to get this approximation is to note that what we finally are interested in is to solve with
respect to y the equation

(t+ dt)c+ F ′(y) = 0;

a good idea is to linearize the left hand side at y = x and to use, as the forecast of x∗(t+dt), the solution
to the linearized equation. The linearized equation is

(t+ dt)c+ F ′(x) + F ′′(x)[y − x] = 0,

and we come to
dx(dt) ≡ y − x = −[F ′′(x)]−1∇xFt+dt(x). (8.7)

Thus, it is reasonable to start the damped Newton method with the forecast

xf (dt) ≡ x+ dx(dt) = x− [F ′′(x)]−1∇xFt+dt(x). (8.8)

Note that in fact we do not get anything significantly new: xf (dt) is simply the Newton (not the damped
Newton) iterate of x with respect to the function Ft+(·); nevertheless, this is not exactly the same as the
initial implementation. The actual challenge is, of course, to get rid of the once for ever fixed penalty
rate. To realize what could be done here, let us write down the generic scheme we came to:

Predictor-Corrector Updating scheme:
in order to update a given κ-close to the path x∗(·) pair (t, x) into a new pair (t+, x+) of the same

type, act as follows

• Predictor step:

1) form the primal search line

P = {X(dt) = (t+ dt, x+ dx(dt) | dt ∈ R}, (8.9)

dx(dt) being given by (8.7);

2) choose stepsize δt > 0 and form the forecast

t+ = t+ δt, xf = x+ dx(δt); (8.10)

• Corrector step:

3) starting with y0 = xf , run the damped Newton method (8.5) until λ(t+, yl) becomes ≤ κ; when
it happens, set x+ = yl, thus completing the updating (t, x) 7→ (t+, x+).

Now let us look what are the stepsizes δt acceptable for us. Of course, there is an immediate re-
quirement that xf = x + dx(δt) should be strictly feasible - otherwise we simply will be unable to start
the damped Newton method with xf . There is, anyhow, a more severe restriction. Remember that the
complexity estimate for the method in question heavily depended on the fact that the ”default” stepsize
(8.4) results in a once for ever fixed (depending on the penalty rate γ and the path tolerance κ only)
Newton complexity of the corrector step. If we wish to preserve the complexity bounds - and we do wish
to preserve them - we should take care of fixed Newton complexity of the corrector step. Recall that
our basic results on the damped Newton method as applied to the self-concordant function Ft+(·) (X.,
Lecture 2) say that the number of Newton iterations of the method, started at certain point y0 ∈ int G
and runned until the relation λ(Ft+ , y

l) ≤ κ becomes true, is bounded from above by the quantity

O(1)

{
[Ft+(y0)− min

y∈int G
Ft+(y)] + ln(1 + ln

1

κ
)

}
,
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O(1) being an appropriate absolute constant. We see that in order to bound from above the Newton
complexity of the corrector step it suffices to bound from above the residual

V (t+, xf ) ≡ Ft+(xf )− min
y∈int G

Ft+(y),

i.e., to choose the stepsize δt in a way which ensures that

V (t+ δt, xf (δt)) ≤ κ, (8.11)

where κ is a once for ever fixed constant - the additional to the path tolerance κ parameter of the method.
The problem, of course, is how to ensure (8.11). If it would be easy to compute the residual at a given pair
(t+, xf ), we could apply a linesearch in the stepsize δt in order to choose the largest stepsize compatible
with a prescribed upper bound on the residual. Given a candidate stepsize δt, we normally have no
problems with ”cheap” computation of t+, xf and the quantity Ft+(xf ) (usually the cost of computing
the value of the barrier is much less than our natural ”complexity unit” - the arithmetic cost of a Newton
step); the difficulty, anyhow, is that the residual invloves not only the value of Ft+ at the forecast, but also
the unknown to us minimum value of Ft+(·). What we are about to do is to derive certain duality-based
and computationally cheap lower bounds for the latter minimum value, thus obtaining ”computable”
upper bounds for the residual.

8.2 Dual bounds and Dual search line

From now on, let us make the following Structural assumption on the barrier in question:

Q : the barrier F is of the form
F (x) = Φ(πx+ p), (8.12)

where Φ is a ϑ-self-concordant nondegenerate barrier for certain closed convex domain G+ ⊂ Rm with
known Legendre transformation Φ∗ and x 7→ πx + p is an affine mapping from Rn into Rm with the
image intersecting int G+, so that G is the inverse image of G+ under the mapping x 7→ πx+ p.

Note that Q indeed defines a ϑ-self-concordant barrier for G, see Proposition 3.1.1.(i).
Note that the essence of the Structural assumption is that we know the Legendre transformation of

Φ (otherwise there would be no assumption at all - we simply could set Φ ≡ F ). This assumption indeed
is satisfied in many important cases, e.g., in Linear Programming, where G is a polytope given by linear
inequalities aTi x ≤ bi, i = 1, ...,m, and

F (x) = −
m∑
i=1

ln(bi − aTi x);

here

G+ = Rm
+ , Φ(u) = −

m∑
i=1

lnui

and
(πx+ p)i = bi − aTi x, i = 1, ...,m;

the Legendre transformation of Φ, as it is immediately seen, is

Φ∗(s) = Φ(−s)−m, s ∈ Rm
− .

In the mean time we shall speak about other important cases where the assumption is valid.
Now let us make the following simple and crucial observation:

Proposition 8.2.1 Let a pair (τ, s) ∈ R+ ×Dom Φ∗ satisfy the linear homogeneous equation

τc+ πT s = 0. (8.13)

Then the quantity
fs(τ) = pT s− Φ∗(s) (8.14)
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is a lower bound for the quantity
f∗(τ) = min

y∈int G
Fτ (y)

and, consequently, the quantity

Vs(τ, y) = Fτ (y)− fs(τ) ≡ τcT y + F (y) + Φ∗(s)− pT s (8.15)

is an upper bound for the residual

V (τ, y) = Fτ (y)−minFτ (·).

Proof. As we know from VII., Lecture 2, the Legendre transformation of Φ∗ is exactly Φ. Consequently,

Φ(πy + p) = sup
v∈Dom Φ∗

[[πy + p]T v − Φ∗(v)] ≥ [πy + p]T s− Φ∗(s),

whence
Fτ (y) ≡ τcT y + F (y) ≡ τcT y + Φ(πy + p) ≥

≥ τcT y + [πy + p]T s− Φ∗(s) = [τc+ πT s]T y + pT s− Φ∗(s) = pT s− Φ∗(s)

(the concluding inequality follows from (8.13)).
Our next observation is that there exists a systematic way to generate dual feasible pairs (τ, s), i.e.,

the pairs satisfying the premise of the above proposition.

Proposition 8.2.2 Let (t, x) be a primal feasible pair (i.e., with t > 0 and x ∈ int G), and let

u = πx+ p, du(dt) = πdx(dt), s = Φ′(u), ds(dt) = Φ′′(u)du(dt), (8.16)

where dx(dt) is given by (8.7). Then
(i) Every pair S(dt) on the Dual search line

D = {S(dt) = (t+ dt, sf (dt) = s+ ds(dt)) | dt ∈ R}

satisfies equation (8.13).
(ii) If (t, x) is κ-close to the path, then the pair S(0), and, consequently, every pair S(dt) with small

enough |dt|, belongs to the domain of Φ∗ and is therefore dual feasible.

Proof.
(i): from (8.16) it follows that

(t+ dt)c+ πT (s+ ds(dt)) = (t+ dt)c+ πT [Φ′(u) + Φ′′(u)πdx(dt)] =

[since F ′(x) = πTΦ′(u) and F ′′(x) = πTΦ′′(u)π in view of (8.12) and (8.16)]

= (t+ dt)c+ F ′(x) + F ′′(x)dx(dt) = ∇xFt+dt(x) + F ′′(x)dx(dt),

and the concluding quantity is 0 due to the origin of dx(dt), see (8.7). (i) is proved.
(ii): let us start with the following simple

Lemma 8.2.1 One has

|ds(dt)|2(Φ∗)′′(s) = |du(dt)|2Φ′′(u) = [du(dt)]T ds(dt) (8.17)

and
|ds(0)|(Φ∗)′′(s) = |dx(0)|F ′′(x) = λ2(Ft, x). (8.18)

Proof. Since s = Φ′(u) and Φ∗ is the Legendre transformation of Φ, we have

(Φ∗)′′(s) = [Φ′′(u)]−1 (8.19)

(see (L.3), Lecture 2). Besides this, ds(dt) = Φ′′(u)du(dt) by (8.16), whence

|ds(dt)|2(Φ∗)′′ ≡ [ds(dt)]T [(Φ∗)′′][ds(dt)] = [Φ′′du(dt)]T [Φ′′]−1[Φ′′du(dt)] =
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= [du(dt)]T [Φ′′][du(dt)],

as claimed in the first equality in (8.17); the second inequality there is an immediate consequence of
ds(dt) = [Φ′′]du(dt).

To prove (8.18), note that, as we know from (8.17), |ds(0)|2(Φ∗)′′ = |du(0)|2Φ′′ ; the latter quantity,

in view of (8.16), is nothing but [πdx(0)]TΦ′′[πdx(0)], which, in turn, equals to |dx(0)|2F ′′(x) in view

of F ′′(x) = πTΦ′′(u)π. We have proved the first equality in (8.18); the second is immdeiate, since
dx(0) = −[F ′′(x)]−1∇xFt(x) by (8.7), and, consequently,

|dx(0)|2F ′′(x) =
[
[F ′′(x)]−1∇xFt(x)

]T
[F ′′(x)]

[
[F ′′(x)]−1∇xFt(x)

]
=

= [∇xFt(x)]T [F ′′(x)]−1∇xFt(x) ≡ λ2(Ft, x).

Now we can immediately complete the proof of item (ii) of the Proposition. Indeed, as we know from
VII., Lecture 2, the function Φ∗ is self-concordant on its domain; since s = Φ′(u), we have s ∈ Dom Φ∗.
(8.18) says that the | · |(Φ∗)′′(s)-distance between s ∈ Dom Φ∗ and sf (0) equals to λ(Ft, x) and is therefore
< 1 due to the premise of (ii). Consequently, s(0) belongs to the centered at s open unit Dikin ellipsoid
of the self-concordant function Φ∗ and is therefore in the domain of the function (I., Lecture 2). The
latter domain is open (VII., Lecture 2), so that sf (dt) ∈ Dom Φ∗ for all small enough dt ≥ 0; since S(dt)
always satisfies (8.13), we conclude that S(dt) is dual feasible for all small enough |dt|.

Propositions 8.2.1 and 8.2.2 lead to the following

Acceptability Test:

given a κ-close to the path primal feasible pair (t, x) and a candidate stepsize dt, form the correspond-
ing primal and dual pairs X(dt) = (t+ dt, xf (dt) = x+ dx(dt)), S(dt) = (t+ dt, sf (dt) = s+ ds(dt)) and
check whether the associated upper bound

v(dt) ≡ Vsf (dt)(t+ dt, xf (dt)) = (t+ dt)cTxf (dt) + F (xf (dt)) + Φ∗(sf (dt))− pT sf (dt) (8.20)

for the residual V (t + dt, xf (dt)) is ≤ κ (by definition, v(dt) = +∞ if xf (dt) 6∈ DomF or if sf (dt) 6∈
Dom Φ∗).

If v(dt) ≤ κ, accept the stepsize dt, otherwise reject it.

An immediate corollary of Propositions 8.2.1, 8.2.2 is the following

Proposition 8.2.3 If (t, x) is a κ-close to the path primal feasible pair and a stepsize dt passes the
Acceptability Test, then

V (t+ dt, xf (dt)) ≤ κ

and, consequently, the Newton complexity of the corrector step under the choice δt = dt does not exceed
the quantity

N(κ, κ) = O(1)

{
κ+ ln

(
1 + ln

1

κ

)}
,

O(1) being an absolute constant.

Now it is clear that in order to get a ”long step” version of the path-following method, it suffices
to equip the Predictor-Corrector Updating scheme with a linesearch-based rule for choosing the largest
possible stepsize δt which passes our Acceptability Test. Such a rule for sure keeps the complexity of a
corrector step at a fixed level; at the same time, the rule is computationally cheap, since to test a stepsize,
we should compute the values of Φ and Φ∗ only, which normally is nothing as compared to the cost of
the corrector step.

The outlined approach needs, of course, theoretical justification. Indeed, to the moment we do
not know what is the ”power” of our Acceptability Test - does it accept, e.g., the ”short” stepsizes
dt = O(t/

√
ϑ) used in the very first version of the method. This is the issue we come to.
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8.3 Acceptable steps

Let us start with the following construction. Given a point u ∈ Dom Φ and a direction δu ∈ Rm, let us
set

s = Φ′(u), δs = Φ′′(u)δu,

thus coming to the conjugate point s ∈ Dom Φ∗ and to the conjugate direction δs. Now, let ρ∗u[δu] be the
remainder in the second-order Taylor expansion of the function Φ(v) + Φ∗(w) at the point (u, s) along
the direction (δu, δs):

ρ∗u[δu] = Φ(u+ δu) + Φ∗(s+ δs)−

−
[
Φ(u) + Φ∗(s) + [δu]TΦ′(u) + [δs]TΦ′(s) +

[δu]TΦ′′(u)δu

2
+

[δs]T (Φ∗)′′(s)δs

2

]
(the right hand side is +∞, if u+ δu 6∈ Dom Φ or if s+ δs 6∈ Dom Φ∗).

Our local goal is to establish the following

Lemma 8.3.1 One has

ζ ≡ |δu|Φ′′(u) = |δs|(Φ∗)′′(s) =
√

[δu]T δs. (8.21)

Besides this, if ζ < 1, then

ρ∗u[δu] ≤ 2ρ(ζ)− ζ2 =
2

3
ζ3 +

2

4
ζ4 +

2

5
ζ5 + ..., ρ(z) = − ln(1− z)− z. (8.22)

Last, the third derivative of Φ(·) + Φ∗(·) taken at the point (u, s) along the direction (δu, δs) is zero, so
that ρ∗u[δu] is in fact the reminder in the third-order Taylor expansion of Φ(·) + Φ∗(·).

Proof. (8.21) is proved exactly as relation (8.17), see Lemma 8.2.1. From (8.21) it follows that if ζ < 1,
then both u + δu and s + δs are in the centered at u, respectively, s open unit Dikin ellipsoids of the
self-concordant functions Φ, Φ∗ (the latter function is self-concordant due to VII., Lecture 2). Applying
to Φ and Φ∗ I., Lecture 2, we come to

u+ δu ∈ Dom Φ, Φ(u+ δu) ≤ Φ(u) + [δu]TΦ′(u) + ρ(|δu|Φ′′(u)),

s+ δs ∈ domΦ∗, Φ∗(s+ δs) ≤ Φ∗(s) + [δs]T (Φ∗)′(s) + ρ(|δs|(Φ∗)′′(s)),

whence

ρ∗u[δu] ≤ 2ρ(ζ)− 1

2
|δu|2Φ′′(u) −

1

2
|δs|2(Φ∗)′′(s) = 2ρ(ζ)− ζ2,

as claimed in (8.22).

To prove that the third order derivative of Φ(·) + Φ∗(·) taken at the point (u, s) in the direction
(δu, δs) is zero, let us differentiate the identity

hT [(Φ∗)′′(Φ′(v))]h = hT [Φ′′(v)]−1h

(h is fixed) with respect to v in the direction h (cf. item 40 in the proof of VII., Lecture 2). The
differentiation results in

D3Φ∗(Φ′(v))[h, h, h] = −D3Φ(v)[[Φ′′(v)]−1h, [Φ′′(v)]−1h, [Φ′′(v)]−1h];

substituting v = u, h = δs, we come to

D3Φ(u)[δu, δu, δu] = −D3Φ∗(s)[δs, δs, δs].

Now we are ready to prove the following central result.
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Proposition 8.3.1 Let (t, x) be κ-close to the path, and let dt, |dt| < t, be a stepsize. Then the quantity
v(dt) (see (8.20)) satisfies the inequality

v(dt) ≤ ρ∗u[du(dt)], (8.23)

while

|du(dt)|Φ′′(u) ≤ ω ≡ λ(Ft, x) +
|dt|
t

[λ(Ft, x) + λ(F, x)] ≤ κ+
|dt|
t

[κ+
√
ϑ]. (8.24)

In particular, if ω < 1, then v(dt) is well-defined and is ≤ 2ρ(ω)− ω2. Consequently, if

2ρ(κ)− κ2 < κ (8.25)

then all stepsizes dt satisfying the inequality

|dt|
t
≤ κ+ − κ
κ+ λ(F, x)

, (8.26)

κ+ being the root of the equation
2ρ(z)− z2 = κ,

pass the Acceptability Test.

Proof. Let u, s, du(dt), ds(dt) be given by (8.16). In view of (8.16), s is conjugate to u and ds(dt) is
conjugate to du(dt), so that by definition of ρ∗u[·], we have, denoting ζ = |du(dt)|Φ′′(u) = |ds(dt)|(Φ∗)′′(s)
(see (8.21))

Φ(u+ du(dt)) + Φ∗(s+ ds(dt)) =

= Φ(u) + [du(dt)]TΦ′(u) + Φ∗(s) + [ds(dt)]T (Φ∗)′(s) + ζ2 + ρ∗u[du(dt)] =

[since s = Φ′(u) and, consequently, Φ(u) + Φ∗(s) = uT s and u = (Φ∗)′(s), since Φ∗ is the Legendre
transformation of Φ]

= uT s+ [du(dt)]T s+ uT ds(dt) + ζ2 + ρ∗u[du(dt)] =

= [u+ du(dt)]T [s+ ds(dt)]− [du(dt)]T ds(dt) + ζ2 + ρ∗u[du(dt)] =

[since [du(dt)]T ds(dt) = ζ2 by (8.21)]

= [u+ du(dt)]T [s+ ds(dt)] + ρ∗u[du(dt)] =

[since u+ du(dt) = π[x+ dx(dt)] + p and, by Proposition 8.2.2, πT [s+ ds(dt)] = −(t+ dt)c]

= pT [s+ ds(dt)]− (t+ dt)cT [x+ dx(dt)] + ρ∗u[du(dt)] =

[the definition of xf (dt) and sf (dt)]

= pT sf (dt)− (t+ dt)cTxf (dt) + ρ∗u[du(dt)],

whence (see (8.20))

v(dt) ≡ (t+ dt)cTxf (dt) + F (xf (dt)) + Φ∗(sf (dt))− pT sf (dt) = ρ∗u[du(dt)],

as required in (8.23).
Now let us prove (8.24). In view of (8.16) and (8.12) we have

|du(dt)|Φ′′(u) = |πdx(dt)|Φ′′(u) = |dx(dt)|F ′′(x) =

[see (8.7)]

= |[F ′′(x)]−1∇xFt+dt(x)|F ′′(x) ≡
√

[[F ′′(x)]−1∇xFt+dt(x)]
T

[F ′′(x)] [[F ′′(x)]−1∇xFt+dt(x)] =

= |∇xFt+dt(x)|[F ′′(x)]−1 = |(t+ dt)c+ F ′(x)|[F ′′(x)]−1 =

= |(1 + dt/t)[tc+ F ′(x)]− (dt/t)F ′(x)|[F ′′(x)]−1 ≤
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≤ (1 +
|dt|
t

)|∇xFt(x)|[F ′′(x)]−1 +
|dt|
t
|F ′(x)|[F ′′(x)]−1 ≤

[due to the definition of λ(Ft, x) and λ(F, x)]

≤ (1 +
|dt|
t

)λ(Ft, x) +
|dt|
t
λ(F, x) = ω ≤

[since (t, x) is κ-close to the path, so that λ(Ft, x) ≤ κ, and since F is ϑ-self-concordant barrier]

≤ (1 +
|dt|
t

)κ+
|dt|
t

√
ϑ.

The remaining statements of Proposition are immediate consequences of (8.23), (8.24) and Lemma
8.3.1.

8.4 Summary

Summarizing our observations and results, we come to the following

Long-Step Predictor-Corrector Path-Following method:

• The parameters of the method are the path tolerance κ ∈ (0, 1) and the treshold κ > 2ρ(κ) − κ2;
the input to the method is a κ-close to the path primal feasible pair (t0, x0) .

• The method forms, starting with (t0, x0), the sequence of κ-close to the path pairs (ti, xi), with the
updating

(ti−1, xi−1) 7→ (ti, xi)

being given by the Predictor-Corrector Updating scheme, where the stepsizes δti ≡ ti − ti−1 are
nonnegative reals passing the Acceptability Test associated with the pair (ti−1, xi−1).

Since, as we know from Proposition 8.3.1, the stepsizes

δti∗ = ti−1 κ+ − κ
κ+ λ(F, xi−1)

for sure pass the Acceptability Test, we may assume that the stepsizes in the above method are at least
the default values δti∗:

δti ≥ ti−1 κ+ − κ
κ+ λ(F, xi−1)

; (8.27)

note that to use the default stepsizes δti ≡ δti∗, no Acceptability Test, and, consequently, no Structural
assumption on the barrier F is needed. Note also that to initialize the method (to get the initial close
to the path pair (t0, x0)), one can trace ”in the reverse time” the auxiliary path associated with a given
strictly feasible initial solution x̂ ∈ int G (see Lecture 4); and, of course, when tracing the auxiliary path,
we also can use the long-step predictor-corrector technique.

The method in question, of course, fits the standard complexity bounds:

Theorem 8.4.1 Let problem (8.1) be solved by the Long-Step Predict-or-Corrector Path-Following method
which starts at a κ-close to the path primal feasible pair (t0, x0) and uses stepsizes δti passing the Ac-
ceptability Test and satisfying (8.27). Then the total number of Newton steps in the method before an
ε-solution to the problem is found does not exceed

O(1)
√
ϑ ln

(
ϑ

t0ε
+ 1

)
+ 1,

with O(1) depending on the parameters κ and κ of the method only.

Proof. Since (ti, xi) are κ-close to the path, we have cTxi −minx∈G c
Tx ≤ O(1)ϑt−1

i with certain O(1)
depending on κ only (see Proposition 4.4.1, Lecture 4); this inaccuracy bound combined with (8.27)
(where one should take into account that λ(F, xi−1) ≤

√
ϑ) implies that cTxi−minx∈G c

Tx becomes ≤ ε
after no more than O(1)

√
ϑ ln(1+ϑt−1

0 ε−1)+1 steps, with O(1) depending on κ and κ only. It remains to
note that since the stepsizes pass the Acceptability Test, the Newton complexity of a step in the method,
due to Proposition 8.2.3, is O(1).



8.5. EXERCISES: LONG-STEP PATH-FOLLOWING METHODS 119

8.5 Exercises: Long-Step Path-Following methods

Let us start with clarifying an immediate question motivated by the above construction.

Exercise 8.5.1 #∗ The Structural assumption requires F to be obtained from a barrier with known Leg-
endre transformation by affine substitution of the argument. Why did not we simplify things by assuming
that F itself has a known Legendre transformation?

The remaining exercises tell us another story. We have presented certain ”long step” variant of the
path-following scheme; note, anyhow, that the ”cost” of ”long steps” is certain structural assumption on
the underlying barrier. Although this assumption is automatically satisfied in many important cases, we
have paid something. Can we say something definite about the advantages we have paid for? ”Definite”
in the previous sentence means ”something which can be proved”, not ”something which can be supported
by computational experience” (this latter aspect of the situation is more or less clear).

The answer is as follows. As far as the worst case complexity bound is concerned, there is no progress
at all, and the current state of the theory of interior point methods do not give us any hope to get a
worst-case complexity estimate better than O(

√
ϑ ln(V/ε)). Thus, if we actually have got something, this

is not an improvement in the worst case complexity. The goal of the forthcoming exercises is to explain
what is the improvement.

Let us start with some preliminary considerations. Consider a step of a path-following predictor-
corrector method; for the sake of simplicity, assume that at the beginning of the step we are exactly
at the path rather than are close to it (what follows can be without any difficulties extended onto this
latter situation). Thus, we are given t > 0 and x = x∗(t), and our goal is to update the pair (t, x) into a
new pair (t+, x+) close to the path with larger value of the penalty parameter. To this end we choose a
stepsize dt > 0, set t+ = t+ dt and make the predictor step

x 7→ xf = x+ (x∗)′(t)dt,

shifting x along the tangent to the path line l. At the corrector step we apply to Ft+ the damped Newton
method, starting with xf , to restore closeness to the path. Assume that the method in question ensures
that the residual

Ft+(xf )−min
x
Ft+(x)

is ≤ O(1) (this is more or less the same as to ensure a fixed Newton complexity of the corrector step).
Given that the method in question possesses the aforementioned properties, we may ask ourselves what
is the length of the displacement xf − x which is guaranteed by the method. It is natural to measure
the length in the local metric | · |F ′′(x) given by the Hessian of the barrier. Note that in the short-step
version of the method, where dt = O(1)t(1 + λ(F, x))−1, we have (see (8.7))

dx(dt) = −dt[F ′′(x)]−1c = t−1dt[F ′′(x)]−1F ′(x)

(since at the path tc+ F ′(x) = 0), whence

|xf (dt)− x|F ′′(x) = |dx(dt)|F ′′(x) = t−1dt|[F ′′(x)]−1F ′(x)|F ′′(x) =

= t−1dt|F ′(x)|[F ′′(x)]−1 = t−1dtλ(F, x),

and, substituting the expression for dt, we come to

Ω ≡ |xf (dt)− x|F ′′(x) = O(1)
λ(F, x)

1 + λ(F, x)
,

so that Ω = O(1), provided that λ(F, x) ≥ O(1), or, which is the same, provided that we are not too
close to the analytic center of G.

Thus, the quantity Ω - let us call it the prediction power of the method - for the default short-step
version of the method is O(1). The goal of what follows is to investigate the prediction power of the
long-step version of the method and to compare it with the above reference point - the O(1)-power of the
short-step version; this is a natural formalization of the question ”how long are the long steps”.
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First of all, let us note that there is a natural upper bound on the prediction power - namely, the
distance (measured, of course, in | · |F ′′(x)) from x to the boundary of G along the tangent line l. Actually
there are two distances, since there are two ways to reach ∂G along l - the ”forward” and the ”backward”
movement. It is reasonable to speak about the shortest of these distances - about the quantity

∆ ≡ ∆(x) = min{|p (x∗)′(t)|F ′′(x) | x+ p (x∗)′(t) 6∈ int G}.

Since G contains the centered at x unit Dikin ellipsoid of F (i.e., the centered at x | · |F ′′(x)-unit ball),
we have

∆ ≥ 1.

Note that there is no prediction policy which always results in Ω >> 1, since it may happen that
both ”forward” and ”backward” distances from x to the boundary of G are of order of 1 (look at
the case when G is the unit cube {y ∈ Rn | |y|∞ ≤ 1}, F (y) is the standard logarithmic barrier
−
∑n
i=1[ln(1 − yi) + ln(1 + yi)] for the cube, x = (0.5, 0, ..., 0)T and c = (−1, 0, ..., 0)T ). What we can

speak about is the type of dependence Ω = Ω(∆); in other words, it is reasonable to ask ourselves ”how
large is Ω when ∆ is large”, not ”how large is Ω” - the answer to this latter question cannot be better
than O(1).

In what follows we answer the above question for the particular case as follows:

Semidefinite Programming: the barrier Φ involved into our Structural assumption is the barrier

Φ(X) = − ln Det X

for the cone Sk+ of symmetric positive semidefinite k × k matrices

In other words, we restrict ourselves with the case when G is the inverse image of Sk+ under the affine
mapping

x 7→ A(x) = πx+ p

taking values in the space Sk of k × k symmetric matrices and

F (x) = − ln Det A(x).

Note that the Semidefinite Programming case (very important in its own right) covers, in particular,
Linear Programming (look what happens when πx+p takes values in the subspace of diagonal matrices).

Let us summarize our current knowledge on the situation in question.

• Φ is k-self-concordant barrier for the cone Sk; the derivatives of the barrier are given by

DΦ(u)[h] = −Tr{u−1h} = −Tr{ĥ}, ĥ = u−1/2hu−1/2,

so that

Φ′(u) = −u−1; (8.28)

D2Φ(u)[h, h] = Tr{u−1hu−1h} = Tr{ĥ2},

so that

Φ′′(u)h = u−1hu−1; (8.29)

D3Φ(u)[h, h, h] = −2 Tr{u−1hu−1hu−1h} = −2 Tr{ĥ3}

(see Example 5.3.3, Lecture 5, and references therein);

• the cone Sk+ is self-dual; the Legendre transformation of Φ is

Φ∗(s) = −Φ(−s) + const, Dom Φ∗ = − int Sn+

(Exercises 5.4.7, 5.4.10).
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Let us get more information on the barrier Φ. Let us call an arrow a pair (v, dv) comprised of
v ∈ int Sk+ and dv ∈ Sk with |dv|Φ′′(v) = 1. Given an arrow (v, dv), let us define the conjugate co-arrow
(v∗, dv∗) as

v∗ = Φ′(v) = −v−1, dv∗ = Φ′′(v)dv = v−1dvv−1.

Let also
ζ(v, dv) = sup{p | v ± pdv ∈ Sk+}, (8.30)

ζ∗(v∗, dv∗) = sup{p | v∗ ± dv∗ ∈ −Sk+}. (8.31)

In what follows |w|∞, |w|2 are the spectral norm (maximum modulus of eigenvalues) and the Frobenius

norm Tr1/2{w2} of a symmetric matrix w, respectively.

Exercise 8.5.2 Let (v, dv) be an arrow and (v∗, dv∗) be the conjugate co-arrow. Prove that

1 = |dv|Φ′′(v) = |v−1/2dvv−1/2|2 = |dv∗|(Φ∗)′′(v∗) =
√

Tr{dv dv∗} (8.32)

and that

ζ(v, dv) = ζ∗(v∗, dv∗) =
1

|v−1/2dvv−1/2|∞
. (8.33)

Exercise 8.5.3 ∗ Prove that for any positive integer j, any v ∈ int Sk+ and any h ∈ Sk one has

DjΦ(v)[h, ..., h] = (−1)j(j − 1)! Tr{ĥj}, ĥ = v−1/2hv−1/2, (8.34)

and, in particular,
|DjΦ(v)[h, ..., h]| ≤ (j − 1)!|ĥ|2|ĥ|j−2

∞ , j ≥ 2. (8.35)

Let ρj(z) be the reminder in j-th order Taylor expansion of the function − ln(1− z) at z = 0:

ρj(z) =
1

j + 1
zj+1 +

1

j + 2
zj+2 + ...

(so that the perfectly known to us function ρ(z) = − ln(1− z)− z is nothing but ρ1(z)).

Exercise 8.5.4 + Let (v, dv) be an arrow, and let Rj(v,dv)(r), j ≥ 2, be the remainder in j-th order

Taylor expansion of the function f(r) = Φ(v + rdv) at r = 0:

Rj(v,dv)(r) = f(r)−
j∑
i=0

f (i)(0)

i!
ri

(the right hand side is +∞, if f is undefined at r). Prove that

Rj(v,dv)(r) ≤ ζ
2(v, dv)ρj

(
|r|

ζ(v, dv)

)
, |r| < ζ(v, dv) (8.36)

(the quantity ζ(v, dv) is given by (8.30), see also (8.33)).

Exercise 8.5.5 ∗ Let (v, dv) be an arrow and (v∗, dv∗) be the conjugate co-arrow. Let Rj(v,dv)(r), j ≥ 2,

be the reminder in j-th order Taylor expansion of the function ψ(r) = Φ(v + rdv) + Φ∗(v∗ + rdv∗) at
r = 0:

Rj(v,dv)(r) = ψ(r)−
j∑
i=0

ψ(i)(0)

i!
ri

(the right hand side is +∞, if ψ is undefined at r). Prove that

Rj(v,dv)(r) ≤ 2ζ2(v, dv)ρ

(
|r|

ζ(v, dv)

)
, |r| < ζ(v, dv) (8.37)

(the quantity ζ(v, dv) is given by (8.30), see also (8.33)).
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Now let us come back to our goal - investigating the forecast power of the long step predictor-corrector
scheme for the case of Semidefinite Programming. Thus, let us fix the pair (t, x) belonging to the path
(so that t > 0 and x = x∗(t) = argminy∈G[tcTx+ F (x)]). We use the notation as follows:

• I is the unit k × k matrix;

• u = πx+ p;

• dx ∈ Rn is the | · |F ′′(x)-unit direction parallel to the line l, and

du = πdx

is the direction of the image L of the line l in the space Sk;

• s ≡ Φ′(u) = −u−1; ds ≡ Φ′′(u)du = u−1duu−1.

Let us first realize what the quantity ∆(x) is.

Exercise 8.5.6 + Prove that (u, du) is an arrow, (s, ds) is the conjugate co-arrow and that

∆ = ζ(u, du).

Now we are ready to answer what is the prediction power of the long step predictor-corrector scheme.

Exercise 8.5.7 + Consider the Long-Step Predictor-Corrector Updating scheme with linesearch (which
chooses, as the stepsize, the largest value of dt which passes the Acceptability Test) as applied to Semidef-
inite Programming. Prove that the prediction power of the scheme is at least

Ω∗(x) = O(1)∆1/2(x),

with O(1) depending on the treshold κ only1.

Thus, the long-step scheme indeed has a ”nontrivial” prediction power.
An interesting question is to bound from above the prediction power of an arbitrary predictor-corrector

path-following scheme of the aforementioned type; recall that the main restrictions on the scheme were
that

• in order to form the forecast xf , we move along the tangent line l to the path [in principle we could
use higher-order polynomial approximations on it; here we ignore this possibility]

• the residual Ft+(xf )−miny Ft+(x) should be ≤ O(1).

It can be proved that in the case of Linear (and, consequently, Semidefinite) Programming the predic-
tion power of any predictor-corrector scheme subject to the above restrictions cannot be better than
O(1)∆2/3(x) (which is slightly better than the prediction power O(1)∆1/2(x) of our method). I do not
know what is the origin of the gap - drawbacks of the long-step method in question or too optimistic
upper bound, and you are welcome to investigate the problem.

1recall that for the sake of simplicity the pair (t, x) to be updated was assumed to be exactly at the path; if it is κ-close
to the path, then similar result holds true, with O(1) depending on both κ and κ



Chapter 9

How to construct self-concordant
barriers

To the moment we are acquainted with four interior point methods; the ”interior point toolbox” contains
more of them, but we are enforced to stop somewhere, and I think it is a right time to stop. Let us think
how could we exploit our knowledge in order to solve a convex program by one of our methods. Our
actions are clear:

(a) we should reformulate our problem in the standard form

minimize cTx s.t. x ∈ G (9.1)

of a problem of minimizing a linear objective over a closed convex domain (or in the conic form - as a
problem of minimizing a linear objective over the intersection of a convex cone and an affine plane; for
the sake of definiteness, let us speak about the standard form).

In principle (a) does not cause any difficulty - we know that both standard and conic problems are
universal forms of convex programs.

(b) we should equip the domain/cone given by step (a) by a ”computable” self-concordant barrier.

Sometimes we need something more - e.g., to apply the potential reduction methods, we are interested
in logarithmically homogeneous barriers, possibly, along with their Legendre transformations, and to use
the long-step path-following scheme, we need a barrier satisfying the Structural assumption from Lecture
8.

Now, our current knowledge on the crucial issue of constructing self-concordant barriers is rather
restricted. We know exactly 3 ”basic” self-concordant barriers:

• (I) the 1-self-concordant barrier − lnx for the nonnegative axis (Example 3.1.2, Lecture 3);

• (II) the m-self-concordant barrier − ln Det x for the cone Sm+ of positive semidefinite m×m matrices
(Exercise 3.3.3);

• (III) the 2-self-concordant barrier − ln(t2 − xTx) for the second-order cone {(t, x) ∈ R×Rk | t ≥
|x|2} (Example 5.3.2, Lecture 5).

Note that the latter two examples were not justified in the lectures; and this is not that easy to prove
that (III) indeed is a self-concordant barrier for the second-order cone.

Given the aforementioned basic barriers, we can produce many other self-concordant barriers by apply-
ing the combination rules, namely, by taking sums of these barriers, their direct sums and superpositions
with affine mappings (Proposition 3.1.1, Lecture 3). These rules, although very simple, are surprisingly
powerful; what should be mentioned first, is that the rules allow to treat all constraints defining the fea-
sible set G seperately. We mean the following. Normally the feasible set G is defined by a finite number
m of constraints; each of them defines its own feasible set Gi, so that the resulting feasible set G is the
intersection of the Gi:

G = ∩mi=1Gi.

123
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According to Proposition 3.1.1.(ii), in order to find a self-concordant barrier for G, it suffices to find similar
barriers for all Gi and then to take the sum of these ”partial” barriers. Thus, we have in our disposal
the Decomposition rule which makes the problem of step (b) ”separable with respect to constraints”.

The next basic tool is the Substitution rule given by Proposition 3.1.1.(i):

In order to get a ϑ-self-concordant barrier F for a given convex domain G, it suffices to represent
the domain as the inverse image, under certain affine mapping A, of another domain, G+, with known
ϑ-self-concordant barrier F+:

G = A−1(G+) ≡ {x | A(x) ∈ G+}

(the image of A should intersect the interior of G+); given such representation, you can take as F the
superposition

F (x) = F+(A(x))

of F+ and the mapping A.

The Decomposition and the Substitution rules as applied to the particular self-concordant barriers
(I) - (III) allow to obtain barriers required by several important generic Convex Programming problems,
e.g., they immediately imply self-concordance of the standard logarithmic barrier

F (x) = −
m∑
i=1

ln(bi − aTi x)

for the polyhedral set

G = {x | aTi x ≤ bi, i = 1, ...,m};

this latter fact covers all needs of Linear Programming. Thus, we cannot say that we are completely
unequipped; at the same time, our equipment is not too rich. Consider, for example, the problem of the
best | · |p-approximation:

(Lp): given sample uj ∈ Rn, j = 1, ..., N , of ”regressors” along with the responses vj ∈ R, find the
linear model

v = xTu

which optimally fits the observations in the | · |p-norm, i.e., minimizes the quantity

f(x) =

N∑
j=1

|vj − xTuj |p

(in fact | · |p-criterion is f1/p(x), but it is, of course, the same what to minimize - f or f1/p).

f(·) clearly is a convex function, so that our approximation problem is a convex program. In order to
solve it by an interior point method, we can write the problem down in the standard form, which is
immediate:

minimize t s.t. (t, x) ∈ G = {(t, x) | f(x) ≤ t};

now we need a self-concordant barrier for G, and where to take it?
At the beginning of the ”interior point science” for nonlinear convex problems we were enforced

to invent an ”ad hoc” self-concordant barrier for each new domain we met and then were to prove
that the invented barrier actually is self-concordant, which in many cases required a lot of unpleasant
computations. Recently it became clear that there is a very powerful technique for constructing self-
concordant barriers, which allows to obtain all previously known barriers, same as a number of new ones,
without any computations ”from nothing” - more exactly, from the fact that the function − lnx is 1-self-
concordant barrier for the nonnegative half-axis. This technique is based on extending the Substitution
rule by replacing affine mappings A by a wider family of certain nonlinear mappings. The essence of the
matter is, of course, what are appropriate for our goals nonlinear mappings A. It is clear in advance
that these cannot be arbitrary mappings, even smooth ones - we at least should provide convexity of
G = A−1(G+).
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9.1 Appropriate mappings and Main Theorem

Let us fix a closed convex domain G+ ⊂ RN . An important role in what follows is played by the recessive
cone R(G+) of the domain defined as

R(G+) = {h ∈ RN | u+ th ∈ G+ ∀t ≥ 0 ∀u ∈ G+}.

It is immediately seen that R(G+) is a closed convex cone in RN .
Now we are able to define the family of mappings A appropriate for us.

Definition 9.1.1 Let G+ ⊂ RN be closed convex domain, and let K = R(G+) be the recessive cone of
G+. A mapping

A(x) : int G− → RN

defined and C3 smooth on the interior of a closed convex domain G− ⊂ Rn is called β-appropriate for
G+ (here β ≥ 0) if

(i) A is concave with respect to K, i.e.,

D2A(x)[h, h] ≤K 0 ∀x ∈ int G− ∀h ∈ Rn

(from now on we write a ≤K b, if b− a ∈ K);
(ii) A is compatible with G− in the sense that

D3A(x)[h, h, h] ≤K −3βD2A(x)[h, h]

whenever x ∈ int G− and x± h ∈ G−.

For example, an affine mapping A : Rn → RN , restricted on any closed convex domain G− ⊂ Rn, cleraly
is 0-appropriate for any G+ ⊂ RN .

The definition of compatibility looks strange; its justification is that it works. Namely, there is the
following central result (it will be proved in Section 9.4):

Theorem 9.1.1 Let

• G+ ⊂ RN be a closed convex domain;

• F+ be a ϑ+-self-concordant barrier for G+;

• A : int G− → RN be a mapping β-appropriate for G+;

• F− be a ϑ−-self-concordant barrier for G−.

Assume that the set
G0 = {x ∈ int G− | A(x) ∈ int G+}

is nonempty. Then G0 is the interior of a closed convex domain

G ≡ clG0,

and the function
F (x) = F+(A(x)) + max[1, β2]F−(x)

is a ϑ-self-concordant barrier for G, with

ϑ = ϑ+ + max[1, β2]ϑ−.

The above Theorem resembles the Substitution rule: we see that an affine mapping A in the latter
rule can be replaced by an arbitrary nonlinear mapping (which should, anyhow, be appropriate for G+),
and the substitution F+(·) 7→ F+(A(·)) should be accompanied by adding to the result a self-concordant
barrier for the domain of A. Let us call this new rule ”Substitution rule (N)” (nonlinear); to distinguish
between this rule and the initial one, let us call the latter ”Substitution rule (L)” (linear). In fact
Substitution rule (L) is a very particular case of Substitution rule (N); indeed, an affine mapping A, as
we know, is appropriate for any domain G+, and since domain of A is the whole Rn, one can set F− ≡ 0
(this is 0-self-concordant barrier for Rn), thus coming to the Substitution rule (L).
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9.2 Barriers for epigraphs of functions of one variable

As an immediate consequence of the Substitution rule (N), we get a number of self-concordant barriers
for the epigraphs of functions on the axis. These barriers are given by the following construction:

Proposition 9.2.1 Let f(t) be a 3 times continuously differentiable real-valued concave function on the
ray {t > 0} such that

|f ′′′(t)| ≤ 3βt−1|f ′′(t)|, t > 0.

Then the function
F (x, t) = − ln(f(t)− x)−max[1, β2] ln t

is (1 + max[1, β2])-self-concordant barrier for the 2-dimensional convex domain

Gf = cl{(x, t) ∈ R2 | t > 0, x ≤ f(t)}.

Proposition 9.2.2 Let f(x) be a 3 times continuously differentiable real-valued convex function on the
ray {x > 0} such that

|f ′′′(x)| ≤ 3βx−1f ′′(x), x > 0.

Then the function
F (t, x) = − ln(t− f(x))−max[1, β2] lnx

is (1 + max[1, β2])-self-concordant barrier for the 2-dimensional convex domain

Gf = cl{(t, x) ∈ R2 | x > 0, t ≥ f(x)}.

To prove Proposition 9.2.1, let us set

• G+ = R+ [K = R+],

• F+(u) = − lnu [ϑ+ = 1],

• G− = {(x, t) | t ≥ 0},

• F−(x, t) = − ln t [ϑ− = 1],

• A(x, t) = f(t)− x,

which results in
G = cl{(x, t) | t > 0, x ≤ f(t)}.

The assumptions on f say exactly that A is β-appropriate for G+, so that the conclusion in Proposition
9.2.1 is immediately given by Theorem 9.1.1.

To get Proposition 9.2.2, it suffices to apply Proposition 9.2.1 to the image of the set Gf under the
mapping (x, t) 7→ (t,−x).

Example 9.2.1 [epigraph of the increasing power function] Whenever p ≥ 1, the function

− ln t− ln(t1/p − x)

is 2-self-concordant barrier for the epigraph

{(x, t) ∈ R2 | t ≥ (x+)p ≡ [max{0, x}]p}

of the power function (x+)p, and the function

−2 ln t− ln(t2/p − x2)

is 4-self-concordant barrier for the epigraph

{(x, t) ∈ R2 | t ≥ |x|p}

of the function |x|p.
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The result on the epigraph of (x+)p is given by Proposition 9.2.1 with f(t) = t1/p, β = 2p−1
3p ; to get the

result on the epigraph of |x|p, take the sum of the already known to us barriers for the epigraphs E+,
E− of the functions (x+)p and ([−x]+)p, thus obtaining the barrier for E− ∩ E+, which is exactly the
epigraph of |x|p.
Example 9.2.2 [epigraph of decreasing power function] The function{

− lnx− ln(t− x−p), 0 < p ≤ 1
− ln t− ln(x− t−1/p), p > 1

is 2-self-concordant barrier for the epigraph

cl{(x, t) ∈ R2 | t ≥ x−p, x > 0}

of the function x−p, p > 0.

The case of 0 < p ≤ 1 is given by Proposition 9.2.2 applied with f(x) = x−p, β = 2+p
3 . The case of p > 1

can be reduced to the former one by swapping x and t.

Example 9.2.3 [epigraph of the exponent] The function

− ln t− ln(ln t− x)

is 2-self-concordant barrier for the epigraph

{(x, t) ∈ R2 | t ≥ exp{x}}

of the exponent.

Proposition 9.2.1 applied with f(t) = ln t, β = 2
3

Example 9.2.4 [epigraph of the entropy function] The function

− lnx− ln(t− x lnx)

is 2-self-concordant barrier for the epigraph

cl{(x, t) ∈ R2 | t ≥ x lnx, x > 0}

of the entropy function x lnx.

Proposition 9.2.2 applied to f(x) = x lnx, β = 1
3

The indicated examples allow to handle those of the constraints defining the feasible set G which are
separable, i.e., are of the type ∑

i

fi(a
T
i x+ bi),

fi being a convex function on the axis. To make this point clear, let us look at the typical example -
the | · |p-approximation problem (Lp). Introducing N additional variables ti, we can rewrite this problem
equivalently as

minimize

N∑
i=1

ti s.t. ti ≥ |vi − uTi x|p, i = 1, ..., N,

so that now there are N ”simple” constraints rather than a single, but ”complicated” one. Now, the
feasible set of i-th of the ”simple” constraints is the inverse image of the epigraph of the increasing power
function under an affine mapping, so that the feasible domain G of the reformulated problem admits the
following explicit self-concordant barrier (Example 9.2.1 plus the usual Decomposition and Substitution
rules):

F (t, x) = −
N∑
i=1

[ln(t
2/p
i − (vi − uTi x)2) + 2 ln ti]

with the parameter 4N .
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9.3 Fractional-Quadratic Substitution

Now let me indicate an actually marvellous nonlinear substitution: the fractional-quadratic one. The
simplest form of this substitution is

A(τ, ξ, η) = τ − ξ2

η

(ξ, η, τ are real variables and η > 0); the general case is given by ”vectorization” of the numerator and
the denominator and looks as follows:

Given are

• [numerator] A symmetric bilinear mapping

Q[ξ′, ξ′′] : Rn ×Rn → RN

so that the coordinates Qi[ξ
′, ξ′′] of the image are of the form

Qi[ξ
′, ξ′′] = (ξ′)TQiξ

′′

with symmetric n× n matrices Qi;

• [denominator] A symmetric n× n matrix A(η) affinely depending on certain vector η ∈ Rq.

The indicated data define the general fractional-quadratic mapping

A(τ, ξ, η) = τ −Q[A−1(η)ξ, ξ] : Rq
η ×Rn

ξ ×RN
τ → RN ;

it turns out that this mapping is, under reasonable restrictions, appropriate for domains in RN . To
formulate the restrictions, note first that A is not necessarily everywhere defined, since the matrix A(η)
may, for some η, be singular. Therefore it is reasonable to restrict η to vary in certain closed convex
domain Y ∈ Rq

η; thus, from now on the mapping A is considered along with the domain Y where η varies.

The conditions which ensure that A is compatible with a given closed convex domain G+ ⊂ RN are as
follows:

(A): A(η) is positive definite for η ∈ int Y ;

(B): the bilinear form Q[A−1(η)ξ′, ξ′′] of ξ′, ξ′′ is symmetric in ξ′, ξ′′ for any η ∈ int Y ;

(C): the quadratic form Q[ξ, ξ] takes its values in the recessive cone K of the domain G+.

Proposition 9.3.1 Under assumptions (A) - (C) the mappings

A(τ, ξ, η) = τ −Q[A−1(η)ξ, ξ] : G− ≡ Y ×Rn
ξ ×RN

τ → RN

and
B(ξ, η) = −Q[A−1(η)ξ, ξ] : G− ≡ Y ×Rn

ξ → RN

are 1-appropriate for G+.
In particular, if F+ is ϑ+-self-concordant barrier for G+ and FY is a ϑY -self-concordant barrier for

Y , then
F (τ, ξ, η) = F+(τ −Q[A−1(η)ξ, ξ]) + FY (η)

is (ϑ+ + ϑY )-self-concordant barrier for the closed convex domain

G = cl{(τξ, η) | τ −Q[A−1(η)ξ, ξ] ∈ int G+, η ∈ int Y }.

The proof of the proposition is given in Section 9.5. What we are about to do now is to present several
examples.

Example 9.3.1 [epigraph of convex quadratic form] Let f(x) = xTPTPx+bTx+c be a convex quadratic
form on Rn; then the function

F (t, x) = − ln(t− f(x))

is 1-self-concordant barrier for the epigraph

{(x, t) ∈ Rn ×R | t ≥ f(x)}.
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Let the ”fractional-quadratic” data be defined as follows:

• G+ = R+ [N = 1];

• Q[ξ′, ξ′′] = (ξ′)T ξ′′, ξ′, ξ′′ ∈ Rn;

• Rq
η = R = Y,A(η) ≡ I

(from now on I stands for the identity operator).

Conditions (A) - (C) clearly are satisfied; Proposition 9.3.1 applied with

F+(τ) = − ln τ, FY (·) ≡ 0

says that the function
F (τ, ξ, η) = − ln(τ − ξT ξ)

is 1-self-concordant barrier for the closed convex domain

G = {(τ, ξ, η) | τ ≥ ξT ξ}.

The epigraph of the quadratic form f clearly is the inverse image of G under the affine mapping

(t, x) 7→

 τ = t− bTx− c
ξ = Px
η = 0

 ,

and it remains to apply the Substitution rule (L).
The result stated in the latter example is not difficult to establish directly, which hardly can be said

about the following

Example 9.3.2 [barrier for the second-order cone] The function

F (t, x) = − ln(t2 − xTx)

is 2-logarithmically homogeneous self-concordant barrier for the second order cone

K2
n = {(t, x) ∈ R×Rn | t ≥

√
xTx}.

Let the ”fractional-quadratic” data be defined as follows:

• G+ = R+ [N = 1];

• Q[ξ′, ξ′′] = (ξ′)T ξ′′, ξ′, ξ′′ ∈ Rn;

• Y = R+ ⊂ R ≡ Rq
η, A(η) ≡ ηI.

Conditions (A) - (C) clearly are satisfied; Proposition 9.3.1 applied with

F+(τ) = − ln τ, FY (η) = − ln η

says that the function

F (τ, ξ, η) = − ln(τ − η−1ξT ξ)− ln η ≡ − ln(τη − ξT ξ)

is 2-self-concordant barrier for the closed convex domain

G = cl{(τ, ξ, η) | τ > η−1ξT ξ, η > 0}.

The second order cone K2
n clearly is the inverse image of G under the affine mapping

(t, x) 7→

 τ = t
ξ = x
η = t

 ,

and to prove that F (t, x) is 2-self-concordant barrier for the second order cone, it remains to apply the
Substitution rule (L). Logarithmic homogeneity of F (t, x) is evident.

The next example originally required somewhere 15-page ”brut force” justification which was by far
more complicated than the justification of the general results presented in this lecture.
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Example 9.3.3 [epigraph of the spectral norm of a matrix] The function

F (t, x) = − ln Det (tI − t−1xTx)− ln t

is (m+ 1)-logarithmically homogeneous self-concordant barrier for the epigraph

{(t, x) | t ∈ R, x is an m× k matrix of the spectral norm ≤ t}.

of the spectral norm of k ×m matrix x 1.

Let the ”fractional-quadratic” data be defined as follows:

• G+ = Sm+ is the cone of positive semidefinite m×m matrices [N = m(m+ 1)/2];

• Q[ξ′, ξ′′] = 1
2 [(ξ′)T ξ′′ + (ξ′′)T ξ′], ξ′, ξ′′ are k ×m matrices;

• Y = R+ ⊂ R ≡ Rq
η, A(η) ≡ ηI.

Conditions (A) - (C) clearly are satisfied; Proposition 9.3.1 applied with

F+(τ) = − ln Det τ, FY (η) = − ln η

says that the function

F (τ, ξ, η) = − ln(τ − η−1ξT ξ)− ln η

is (m+ 1)-self-concordant barrier for the closed convex domain

G = cl{(τ, ξ, η) | τ − η−1ξT ξ ∈ int Sm+ , η > 0}.

The spectral norm of a k ×m matrix x is < t if and only if the maximum eigenvalue of the matrix xTx
is < t2, or, which is the same, if the m×m matrix tI − t−1xTx is positive definite; thus, the epigraph of
the spectral norm of x is the inverse image of G under the affine mapping

(t, x) 7→

 τ = tI
ξ = x
η = t

 ,

and to prove that F (t, x) is (m + 1)-self-concordant barrier for the epigraph of the spectral norm, it
suffices to apply the Substitution rule (L). The logarithmic homogeneity of F (t, x) is evident.

The indicated examples of self-concordant barriers are sufficient for applications which will be our
goal in the remaining lectures; at the same time, these examples explain how to use the general results
of the lecture to obtain barriers for other convex domains.

9.4 Proof of Theorem 10.1

.
A. Let us prove that G0 is an open convex domain in Rn. Indeed, since A is continuous on int G−,

G0 clearly is open; thus, all we need is to demonstrate that G0 is convex. Let x′, x′′ ∈ G0, so that x′, x′′

are in int G− and y′ = A(x′), y′′ = A(x′′) are in int G+, and let α ∈ [0, 1]. We should prove that
x ≡ αx′ + (1− α)x′′ ∈ G0, i.e., that x ∈ int G− (which is evident) and that y = A(x) ∈ int G. To prove
the latter inclusion, it suffices to demonstrate that

y ≥K αy′ + (1− α)y′′; (9.2)

1the spectral norm of a k×m matrix x is the maximum eigenvalue of the matrix
√
xT x or, which is the same, the norm

max{|xξ|2 | ξ ∈ Rm, |ξ|2 ≤ 1}

of the linear operator from Rm into Rk given by x
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indeed, the right hand side in this inequality belongs to int G+ together with y′, y′′; since K is the
recessive cone of G+, the translation of any vector from int G+ by a vector form K also belongs to
int G+, so that (9.2) - which says that y is a translation of the right hand side by a direction from K
would imply that y ∈ int G+.

To prove (9.2) is the same as to demonstrate that

sT y ≥ sT (αy′ + (1− α)y′′) (9.3)

for any s ∈ K∗ ≡ {s | sTu ≥ 0 ∀u ∈ K} (why?) But (9.3) is immediate: the real-valued function

f(z) = sTA(z)

is concave on int G−, since D2A(z)[h, h] ≤K 0 (Definition 9.1.1.(i)) and, consequently,

D2f(z)[h, h] = sTD2A(z)[h, h] ≤ 0

(recall that s ∈ K∗); since f(z) is concave, we have

sT y = f(αx′ + (1− α)x′′) ≥ αf(x′) + (1− α)f(x′′) = αsT y′ + (1− α)sT y′′,

as required in (9.3).
B. Now let us prove self-concordance of F . To this end let us fix x ∈ G0 and h ∈ Rn and verify that

|D3F (x)[h, h, h]| ≤ 2{D2F (x)[h, h]}3/2, (9.4)

|DF (x)[h]| ≤ ϑ1/2{D2F (x)[h, h]}1/2. (9.5)

B.1. Let us start with writing down the derivatives of F . Under notation

a = A(x), a′ = DA(x)[h], a′′ = D2A(x)[h, h], a′′′ = D3A(x)[h, h, h],

we have
DF (x)[h] = DF+(a)[a′] + γ2DF−(x)[h], γ = max[1, β], (9.6)

D2F (x)[h, h] = D2F+(a)[a′, a′] +DF+(a)[a′′] + γ2D2F−(x)[h, h], (9.7)

D3F (x)[h, h, h] = D3F+(a)[a′, a′, a′] + 3DF+(a)[a′, a′′] +DF+(a)[a′′′] + γ2D3F−(x)[h, h, h]. (9.8)

B.2. Now let us summarize our knowledge on the quantities involved into (9.6) - (9.8).
Since F+ is ϑ+-self-concordant barrier, we have

|DF+(a)[a′]| ≤ p
√
ϑ+, p ≡

√
D2F+(a)[a′, a′], (9.9)

|D3F+(a)[a′, a′, a′]| ≤ 2p3. (9.10)

Similarly, since F− is ϑ−-self-concordant barrier, we have

|DF−(x)[h]| ≤ q
√
ϑ−, q ≡

√
D2F−(x)[h, h], (9.11)

|D3F−(x)[h, h, h]| ≤ 2q3. (9.12)

Besides this, from Corollary 3.2.1 (Lecture 3) we know that DF+(a)[·] is nonpositive on the recessive
directions of G+:

DF+(a)[g] ≤ 0, g ∈ K, (9.13)

and even that
{D2F+(a)[g, g]}1/2 ≤ −DF+(a)[g], g ∈ K. (9.14)

B.3. Let us prove that
3βqa′′ ≤K a′′′ ≤K −3βqa′′. (9.15)

Indeed, let a real t be such that |t|q ≤ 1, and let ht = th; then D2F−(x)[ht, ht] = t2q2 ≤ 1 and,
consequently, x± ht ∈ G− (I., Lecture 2). Therefore Definition 9.1.1.(ii) implies that

t3a′′′ ≡ D3A(x)[ht, ht, ht] ≤K −3βD2A(x)[ht, ht] ≡ −3βt2a′′;
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since the inequality t3a′′′ ≤K −3βt2a′′ is valid for all t with |t|q ≤ 1, (9.15) follows.
Note that from (9.13) and (9.15) it follows that the quantity

r ≡
√
DF+(a)[a′′] (9.16)

is well-defined and is such that
|DF+(a)[a′′′]| ≤ 3βqr2. (9.17)

Besides this, by Cauchy’s inequality

|D2F+(a)[a′, a′′]| ≤
√
D2F+(a)[a′, a′]

√
D2F+(a)[a′′, a′′] ≤ pr2 (9.18)

(the concluding inequality follows from (9.14).
B.4. Subsituting (9.9), (9.11) into (9.6), we come to

|DF (x)[h]| ≤ p
√
ϑ+ + qγ2

√
ϑ−; (9.19)

substituting (9.16) into (9.7), we get

D2F (x)[h, h] = p2 + r2 + γ2q2, (9.20)

while substituting (9.10), (9.12), (9.17), (9.18) into (9.8), we obtain

|D2F (x)[h, h, h]| ≤ 2[p3 +
3

2
pr2 +

3

2
βqr2] + 2γ2q3. (9.21)

By passing from q to s = γq, we come to inequalitites

|DF (x)[h]| ≤
√
ϑ+p+

√
ϑ−γs, D

2F (x)[h, h] = p2 + r2 + s2,

and

|D3F (x)[h, h, h]| ≤ 2[p3 +
3

2
pr2 +

3

2

β

γ
sr2] + 2γ−1s3 ≤

[since γ ≥ β and γ ≥ 1]

≤ 2[p3 + s3 +
3

2
r2(p+ s)] ≤

[straightforward computation]
≤ 2[p2 + r2 + s2]3/2.

Thus,

|DF (x)[h]| ≤
√
ϑ+ + γ2ϑ−{D2F (x)[h, h]}1/2, |D3F (x)[h, h, h]| ≤ 2{D2F (x)}1/2. (9.22)

C. (9.22) says that F satisfies the differential inequalities required by the definition of a γ2-self-
concordant barrier for G = clG0. To complete the proof, we should demonstrate that F is a barrier for
G, i.e., that F (xi)→∞ whenever xi ∈ G0 are such that x ≡ limi xi ∈ ∂G. To prove the latter statement,
set

yi = A(xi)

and consider two possible cases:
C.1: x ∈ int G−;
C.2: x ∈ ∂G−.
In the easy case of C.1 there exists y = limi yi = A(x), since A is continuous on the interior of G− and,

consequently, in a neighbourhood of x. Since x 6∈ G0, y 6∈ int G+, so that the sequence yi comprised of the
interior points of G+ converges to a boundary point of g+ and therefore F+(yi)→∞. Since xi converge
to an interior point of G−, the sequence F−(xi) is bounded, and the sequence F (xi) = F+(yi)+γ2F−(xi)
diverges to +∞, as required.

Now consider the more difficult case when x ∈ ∂G−. Here we know that F−(xi) → ∞ (since xi
converge to a boundary point for the domain G− for which F− is a self-concordant barrier); in order to
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prove that F (xi) ≡ F+(yi) + γ2F−(xi) → ∞ it suffices, therefore, to prove that the sequence F+(yi) is
below bounded. From concavity of A we have (compare with A)

yi = A(xi) ≤K A(x0) +DA(x0)[xi − x0] ≡ zi,

whence, by Corollary 3.2.1, Lecture 3,
F+(yi) ≥ F+(zi).

Now below boundedness of F+(yi) is an immediate conseqeunce of the fact that the sequence F+(zi) is
below bounded (indeed, {xi} is a bounded sequence, and consequently its image {zi} under affine mapping
also is bounded; and convex function F+ is below bounded on any bounded subset of its domain).

9.5 Proof of Proposition 10.1

.
A. Looking at the definition of an appropriate mapping and taking into account that B is the restriction

of A onto a cross-section of the domain of A and an affine plane t = 0, we immediately conclude that it
suffices to prove that A is 1-appropriate for G+. Of course, A is 3 times continuously differentiable on
the interior of G−.

B. The coordinates of the vector Q[A−1(η)ξ′, ξ′′] are bilinear forms (ξ′)TA−1(η)Qiξ
′′ of ξ′, ξ′′; by

(B), they are symmetric in ξ′, ξ′′, so that the matrices A−1(η)Qi are symmetric. Since both A−1(η) and
Qi are symmetric, their product can be symmetric if and only if the matrices commutate. Since A−1(η)
commutate with Qi, η ∈ int Y , and Y is open, A(η) commutate with Qi for all η. Thus, we come to the
following crucial conclusion:

for every i ≤ N , the matrix A(η) commutates with Qi for all η.

C. Let us compute the derivatives of A at a point X = (τ, ξ, η) ∈ int G− in a direction Ξ = (t, x, y).
In what follows subscript i marks i-th coordinate of a vector from RN . Note that from B. it follows that
Qi commutates with α(·) ≡ A−1(·) and therefore with all derivatives of α(·); with this observation, we
immediately obtain

Ai(X) = τi − ξTα(η)Qiξ;

DAi(X)[Ξ] = ti − 2xTα(η)Qiξ − ξT [Dα(η)[y]]Qiξ;

D2Ai(X)[Ξ,Ξ] = −2xTα(η)Qix− 4xT [Dα(η)[y]]Qiξ − ξT [D2α(η)[y, y]]Qiξ;

D3Ai(X)[Ξ,Ξ,Ξ] = −6xT [Dα(η)[y]]Qix− 6xT [D2α(η)[y]]Qiξ − ξT [D3α(η)[y, y, y]]Qiξ.

Now, denoting
α = α(η), a′ = DA(η)[y], (9.23)

we immediately get
Dα(η)[y] = −αa′α, D2α(η)[y, y] = 2αa′αa′α,

D3α(η)[y, y, y] = −6αa′αa′αa′α.

Substituting the expressions for the derivatives of α(·) in the expressions for the dreivatives of Ai, we
come to

D2Ai(X)[Ξ,Ξ] = −2ζTαQiζ, ζ = x− a′αξ, (9.24)

and
D3Ai(X)[Ξ,Ξ,Ξ] = 6ζTαa′αQiζ (9.25)

(the simplest way to realize why ”we come to” is to substitute in the latter two right hand sides the
expression for ζ and to open the parentheses, taking into account that α and a′ are symmetric and
commutate with Qi).

D. Now we are basically done. First, α commutates with Qi and is positive definite in view of
condition (A) (since α = A−1(η) and η ∈ int Y ). It follows that α1/2 also commutates with Qi, so that
(9.24) can be rewritten as

D2Ai(X)[Ξ] = −2[
√
αζ]TQi[

√
αζ],
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which means that
D2A(X)[Ξ,Ξ] = −2Q[ω, ω]

for certain vector ω, so that
D2A(X)[Ξ,Ξ] ≤K 0

according to (C). Thus, A is concave with respect to the recessive cone K of the domain G+, as is required
by item (i) of Definition 9.1.1.

It requires to verify item (ii) of the Definition for the case of β = 1, , i.e., to prove that

D3A(X)[Ξ,Ξ,Ξ] + 3D2A(X)[Ξ,Ξ] ≤K 0

whenever Ξ is such that X ± Ξ ∈ G−. This latter inclusion means that η ± y ∈ Y , so that A(η ± y) is
positive semidefinite; since A(·) is affine, we conclude that

B = A(η)−DA(η)[y] ≡ α−1 − a′ ≥ 0

(as always, ≥ 0 for symmetric matrices stands for ”positive semidefinite”), whence also

γ = α[α−1 − a′]α ≥ 0.

From (9.24), (9.25) it follows that

D3Ai(X)[Ξ,Ξ,Ξ] + 3D2Ai(X)[Ξ,Ξ] = −6ζT γQIζ,

and since γ is positive semidefinite and, due to its origin, commutates with Qi (since α and a′ do), we
have ζT γQiζ = ζT γ1/2Qiγ

1/2ζ, so that

D3A(X)[Ξ,Ξ,Ξ] + 3D2A(X)[Ξ,Ξ] = −6Q[γ1/2ζ, γ1/2ζ] ≤K 0

(the concluding inequality follows from (C)).
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9.6 Exercises on constructing self-concordant barriers

The goal of the below exercises is to derive some new self-concordant barriers.

9.6.1 Epigraphs of functions of Euclidean norm

Exercise 9.6.1 #+ Let G+ be a closed convex domain in R2 which contains a point with both coordinates
being positive and is ”antimonotone in the x-direction”, i.e., such that (u, s) ∈ G+ ⇒ (v, s) ∈ G+

whenever v ≤ u, and let F+ be a ϑ+-self-concordant barrier for G. Prove that
1) The function

F 1(t, x) = F+(xTx, t)

is ϑ+-self-concordant barrier for the closed convex domain

G1 = {(x, t) ∈ Rn ×R | (xTx, t) ∈ G}.

Derive from this observation that if p ≤ 2, then the function

F (t, x) = − ln(t2/p − xTx)− ln t

is 2-self-concordant barrier for the epigraph of the function |x|p2 on Rn.
2) The function

F 2(t, x) = F+(
xTx

t
, t)− ln t

is (ϑ+ + 1)-self-concordant barrier for the closed convex domain

G2 = cl{(x, s) ∈ Rn ×R | (
xTx

t
, t) ∈ G, t > 0}.

Derive from this observation that if 1 ≤ p ≤ 2, then the function

F (t, x) = − ln(t2/p − xTx)− ln t

is 3-self-concordant barrier for the epigraph of the function |x|p2 on Rn.

9.6.2 How to guess that − lnDet x is a self-concordant barrier

Now our knowledge on concrete self-concordant barriers is as follows. We know two ”building blocks” - the
barriers − ln t for the nonnegative half-axis and − ln Det x for the cone of positive semidefinite symmetric
matrices; the fact that these barriers are self-concordant was justified by straightforward computation,
completely trivial for the former and not that difficult for the latter barrier. All other self-concordant
barriers were given by these two via the Substitution rule (N). It turns out that the barrier − ln Det x
can be not only guessed, but also derived from the barrier − ln t via the same Substitution rule (N), so
that in fact only one barrier should be guessed.

Exercise 9.6.2 #

1) Let

A =

(
τ ξT

ξ η

)
be a symmetric matrix (τ is p × p, η is q × q). Prove that A is positive definite if and only if both the
matrices η and τ − ξT η−1ξ are positive definite; in other words, the cone Sp+q+ of positive semidefinite
symmetric (p + q) × (p + q) matrices is the inverse image G, in terms of Substitution rule (N), of the
cone G+ = Sp under the fractional-quadratic mapping

A : (τ, ξ, η) 7→ τ − ξT η−1ξ

with the domain of the mapping {(τ, ξ, η) | η ∈ Y ≡ Sq+}.
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2) Applying Proposition 9.3.1, derive from 1), that if Fp and Fq are self-concordant barriers for Sp+,
Sq+ with parameters ϑp, ϑq, respectively, then the function

F (A) ≡ F (τ, ξ, η) = Fp(τ − ξT η−1ξ) + Fq(η)

is (ϑp + ϑq)-self-concordant barrier for Sp+q+ .
3) Use the observation that − ln η is 1-self-concordant barrier for S1

+ ≡ R+ to prove by induction on
p that Fp(x) = − ln Det x is p-self-concordant barrier for Sp+.

9.6.3 ”Fractional-quadratic” cone and Truss Topology Design

Consider the following hybride of the second-order cone and the cone S·+: let ξ1, ..., ξq be variable matrices
of the sizes n1 ×m,...,nq ×m, τ be m×m variable matrix and yj(η), j = 1, ..., q, be symmetric nj × nj
matrices which are linear homogeneous functions of η ∈ Rk. Let Y be certain cone in Rk (closed, convex
and with a nonempty interior) such that yj(η) are positive definite when η ∈ int Y .

Consider the set

K = cl{(τ ; η; ξ1, ..., ξq) | τ ≥ ξT1 y−1
1 (η)ξ1 + ...+ ξTq y

−1
q (η)ξq, η ∈ int Y }.

Let also FY (η) be a ϑY -self-concordant barrier for Y .

Exercise 9.6.3 + Prove that K is a closed convex cone with a nonempty interior, and that the function

F (τ ; η; ξ1, ..., ξq) = − ln Det
(
τ − ξT1 y−1

1 (η)ξ1 − ...− ξTq y−1
q (η)ξq

)
+ FY (η) (9.26)

is (m+ ϑY )-self-concordant barrier for K; this barrier is logarithmically homogeneous, if FY is.
Prove that K is the inverse image of the cone SN+ of positive semidefinite N ×N symmetric matrices,

N = m+ n1 + ...+ nq, under the linear homogeneous mapping

L : (τ ; η; ξ1, ..., ξq) 7→


τ ξT1 ξT2 ξT3 ... ξTq
ξ1 y1(η)
ξ2 y2(η)
ξ3 y3(η)
... ... ... ... ... ...
ξq yq(η)


(blank space corresponds to zero blocks). Is the barrier (9.26) the barrier induced, via the Substitution
rule (L), by the mapping L and the standard barrier − ln Det (·) for SN+ ?

Now we are in a position to complete, in a sense, our considerations related to the Truss Topology
Design problem (Section 5.7, Lecture 5). To the moment we know two formulations of the problem:

Dual form (TTDd): minimize t by choice of the vector x = (t;λ1, ..., λk; z1, ..., zm) (t and λj are reals,
zi ∈ Rn) subject to the constraints

t ≥
k∑
j=1

[
2zTj fj + V

(bTi zj)
2

λj

]
, i = 1, ...,m,

λ ≥ 0;
∑
j

λj = 1.

Primal form (ψ): minimize t by choice of x = (t;φ;βij) (t and βij , i = 1, ...,m, j = 1, ..., k are reals,
φ ∈ Rm) subject to the constraints

t ≥
m∑
i=1

β2
ij

φi
, j = 1, ..., k;

φ ≥ 0;

m∑
i=1

φi = V ;
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m∑
i=1

βijbi = fj , j = 1, ..., k.

Both forms are respectable convex problems; the question, anyhow, is whether we are equipped enough
to solve them via interior point machinery, or, in other words, are we clever enough to point out explicit
self-concordant barriers for the corresponding feasible domains. The answer is positive.

Exercise 9.6.4 Consider the problem (TTDd), and let

x = (t;λ1, ..., λk; z1, ..., zm)

be the design vector of the problem.
1) Prove that (TTDd) can be equivalently written down as the standard problem

minimize cTx ≡ t s.t. x ∈ G ⊂ E,

where

E = {x |
k∑
j=1

λj = 1}

is affine hyperplane in Rdim x and

G = {x ∈ E | x is feasible for (TTDd)}

is a closed convex domain in E.
2)+ Let u = (si; tij ; rj) (i runs over {1, ...,m}, j runs over {1, ..., k}, s·, t·, r· are reals), and let

Φ(u) = −
m∑
i=1

ln

si − k∑
j=1

t2ij
rj

− k∑
j=1

ln rj .

Prove that Φ is (m+ k)-logarithmically homogeneous self-concordant barrier for the closed convex cone

G+ = cl{u | rj > 0, j = 1, ..., k; si ≥
k∑
j=1

r−1
j t2ij , i = 1, ...,m},

and the Legendre transformation of the barrier is given by

Φ∗(σi; τij ; ρj) = −
k∑
j=1

ln

(
−ρj +

m∑
i=1

τ2
ij

4σi

)
−

m∑
i=1

ln(−σi)− (m+ k),

the domain of Φ∗ being the set

G0 = {σi < 0, i = 1, ...,m;−ρj +

m∑
i=1

τ2
ij

4σi
> 0, j = 1, ..., k}.

3) Prove that the domain G of the standard reformulation of (TTDd) given by 1) is the inverse image
of G# = clG0 under the affine mapping

x 7→ πx+ p =

 si = t− 2
∑k
j=1 z

T
j fj

tij = (bTi zj)
√
V

rj = λj


(the mapping should be restricted onto E).

Conclude from this observation that one can equip G with the (m+ k)-self-concordant barrier

F (x) = Φ(πx+ p)
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and thus get the possibility to solve (TTDd) by the long-step path-following method.
Note also that the problem

minimize cTx ≡ t s.t. x ∈ E, πx+ p ∈ G+

is a conic reformulation of (TTDd), and that Φ is a (m+k)-logarithmically homogeneous self-concordant
barrier for the underlying cone G+; since we know the Legendre transformation of Φ, we can solve the
problem by the primal-dual potential reduction method as well.

Note that the primal formulation (ψ) of TTD can be treated in completely similar way (since its formal
structure is similar to that one of (TTDd), up to presence of a larger number of linear equality constraints;
linear equalities is something which does not influence our abilities to point out self-concordant barriers,
due to the Substitution rule (L).
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9.6.4 Geometrical mean

The below problems are motivated by by the following observation: the function ξ2/η of two scalar
variables is convex on the half-plane {η > 0}, and we know how to write down a self-concordant barrier
for its epigraph - it is given by our marvellous fractional-quadratic substitution. How to get similar
barrier for the epigraph of the function (ξ+)p/ηp−1 (p > 1 is integer), which, as it is easily seen, also is
convex when η > 0?

The epigraph of the function f(ξ, η) = (ξ+)p/ηp−1 is the set

cl{(τ, ξ, η) | η > 0, τηp−1 ≥ (ξ+)p}

This is a cone in R3, which clearly is the inverse image of the hypograph

G = {(t, y1, ..., yp) ∈ Rp+1 | y1, ..., yp ≥ 0, t ≤ φ(y) = (y1...yp)
1/p}

under the affine mapping
L : (τ, ξ, η) 7→ (ξ, τ, η, η, ..., η),

so that the problem in question in fact is where to get a self-concordant barrier for the hypograph G of
the geometrical mean. This latter question is solved by the following observation:

(G): the mapping

A(t, y1, ..., yp) = (y1...yp)
1/p − t : G− → R, G− = {(t, y) ∈ Rp+1 | y ≥ 0}

is 1-appropriate for the domain G+ = R+.

Exercise 9.6.5 + Prove (G).

Exercise 9.6.6 + Prove that the mapping

B(τ, ξ, η) = τ1/pη(p−1)/p − ξ : int G− → R, G− = {(τ, ξ, η) | τ ≥ 0, η ≥ 0}

is 1-appropriate for G+ = R+.
Conclude from this observation that the function

F (τ, ξ, η) = − ln(τ1/pη(p−1)/p − ξ)− ln τ − ln η

is 3-logarithmically homogeneous self-concordant barrier for the cone

cl{(τ, ξ, η) | η > 0, τ ≥ (ξ+)pη−(p−1)}

which is the epigraph of the function (ξ+)pη−(p−1).
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Chapter 10

Applications in Convex
Programming

To the moment we know several general schemes of polynomial time interior point methods; at the
previous lecture we also have developed technique for constructing self-concordant barriers the methods
are based on. It is time now to look how this machinery works. To this end let us consider several
standard classes of convex programming problems. The order of exposition is as follows: for each class
of problems in question, I shall present the usual description of the problem instances, the standard and
conic reformulations required by the interior point approcah, the related self-concordant barriers and,
finally, the complexities (Newton and arithmetic) of the resulting methods.

In what follows, if opposite is not explicitly stated, we always assume that the constraints involved
into the problem satisfy the Slater condition.

10.1 Linear Programming

Consider an LP problem in the canonical form:

minimize cTx s.t. x ∈ G ≡ {x | Ax ≤ b}, (10.1)

A being m× n matrix of the full column rank1

Path-following approach can be applied immediately:

Standard reformulation: the problem from the very beginning is in the standard form;

Barrier: as we know, the function

F (x) = −
m∑
j=1

ln(bj − aTj x)

is m-self-concordant barrier for G;

Structural assumption from Lecture 8 is satisfied: indeed,

F (x) = Φ(b−Ax), Φ(u) = −
m∑
j=1

lnuj : int Rm
+ → R (10.2)

1the assumption that the rank of A is n is quite natural, since otherwise the homogeneous system Ax = 0 has a nontrivial
solution, so that the feasible domain of the problem, if nonempty, contains lines. Consequently, the problem, if feasible, is
unstable: small perturbation of the objective makes it below unbounded, so that the problems of this type might be only
of theoretical interest

141
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and Φ is m-logarithmically homogeneous self-concordant barrier for the m-dimensional nonnegative or-
thant; the Legendre transformation of Φ, as it is immediately seen, is

Φ∗(s) = −
m∑
j=1

ln(−sj)−m : int Rm
− → R. (10.3)

Thus, to solve an LP problem, we can use both the basic and the long-step versions of the path-following
method.

Complexity: as we remember, the Newton complexity of finding an ε-solution by a path-following method
associated with a ϑ-self-concordant barrier is M = O(1)

√
ε ln(Vε−1), O(1) being certain absolute con-

stant2 and V is a data-dependent scale factor. Consequently, the arithmetic cost of an ε-solution isMN ,
where N is the arithmetic cost of a single Newton step. We see that the complexity of the method is
completely characterized by the quantities ϑ and N . Note that the product

C =
√
ϑN

is the factor at the term ln(Vε−1) in the expression for the arithmetic cost of an ε-solution; thus, C can
be thought of as the arithmetic cost of an accuracy digit in the solution (since ln(Vε−1) can be naturally
interpreted as the amount of accuracy digits in an ε-solution).

Now, in the situation in question ϑ = m is the larger size of the LP problem, and it remains to
understand what is the cost N of a Newton step. At a step we are given an x and should form and solve
with respect to y the linear system of the type

F ′′(x)y = −tc− F ′(x);

the gradient and the Hessian of the barrier in our case, as it is immediately seen, are given by

F ′(x) =

m∑
i=j

djaj , F
′′(x) = ATD2A,

where
dj = [bj − aTj x]−1

are the inverse residuals in the constraints at the point x and

D = Diag(d1, ..., dm).

It is immediately seen that the arithmetic cost of assembling the Newton system (i.e., the cost of com-
puting F ′ and F ′′) is O(mn2); to solve the system after it is assembled, it takes O(n3) operations more3.
Since m ≥ n (recall that RankA = n), the arithmetic complexity of a step is dominated by the cost
O(mn2) of assembling the Newton system. Thus, we come to

ϑ = m; N = O(mn2); C = O(m3/2n2). (10.4)

Potential reduction approach also is immediate:

Conic reformulation of the problem is given by

minimize fT y s.t. y ∈ {L+ b} ∩K, (10.5)

where
K = Rm

+ , L = A(Rn)

2provided that the parameters of the method - i.e., the path tolerance κ and the penalty rate γ in the case of the basic
method and the path tolerance κ and the treshold κ in the case of the long step one - are once for ever fixed

3if the traditional Linear Algebra is used (Gauss elimination, Cholesski decomposition, etc.); there exists, at least in
theory, ”fast” Linear Algebra which allows to invert an N ×N matrix in O(Nγ) operations for some γ < 3 rather than in
O(N3) operations
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and f is m-dimensional vector which ”expresses the objective cTx in terms of y = Ax”, i.e., is such that

fTAx ≡ cTx;

one can set, e.g.,
f = A[ATA]−1c

(non-singularity of ATA is ensured by the assumption that RankA = n).
The cone K = Rm

+ clearly is self-dual, so that the conic dual to (10.5) is

minimize bT s s.t. s ∈ {L⊥ + f} ∩Rm
+ ; (10.6)

as it is immediately seen, the dual feasible plane L⊥ + f is given by

L⊥ + f = {s | AT s = c}

(see Exercise 5.4.11).

Logarithmically homogeneous barrier for K = Rm
+ is, of course, the barrier Φ given by (10.2); the

parameter of the barrier is m, and its Legendre transformation Φ∗ is given by (10.3). Thus, we can apply
both the method of Karmarkar and the primal-dual method.

Complexity of the primal-dual method for LP is, at it is easily seen, completely similar to that one of the
path-following method; it is given by

ϑ = m; N = O(mn2); C = O(m3/2n2).

The method of Karmarkar has the same arithmetic cost N of a step, but worse Newton complexity
(proportional to ϑ = m rather than to

√
ϑ), so that for this method one has

N = O(mn2), C = O(m2n2).

Comments. 1) Karmarkar acceleration. The aforementioned expressions for C correspond to the default
assumption that we solve the sequential Newton systems ”from scratch” - independently of each other.
This is not the only possible policy: the matrices of the systems arising at neighbouring steps are close to
each other, and therefore there is a possibility to implement the Linear Algebra in a way which results in
certain progress in the average (over steps) arithmetic cost of finding Newton directions. I am not going
to describe the details of the corresponding Karmarkar acceleration; let me say that this acceleration
results in the (average over iterations) value of N equal to O(m1/2n2) instead of the initial value O(mn2)
4. As a result, for the accelerated path-following and primal-dual methods we have C = O(mn2), and for
the accelerated method of Karmarkar C = O(m3/2n2). Thus, the arithmetic complexity of an accuracy
digit in LP turns out to be the same as when solving systems of linear equations by the traditional Linear
Algebra technique.

2) Practical performance. One should be awared that the outlined complexity estimates for interior
point LP solvers give very poor impression of their actual performance. There are two reasons for it:

• first, when evaluating the arithmetic cost of a Newton step, we have implicitly assumed that the
matrix of the problem is dense and ”unstructured”; this case never occurs in actual large-scale
computations, so that the arithmetic cost of a Newton step normally has nothing in common with
the above O(mn2) and heavily depends on the specific structure of the problem;

• second, and more important fact is that the ”long-step” versions of the methods (like the potential
reduction ones and the long step path following method) in practice possess much better Newton
complexity than it is said by the theoretical worst-case efficiency estimate. According to the latter
estimate, the Newton complexity should be proportional at least to the square root of the larger
size m of the problem; in practice the dependence turns out to be much better, something like
O(lnm); in the real-world range of values of sizes it means that the Newton complexity of long step
interior point methods for LP is basically independent of the size of the problem and is something
like 20-50 iterations. This is the source of ”competitive potential” of the interior point methods
versus the Simplex method.

4provided that the problem is not ”too thin”, namely, that n ≥ O(
√
m)
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3) Unfeasible start. To the moment all schemes of interior point methods known to us have common
practical drawback: they are indeed ”interior point schemes”, and to start a method, one should know
in advance a strictly feasible solution to the problem. In real-world computations this might be a rather
restrictive requirement. There are several ways to avoid this drawback, e.g., the following ”big M”
approach: to solve (10.1), let us extend x by an artificial design variable t and pass from the original
problem to the new one

minimize cTx+Mt s.t. Ax+ t(b− e) ≤ b, −t ≤ 0;

here e = (1, ..., 1)T . The new problem admits an evident strictly feasible solution x = 0, t = 1; on
the other hand when M is large, then the x-component of optimal solution to the problem is ”almost
feasible almost optimal” for the initial problem (theoretically, for large enough M the x-components of
all optimal solutions to the modified problem are optimal solutions to the initial one). Thus, we can
apply our methods to the modified problem (where we have no difficulties with initial strictly feasible
solution) and thus get a good approximate solution to the problem of interest. Note that the same trick
can be used in our forthcoming situations.

10.2 Quadratically Constrained Quadratic Programming

The problem here is to minimize a convex quadratic function g(x) over a set given by finitely many convex
quadratic constraints gj(x) ≤ 0. By adding extra variable t and extra constraint g(x)− t ≤ 0 (note that
it also is a convex quadratic constraint), we can pass from the problem to an equivalent one with a linear
objective and convex quadratic constraints. It is convenient to assume that this reduction is done from
the very beginning, so that the initial problem of interest is

minimize ctx s.t. x ∈ G = {x | fj(x) = xTAjx+ bTj x+ cj ≤ 0, j = 1, ...,m}, (10.7)

Aj being n× n positive semidefinite symmetric matrices.
Due to positive semidefiniteness and symmetry of Aj , we always can decompose these matrices as

Aj = BTj Bj , Bj being k(Bj) × n rectangular matrices, k(Bj) ≤ n; in applications, normally, we should
not compute these matrices, since Bj , together with Aj , form the ”matrix” part of the input data.

Path-following approach is immediate:

Standard reformulation: the problem from the very beginning is in the standard form.

Barrier: as we know from Lecture 9, the function

− ln(t− f(x))

is 1-self-concordant barrier for the epigraph {t ≥ f(x)} of a convex quadratic form f(x) = xTBTBx +
bTx + c. Since the Lebesque set Gf = {x | f(x) ≤ 0} of f is the inverse image of this epigraph
under the linear mapping x 7→ (0, x), we conclude from the Substitution rule (L) (Lecture 9) that the
function − ln(−f(x)) is 1-self-concordant barrier for Gf , provided that f(x) < 0 at some x. Applying
the Decomposition rule (Lecture 9), we see that the function

F (x) = −
m∑
j=1

ln(−fj(x)) (10.8)

is m-self-concordant barrier for the feasible domain G of problem (10.7).

Structural assumption. Let us demonstrate that the above barrier satisfies the Structural assumption
from Lecture 8. Indeed, let us set

r(Bj) = k(Bj) + 1

and consider the second order cones

K2
r(Bj)

= {(τ, σ, ξ) ∈ R×R×Rk(Bj) | τ ≥
√
σ2 + ξT ξ}.



10.2. QUADRATICALLY CONSTRAINED QUADRATIC PROGRAMMING 145

Representing the quantity bTj x+ cj as

bTj x+ cj =

[
1 + bTj x+ cj

2

]2

−

[
1− bTj x− cj

2

]2

,

we come to the following representation of the set Gj = {x | fj(x) ≤ 0}:

{x | fj(x) ≤ 0} ≡ {x | [Bjx]T [Bjx] + bTj x+ cj ≤ 0} =

=

x |
[

1− bTj x− cj
2

]2

≥

[
1 + bTj x+ cj

2

]2

+ [Bjx]T [Bjx]

 =

[note that for x in the latter set bTj x+ cj ≤ 0]

=

x | 1− bTj x− cj
2

≥

√√√√[1 + bTj x+ cj

2

]2

+ [Bjx]T [Bjx]


Thus, we see that Gj is exactly the inverse image of the second order cone K2

r(Bj)
under the affine

mapping

x 7→ πjx+ pj =

 τ = 1
2 [1− bTj x− cj ]

σ = 1
2 [1 + bTj x+ cj ]
ξ = Bjx

 .

It is immediately seen that the above barrier − ln(−fj(x)) for Gj is the superposition of the standard
barrier

Ψj(τ, σ, ξ) = − ln(τ2 − σ2 − ξT ξ)

for the cone K2
r(Bj)

and the affine mapping x 7→ πjx+ pj . Consequently, the barrier F (x) for the feasible

domain G of our quadraticaly constrained problem can be represented as

F (x) = Φ(πx+ p), πx+ p =



τ1 = 1
2 [1− bT1 x− c1]

σ1 = 1
2 [1 + bT1 x+ c1]
ξ1 = B1x

...
τm = 1

2 [1− bTmx− cm]
σm = 1

2 [1 + bTmx+ cm]
ξm = Bmx


, (10.9)

where

Φ(τ1, σ1, ξ1, ..., τm, σm, ξm) = −
m∑
j=1

ln(τ2
j − σ2

j − ξTj ξj) (10.10)

is the direct sum of the standard self-concordant barriers for the second order cones K2
r(Bj)

; as we

know from Proposition 5.3.2.(iii), Φ is (2m)-logarithmically homogeneous self-concordant barrier for the
direct product K of the cones K2

r(Bj)
. The barrier Φ possesses the immediately computable Legendre

transformation
Φ∗(s) = Φ(−s) + 2m ln 2− 2m (10.11)

with the domain − int K.

Complexity. The complexity characteristics of the path-following method associated with barrier (10.8),
as it is easily seen, are given by

ϑ = m; N = O([m+ n]n2); C = O(m1/2[m+ n]n2) (10.12)

(as in the LP case, expressions for N and C correspond to the case of dense ”unstructured” matrices Bj ;
in the case of sparse matrices with reasonable nonzero patterns these characteristics become better).
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Potential reduction approach also is immediate:

Conic reformulation of the problem is a byproduct of the above considerations; it is

minimize fT y s.t. y ∈ {L+ p} ∩K, (10.13)

where K =
∏m
j=1K

2
r(Bj)

is the above product of second order cones, L+ b is the image of the above affine

mapping x 7→ πx + p and f is the vector which ”expresses the objective cTx in terms of y = πx”, i.e.,
such that

fTπx = cTx;

it is immediately seen that such a vector f does exist, provided that the problem in question is solvable.
The direct product K of the second order cones is self-dual (Exercise 5.4.7), so that the conic dual to

(10.13) is the problem
minimize pT s s.t. s ∈ {L⊥ + f} ∩K (10.14)

with the dual feasible plane L⊥ + f given by

L⊥ + f = {s | πT s = c}

(see Exercise 5.4.11).

Logarithmically homogeneous self-concordant barrier with parameter 2m for the cone K is, as it was
already mentioned, given by (10.10); the Legendre transformation of Φ is given by (10.11). Thus, we
have in our disposal computable primal and dual barriers for (10.13) - (10.14) and can therefore solve the
problems by the method of Karmarkar or by the primal-dual method associated with these barriers.

Complexity: it is immediately seen that the complexity characteristics of the primal-dual method are
given by (10.12); the characteristics N and C of the method of Karmarkar are O(

√
m) times worse than

the corresponding characteristics of the primal-dual method.

10.3 Approximation in Lp norm

The problem of interest is

minimize

m∑
j=1

|vj − uTj x|p, (10.15)

where 1 < p <∞, uj ∈ Rn and vj ∈ R.

Path-following approach seems to be the only one which can be easily carried out (in the potential
reduction scheme there are difficulties with explicit formulae for the Legendre transformation of the
primal barrier).

Standard reformulation of the problem is obtained by adding m extra variables tj and rewriting the
problem in the equivalent form

minimize

m∑
j=1

tj s.t. (t, x) ∈ G = {(t, x) ∈ Rm+n | |vj − uTj x|p ≤ tj , j = 1, ...,m}. (10.16)

Barrier: self-concordant barrier for the feasible set G of problem (10.16) was constructed in Lecture 9
(Example 9.2.1, Substitution rule (L) and Decomposition rule):

F (t, x) =

m∑
j=1

Fj(tj , x), Fj(t, x) = − ln(t
2/p
j − (vj − uTj x)2)− 2 ln tj , ϑ = 4m.

Complexity of the path-following method associated with the indicated barrier is characterized by

ϑ = 4m; N = O([m+ n]n2); C = O(m1/2[m+ n]n2).
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The above expression for the arithmetic complexity N needs certain clarification: our barrier depends
on m + n variables, and its Hessian is therefore an (m + n) × (m + n) matrix; how it could be that we
can assemble and invert this matrix at the cost of O(n2[m + n]) operations, not at the ”normal” cost
O([m+ n]3)?

The estimate for N is given by the following reasoning. Since the barrier is separable, its Hessian H
is the sum of Hessians of the ”partial barriers” Fj(t, x); the latter Hessians, as it is easily seen, can be
computed at the arithmetic cost O(n2) and are of very specific form: the m×m block corresponding to

t-variables contains only one nonzero entry (coming from to ∂2

∂tj∂tj
). It follows that H can be computed

at the cost O(mn2) and is (m+ n)× (m+ n) matrix of the form

H =

(
T PT

P Q

)
,

where the m × m block T corresponding to t-variables is diagonal, P is n × m and Q is n × n. It
is immediately seen that the gradient of the barrier can be computed at the cost O(mn). Thus, the
arithmetic cost of assembling the Newton system is O(mn2), and the system itself is of the type

Tu+ PT v = p
Pu+Qv = q

with m-dimensional vector of unknowns u, n-dimensional vector of unknowns v and diagonal T . To solve
the system, we can express u via v:

u = T−1[p− PT v]

and substitute this expression in the remaining equations to get a n× n system for u:

[Q− PT−1PT ]u = q − PT−1p.

To assemble this latter system it clearly costs O(mn2) operations, to solve it - O(n3) operations, and
the subsequent computation of u takes O(mn) operations, so that the total arithmetic cost of assembling
and solving the entire Newton system indeed is O([m+ n]n2).

What should be noticed here is not the particular expression for N , but the general rule which is
illustrated by this expression: the Newton systems which arise in the interior point machinery normally
possess nontrivial structure, and a reasonable solver should use this structure in order to reduce the
arithmetic cost of Newton steps.

10.4 Geometrical Programming

The problem of interest is

minimize f0(x) =
∑
i∈I0

ci0 exp{aTi x} s.t. fj(x) =
∑
i∈Ij

cij exp{aTi x} ≤ dj , j = 1, ...,m. (10.17)

Here x ∈ Rn, Ij are subsets of the index set I = {1, ..., k} and all coefficients cij are positive, j = 1, ...,m.
Note that in the standard formulation of a Geometrical Programming program the objective and the

constraints are sums, with nonnegative coefficients, of ”monomials” ξα1
1 ...ξαnn , ξi being the design variables

(which are restricted to be positive); the exponential form (10.17) is obtained from the ”monomial” one
by passing from ξi to the new variables xi = ln ξi.

Here it again is difficult to compute the Legendre transformation of the barrier associated with the
conic reformulation of the problem, so that we restrict ourselves with the Path-following approach only.

Standard reformulation: to get it, we introduce k additional variables ti, one per each of the exponents
exp{aTi x} involved into the problem, and rewrite (10.17) in the following equivalent form:

minimize
∑
i∈I0

ci0ti s.t. (t, x) ∈ G, (10.18)
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with
G = {(t, x) ∈ Rk ×Rn |

∑
i∈Ij

cijtj ≤ dj , j = 1, ...,m; exp{aTi x} ≤ ti, i = 1, ..., k}.

Barrier. The feasible domainG of the resulting standard problem is given by a number of linear constraints
and a number of exponential inequalities exp{aTi x} ≤ ti. We know how to penalize the feasible set of
a linear constraint, and there is no difficulty in penalizing the feasible set of an exponential inequality,
since this set is inverse image of the epigraph

{(τ, ξ) | τ ≥ exp{ξ}}

under an affine mapping.
Now, a 2-self-concordant barrier for the epigraph of the exponent, namely, the function

Ψ(τ, ξ) = − ln(ln τ − ξ)− ln τ

was found in Lecture 9 (Example 9.2.3). Consequently, the barrier for the feasible set G is

F (t, x) =

k∑
i=1

Ψ(ti, a
T
i x)−

m∑
j=1

ln

dj −∑
i∈Ij

cijtj

 = Φ

(
π

(
t
x

)
+ p

)
,

where

Φ(τ1, ξ1, ..., τk, ξk; τk+1, τk+2, ..., τk+m) =

k∑
i=1

Ψ(τi, ξi)−
m∑
j=1

ln τk+j

is self-concordant barrier with parameter 2k +m and the affine substitution π

(
t
x

)
+ p is given by

π

(
t
x

)
+ p =



τ1 = t1
ξ1 = aT1 x

...
τk = tk
ξk = aTk x

τk+1 = d1 −
∑
i∈I1 ci1ti

τk+2 = d2 −
∑
i∈I2 ci2ti

...
τk+m = dm −

∑
i∈Im cimti


.

Structural assumption. To demonstrate that the indicated barrier satisfies the Structural assumption,
it suffices to point out the Legendre transformation of Φ; since this latter barrier is the direct sum of k
copies of the barrier

Ψ(τ, ξ) = − ln(ln τ − ξ)− ln τ

and m copies of the barrier
ψ(τ) = − ln τ,

the Legendre transformation of Φ is the direct sum of the indicated number of copies of the Legendre
transformations of Ψ and ψ. The latter transformations can be computed explicitly:

Ψ∗(σ, η) = (η + 1) ln

(
η + 1

−σ

)
− η − ln η − 2, Dom Ψ∗ = {σ < 0, η > 0},

ψ∗(σ) = − ln(−σ)− 1, Domψ∗ = {σ < 0}.
Thus, we can solve Geometrical programming problems by both the basic and the long-step path-following
methods.

Complexity of the path-following method associated with the aforementioned barrier is given by

ϑ = 2k +m; N = O(mk2 + k3 + n3); C = O((k +m)1/2[mk2 + k3 + n3]).
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10.5 Exercises on applications of interior point methods

The below problems deal with a topic from Computational Geometry - with computing extremal ellipsoids
related to convex sets.

There are two basic problems on extremal ellipsoids:

(Inner): given a solid Q ⊂ Rn (a closed and bounded convex domain with a nonempty interior), find the
ellipsoid of the maximum volume contained in Q.

(Outer): given a solid Q ⊂ Rn, find the ellipsoid of the minimum volume containing Q.

Let us first explain where the problems come from.
I know exactly one source of problem (Inner) - the Inscribed Ellipsoid method InsEll for general

convex optimization. This is an algorithm for solving problems of the type

minimize f(x) s.t. x ∈ Q,

where Q is a polytope in Rn and f is convex function. The InsEll, which can be regarded as a multidi-
mensional extension of the usual bisection, generates a decreasing sequence of polytopes Qi which cover
the optimal set of the problem; these localizers are defined as

Q0 = Q; Qi+1 = {x ∈ Qi | (x− xi)T f ′(xi) ≤ 0},

where xi is the center of the maximum volume ellipsoid inscribed into Qi.
It can be proved that in this method the inaccuracy f(xi) − minQ f of the best (with the smallest

value of f) among the search points x1, ..., xi admits the upper bound

f(xi)−min
Q

f ≤ exp{−κ i
n
}[max

Q
f −min

Q
f ],

κ > 0 being an absolute constant; it is known also that the indicated rate of convergence is the best, in
certain rigorous sense, rate a convex minimization method can achieve, so that InsEll is optimal. And
to run the method, you should solve at each step an auxiliary problem of the type (Inner) related to a
polytope Q given by list of linear inequalities defining the polytope.

As for problem (Outer), the applications known to me come from Control. Consider a discrete time
linear controlled plant given by

x(t+ 1) = Ax(t) +Bu(t), t = 0, 1, ...,

where x(t) ∈ Rn and u(t) ∈ Rk are the state of the plant and the control at moment t and A, B are
given n × n and n × k matrices, A being nonsingular. Assume that u(·) can take values in a polytope
U ⊂ Rk given as a convex hull of finitely many points u1, ..., um:

U = Conv{u1, ..., um}.

Let the initial state of the plant be known, say, be zero. The question is: what is the set XT of possible
states of the plant at a given moment T?

This is a difficult question which, in the multi-dimensional case, normally cannot be answered in
a ”closed analytic form”. One of the ways to get certain numerical information here is to compute
outer ellipsoidal approximations of the sets Xt, t = 0, ..., T - ellipsoids Et which cover the sets Xt. The
advantage of this approach is that these approximations are of once for ever fixed ”tractable” geometry,
in contrast to the sets Xt which may become more and more complicated as t grows. There is an evident
possibility to form Et’s in a recurrent way: indeed, if we already know that Xt belongs to a known
ellipsoid Et, then the set Xt+1 for sure belongs to the set

Êt = AEt +BU.

Since U is the convex hull of u1, ..., um, the set Êt is nothing but the convex hull Qt+1 of the union of

Eit , i = 1, ...,m. Thus, a convex set contains Êt if and only if it contains Qt+1.
Now, it is, of course, reasonable to look for ”tight” approximations, i.e., to choose Et+1 as close as

possible to the set Qt+1 (unfortunately, Qt+1 usually is not an ellipsoid, so that in any case Et+1 will
be redundant). A convenient integral measure of the quality of outer approximation is the volume of the
approximating set - the less it is, the better is the approximation. Thus, to approximate the sets Xt, we
should solve a sequence of problems (Outer) with Q given as the convex hull of a union of ellipsoids.
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10.5.1 (Inner) and (Outer) as convex programs

Problems (Inner) and (Outer) can be reformulated as convex programs. To this end recall that there are
two basic ways to describe an ellipsoid

• an ellipsoid W ⊂ Rn is the image of the unit Euclidean ball under a one-to-one affine mapping of
Rn onto itself:

(I) W = I(x,X) ≡ {y = x+Xu | uTu ≤ 1};

here x ∈ Rn is the center of the ellipsoid and X is a nonsingular n × n matrix. This matrix is defined
uniquely up to multiplication from the right by an orthogonal matrix; under appropriate choice of this
orthogonal ”scale factor” we may make X to be symmetric positive definite, and from now on our
convention is that the matrix X involved into (I) is symmetric positive definite. Thus, (I) allows to
parameterize n-dimensional ellipsoids by the pairs (x,X), with x ∈ Rn and X being n × n positive
definite symmetric matrix.

It is worthy to recall that the volume of ellipsoid (I) is κn Det X, κn being the volume of the n-
dimensional Euclidean ball.

• an ellipsoid W is the set given by strictly convex quadratic inequality:

(II) W = E(r, x,X) ≡ {u | uTXu+ 2xTu+ r ≤ 0};

here X is a positive definite symmetric n × n matrix, x ∈ Rn and r ∈ R. The above relation can be
equivalently rewritten as

W = {u | (u+X−1x)TX(u+X−1x) + r − xTX−1x ≤ 0;

thus, it indeed defines an ellipsoid if and only if

δ(r, x,X) ≡ xTX−1x− r > 0.

The representation of W via r, x,X is not unique (proportional triples define the same ellipsoid). There-
fore we always can enforce the quantity δ to be ≤ 1, and in what follows this is our default convention
on the parameterization in question.

It is clearly seen that the volume of the ellipsoid E(r, x,X) is nothing but

κnδ
n/2(r, x,X)Det−1/2X.

Now let us look at problem (Inner). From the above discussion we see that it can be written down as

(Inner’) minimize F (X) = − ln Det X s.t. (x,X) ∈ GI,

with
GI = {(x,X) | X ∈ Sn+, I(x,X) ⊂ Q};

here Sn+ is the cone of positive semidefinite matrices in the space Sn of symmetric n× n matrices.

To get (Inner’), we have passed from the problem of maximizing

Voln(I(x,X)) = κn Det X

to the equivalent problem of minimizing − ln Det X.

Exercise 10.5.1 Prove that (Inner’) is a convex program: its feasible domain GI is closed and bounded
convex set with a nonempty interior in the space Rn × Sn, and the objective is a continuous convex
function (taking values in R ∪ {+∞}) on GI and finite on the interior of the domain GI.

Similarly, (Outer) also can be posed as a convex program

(Outer’) minimize − ln Det X s.t. (r, x,X) ∈ GO = clG′,

G′ = {(r, x,X) ∈ R×Rn × int Sn+ | δ(r, x,X) ≤ 1, E(r, x,X) ⊃ Q}.
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Exercise 10.5.2 + Prove that (Outer’) is a convex programming program: GO is closed convex domain,
and F is continuous convex function on GO taking values in R∪{+∞} and finite on int GO. Prove that
the problem is equivalent to (Outer).

Thus, both (Inner) and (Outer) can be reformulated as convex programs. This does not, anyhow,
mean that the problems are computationally tractable. Indeed, the minimal ”well posedness” requirement
on a convex problem which allows to speak about it numerical solution is as follows:

(!) given a candidate solution to the problem, you should be able to check whether the solution is
feasible, and if it is the case, you should be able to compute the value of the objective at this solution5.

Whether (!) is satisfied or not for problems (Inner) and (Outer), it depends on what is the set Q and
how it is represented; and, as we shall see in a while, ”well posed” cases for one of our problems could be
”ill posed” for another. Note that ”well posedness” for (Inner) means a possibility, given an ellipsoid W
to check whether W is contained in Q; for (Outer) you should be able to check whether W contains Q.

Consider a couple of examples.

• Q is a polytope given ”by facets”, more exactly, by a list of linear inequalities (not all of them
should represent facets, some may be redundant).

This leads to well-posed (Inner) (indeed, to check whether W is contained in Q, i.e., in the inter-
section of a given finite family of half-spaces, is the same as to check whether W is contained in
each of the half-spaces, and this is immediate). In contrast to this, in the case in question (Outer)
is ill-posed: to check whether, say, a Euclidean ball W contains a polytope given by a list of linear
inequalities is, basically, the same as to maximize a convex quadratic form (namely, |x|22) under
linear inequality constraints, and this is an NP-hard problem.

• Q is a polytope given ”by vertices”, i.e., represented as a convex hull of a given finite set S.

Here (Outer) is well-posed (indeed, W contains Q if and only if it contains S, which can be imme-
diately verified), and (Inner) is ill-posed (it is NP-hard).

As we shall see in a while, in the case of a polytope Q our problems can be efficiently solved by interior
point machinery, provided that they are well-posed.

10.5.2 Problem (Inner), polyhedral case

In this section we assume that
Q = {x | aTj x ≤ bj , j = 1, ...,m}

is a polytope in Rn given by m linear inequalities.

Exercise 10.5.3 Prove that in the case in question problem (Inner) can be equivalently formulated as
follows:

(Inner Lin) minimize t s.t. (t, x,X) ∈ G,
with

G = {(t, x,X) | |Xaj |2 ≤ bj − aTj x, j = 1, ...,m; X ∈ Sn+;− ln Det X ≤ t}.

To solve (Inner Lin) by interior point machinery, we need self-concordant barrier for the feasible set
of the problem. This set is given by a number of constraints, and in our ”barrier toolbox” we have
self-concordant barriers for the feasible sets of all of these constraints, except the latter of them. This
shortcoming, anyhow, can be immediately overcome.

Exercise 10.5.4 ∗ Prove that the function

Φ(t,X) = − ln(t+ ln detX)− ln Det X

is (n+ 1)-self-concordant barrier for the epigraph

cl{(t,X) ∈ R× int Sn+ | t+ ln Det X ≥ 0}
5 to apply interior point methods, you need, of course, much stronger assumptions: you should be able to point out a

”computable” self-concordant barrier for the feasible set
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of the function − ln Det X. Derive from this observation that the function

F (t, x,X) = −
m∑
j=1

ln([bj − aTj x]2 − aTj XTXaj)− ln(t+ ln Det X)− ln Det X

is (2m + n + 1)-self-concordant barrier for the feasible domain G of problem (Inner Lin). What are the
complexity characteristic of the path-following method associated with this barrier?

10.5.3 Problem (Outer), polyhedral case

Now consider problem (Outer) with the set Q given by

Q = {
m∑
j=1

λjaj | λ ≥ 0
∑
j

λj = 1}.

Exercise 10.5.5 Prove that in the case in question problem (Outer’) becomes the problem

(Outer Lin) minimize t s.t. (t, r, x,X) ∈ G,

with
G = {(t, r, x,X) |

aTj Xaj + 2xTaj + r ≤ 0, j = 1, ...,m; X ∈ Sn+; − ln Det X ≤ t; δ(r, x,X) ≤ 1}.

Prove+ that the function

F (t, r, x,X) = −
m∑
j=1

ln(−aTj Xaj − 2xTaj − r)−

− ln(1 + r − xTX−1x)− ln(t+ ln Det X)− 2 ln Det X

is (m+2n+2)-self-concordant barrier for G. What are the complexity characteristics of the path-following
method associated with this barrier?

10.5.4 Problem (Outer), ellipsoidal case

The polyhedral versions of problems (Inner) and (Outer) considered so far are, in a sense, particular
cases of ”ellipsoidal” versions, where Q is an intersection of a finite family of ellipsoids (problem (Inner))
or convex hull of a finite number of ellipsoids (problem (Outer); recall that our motivation of this latter
problem leads to the ”ellipsoidal” version of it). Indeed, the polyhedral (Inner) relates to the case when Q
is an intersection of a finite family of half-spaces, and a half-space is nothing but a ”very large” ellipsoid.
Similarly, polyhedral (Outer) relates to the case when Q is a convex hull of finitely many points, and a
point is nothing but a ”very small” ellipsoid. What we are about to do is to develop polynomial time
methods for the ellipsoidal version of (Outer). The basic question of well-posedness here reads as follows:

(?) Given two ellipsoids, define whether the second of them contains the first one

This question can be efficiently answered, and the nontrivial observation underlying this answer is, I
think, more important than the question itself.

We shall consider (?) in the situation where the first ellipsoid is given as E(r, x,X), and the second
one - as E(s, y, Y ). Let us start with equivalent reformulation of the question.

The ellipsoid E(r, x,X) is contained in E(s, y, Y ) if and only if every solution u to the inequality

uTXu+ 2xTu+ r ≤ 0

satisfies the inequality
uTY u+ 2yTu+ s ≤ 0.

Substituting u = v/t, we can reformulate this as follows:
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E(r, x,X) ⊂ E(s, y, Y ) if and only if from the inequality

vTXv + 2txT v + rt2 ≤ 0

and from t 6= 0 it always follows that

vTY v + 2tyT v + st2 ≤ 0.

In fact we can omit here ”t 6= 0”, since for t = 0 the first inequality can be valid only when v = 0 (recall
that X is positive definite), and the second inequality then also is valid. Thus, we come to the conclusion
as follows:

E(r, x,X) ⊂ E(s, y, Y ) if and only if the following implication is valid:

wTSw ≤ 0⇒ wTRw ≤ 0,

where

S =

(
X x
xT r

)
, R =

(
Y y
yT s

)
.

We have reduced (?) to the following question

(??) given two symmetric matrices R and S of the same size, detect whether all directions w where
the quadratic form wTSw is nonpositive are also the directions where the quadratic form wTRw is
nonpositive:

(Impl) wTSw ≤ 0⇒ wTRw ≤ 0.

In fact we can say something additional about the quadratic forms S and R we actually are interested
in:

(*) in the case of matrices coming from ellipsoids there is a direction w with negative wTSw, and there
is a direction w′ with positive (w′)TRw′.

Exercise 10.5.6 + Prove (*).

Now, there is an evident sufficient condition which allos to give a positive answer to (??): if R ≤ λS
with some nonnegative λ, then, of course, (Impl) is valid. It is a kind of miracle that this sufficient
condition is also necessary, provided that wTSw < 0 for some w:

Exercise 10.5.7 ∗ Prove that if S and R are symmetric matrices of the same size such that the impli-
cation (Impl) is valid and S is such that wTSw < 0 for some w, then there exists nonnegative λ such
that

R ≤ λS;

if, in addition, (w′)TRw′ > 0 for some w′, then the above λ is positive.
Conclude from the above, that if S and R are symmetric matrices of the same size such that wTSSwS <

0 for some wS and wTRRwR > 0 for some wR, then implication (Impl) is valid if and only if

R ≤ λS

for some positive λ.

It is worthy to explain why the statement given in the latter exercise is so amazing. (Impl) says exactly
that the quadratic form f1(w) = −wTRw is nonnegative whenever the quadratic form f2(w) = wTSw is
nonpositive, or, in other words, that the function

f(w) = max{f1(w), f2(w)}

is nonegative everywhere and attains therefore its minimum at w = 0. If the functions f1 and f2 were
convex, we could conclude from this that certain convex combination µf1(w) + (1 − µ)f2(w) of these
functions also attains its minimum at w = 0, so that −µR + (1 − µ)S is positive semidefinite; the



154 CHAPTER 10. APPLICATIONS IN CONVEX PROGRAMMING

conclusion is exactly what is said by our statement (it says also that µ > 0, so that the matrix inequality
can be rewritten as R ≤ λS with λ = (1 − µ)µ−1; this additional information is readily given by the
assumption that wTSw < 0 and causes no surprise). Thus, the conclusion is the same as in the situation
of convex f1 and f2; but we did not assume the functions to be convex! Needless to say, the ”statement”
of the type

max{f1, f2} ≥ 0 everywhere ⇒ ∃µ ∈ [0, 1] : µf1 + (1− µ)f2 ≥ 0 everywhere

fails to be true for arbitrary f1 and f2, but, as we have seen, it is true for homogeneous quadratic forms.
Let me add that the implication

max{wTS1w, ..., w
TSkw} ≥ 0 ∀w ⇒ certain convex combination of Si is ≥ 0

is valid only for k = 2.
Now we are ready to apply interior point machinery to the ellipsoidal version of (Outer).
Consider problem (Outer) with Q given as the convex hull of ellipsoids E(pi, ai, Ai), i = 1, ...,m. An

ellipsoid E(r, x,X) is a convex set; therefore it contains the convex hull Q of our ellipsoids if and only
if it contains each of the ellipsoids. As we know from Exercise 10.5.7 and (*), the latter is equivalent to
existence of m positive reals λ1, ..., λm such that

R(r, x,X) ≡
(
X x
xT r

)
≤ λiSi,

where Si = R(pi, ai, Ai).

Exercise 10.5.8 Prove that in the case in question problem (Outer) can be equivalently formulated as
the following convex program:

(Outer Ell) minimize t s.t. (t, r, x,X, λ) ∈ G,

where
G = cl{(t, r, x,X, λ) |

X ∈ int Sn+, t+ ln Det X ≥ 0, δ(r, x,X) ≤ 1, R(r, x,X) ≤ λiSi, i = 1, ...,m}.

Prove that the function

F (t, r, x,X, λ) = − ln(t+ ln Det X)− 2 ln Det X − ln(1 + r − xTX−1x)−

−
m∑
i=1

ln Det (λiSi −R(r, x,X))

is ([m+2]n+2)-self-concordant barrier for the feasible domain G of the problem. What are the complexity
characteristics of the path-following method associated with this barrier?
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Semidefinite Programming

This concluding lecture is devoted to an extremely interesting and important class of convex programs -
the so called Semidefinite Programming.

11.1 A Semidefinite program

The canonical form of a semidefinite program is as follows:

(SD) minimize linear objective cTx of x ∈ Rn under Linear Matrix Inequality constraints

Aj(x) ≥ 0, j = 1, ...,M,

where Aj(x) are symmetric matrices affinely depending on x (i.e., each entry of Aj(·) is an affine function
of x), and A ≥ 0 for a symmetric matrix A stands for ”A is positive semidefinite”.

Note that a system of m Linear Matrix Inequality constraints (LMI’s) Aj(x) ≥ 0, j = 1, ...,M , is
equivalent to a single LMI

A(x) ≥ 0, A(x) = Diag{A1(x), ..., AM (x)} =


A1(x)

A2(x)
... ... ... ...

AM (x)


(blank space corresponds to zero blocks). Further, an affine in x matrix-valued function A(x) can be
represented as

A(x) = A0 +

n∑
i=1

xiAi,

A0,...,An being fixed matrices of the same size; thus, in a semidefinite program we should minimize a
linear form of x1, ..., xn provided that a linear combination of given matrices Ai with the coefficients xi
plus the constant term A0 is positive semidefinite.

The indicated problem seems to be rather artificial. Let me start with indicating several examples of
important problems covered by Semidefinite Programming.

11.2 Semidefinite Programming: examples

11.2.1 Linear Programming

Linear Programming problem

minimize cTx s.t. aTj x ≤ bj , j = 1, ...,M

is a very particular semidefinite program: the corresponding matrix A(x) is M ×M diagonal matrix with
the diagonal entries bj −aTj x (indeed, a diagonal matrix is positive semidefinite if and only if its diagonal
entries are nonnegative, so that A(x) ≥ 0 if and only if x is feasible in the initial LP problem).

155
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11.2.2 Quadratically Constrained Quadratic Programming

A convex quadratic constraint
f(x) ≡ xTBTBx+ bTx+ c ≤ 0,

B being k × n matrix, can be expressed in terms of positive semidefiniteness of certain affine in x
(k + 1)× (k + 1) symmetric matrix Af (x), namely, the matrix

Af (x) =

(
−c− bTx [Bx]T

Bx I

)
.

Indeed, it is immediately seen that a symmetric matrix

A =

(
P RT

R Q

)
with positive definite block Q is positive semidefinite if and only if the matrix P − RTQ−1R is positive
semidefinite1; thus, Af (x) is positive semidefinite if and only if −c− bTx ≥ xTBTBx, i.e., if and only if
f(x) ≤ 0.

Thus, a convex quadratic constraint can be equivalently represented by an LMI; it follows that a
convex quadratic quadratically constrained problem can be resresented as a problem of optimization
under LMI constraints, i.e., as a semidefinite program.

The outlined examples are not that convincing: there are direct ways to deal with LP and QCQP, and
it hardly makes sense to reduce these problems to evidently more complicated semidefinite programs. In
the forthcoming examples LMI constraints come from the nature of the problem in question.

11.2.3 Minimization of Largest Eigenvalue and Lovasz Capacity of a graph

The Linear Eigenvalue problem is to find x which minimizes the maximum eigenvalue of symmetric matrix
B(x) affinely depending on the design vector x (there are also nonlinear versions of the problem, but I
am not speaking about them). This is a traditional area of Convex Optimization; the problem can be
immediately reformulated as the semidefinite program

minimize λ s.t. A(λ, x) = λI −B(x) ≥ 0.

As an application of the Eigenvalue problem, let us look at computation of the Lovasz capacity number
of a graph. Consider a graph Γ with the set of vertices V and set of arcs E. One of the fundamental
characteristics of the graph is its inner stability number α(Γ) - the maximum cardinality of an independent
subset of vertices (a subset is called independent, if no two vertices in it are linked by an arc). To compute
α(Γ), this is an NP-hard problem.

There is another interesting characteristic of a graph - the Shannon capacity number σ(Γ) defined as
follows. Let us interpret the vertices of Γ as letters of certain alphabet. Assume that we are transmitting
words comprised of these letters via an unreliable communication channel; unreliability of the channel is
described by the arcs of the graph, namely, letter i on input can become letter j on output if and only
if i and j are linked by an arc in the graph. Now, what is the maximum number sk of k-letter words
which you can send through the channel without risk that one of the words will be converted to another?
When k = 1, the answer is clear - exactly α(Γ); you can use, as these words, letters from (any) maximal
independent set V ∗ of vertices. Now, sk ≥ sk1 - the words comprised of letters which cannot be ”mixed”
also cannot be mixed. In fact sk can be greater than sk1 , as it is seen from simple examples. E.g., if Γ is
the 5-letter graph-pentagon, then s1 = α(Γ) = 2, but s2 = 5 > 4 (you can draw the 25 2-letter words in
our alphabet and find 5 of them which cannot be mixed). Similarly to the inequality sk ≥ sk1 , you can
prove that sp×q ≥ sqp (consider sp p-letter words which cannot be mixed as your new alphabet and note
that the words comprised of these q ”macro-letters” also cannot be mixed). From the relation sp×q ≥ sqp
(combined with the evident relation sp ≤ |V |p) it follows that there exists

σ(Γ) = lim
p→∞

s1/p
p = sup

p
s1/p
p ;

1to verify this statement, note that the minimum of the quadratic form vTPv + 2vTRTu + uTQu with respect to u is
given by u = −Q−1Rv, and the corresponding minimum value is vTPv − vTRTQ−1Rv; A is positive semidefinite if and
only if this latter quantity is ≥ 0 for all v
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this limit is exactly the Shannon capacity number. Since σ(Γ) ≥ s
1/p
p for every p, and, in particular, for

p = 1, we have

σ(Γ) ≥ α(Γ);

for the above 5-letter graph we also have σ(Γ) ≥ √s2 =
√

5.
The Shannon capacity number is an upper bound for the inner stability number, which is a good

news; a bad news is that σ(Γ) is even less computationally tractable than α(Γ). E.g., for more than 20
years nobody knew whether the Shannon capacity of the above 5-letter graph is equal to

√
5 or is greater

than this quantity.
In 1979, Lovasz introduced a ”computable” upper bound for σ(Γ) (and, consequently, for α(Γ)) -

the Lovasz capacity number θ(Γ) which is defined as follows: let N be the number of vertices in the
graph, and let the vertices be numbered by 1,...,N . Let us associate with each arc γ in the graph its
own variable xγ , and let B(x) be the following symmetric matrix depending on the collection x of these
variables: Bij(x) is 1, if either i = j, or the vertices i and j are not adjacent; if the vertices are linked by
arc γ, then Bij(x) = xγ . For the above 5-letter graph, e.g.,

B(x) =


1 x12 1 1 x51

x12 1 x23 1 1
1 x23 1 x34 1
1 1 x34 1 x45

x51 1 1 x45 1

 .

Now, by definition the Lovasz capacity number is the minimum, over all x’s, of the maximum eigenvalue
of the matrix B(x). Lovasz has proved that his capacity number is an upper bound for the Shannon
capacity number and the inner stability number:

θ(Γ) ≥ σ(Γ) ≥ α(Γ).

Thus, Lovasz capacity number (which can be computed via solving a semidefinite program) gives im-
portant information on the fundamental combinatorial characteristic of a graph. In many cases the
information is complete, as it happens in our example, where θ(Γ) =

√
5; consequently, σ(Γ) =

√
5, since

we know that for the graph in question σ(Γ) ≥
√

5; and since α(Γ) is integer, we can rewrite the Lovasz
inequality as α(Γ) ≤ bθ(Γ)c and get for our example the correct answer α(Γ) = 2.

11.2.4 Dual bounds in Boolean Programming

Consider another application of semidefinite programming in combinatorics. Assume that you should
solve a Boolean Programming problem

minimize

k∑
j=1

djuj s.t.

k∑
j=1

pijuj = qi, i = 1, ..., n, uj ∈ {0; 1}.

One of the standard ways to solve the problem is to use the branch-and-bound scheme, and for this
scheme it is crucial to generate lower bounds for the optimal value in the subproblems arising in course of
running the method. These subproblems are of the same structure as the initial problem, so that we may
think of how to bound from below the optimal value in the problem. The traditional way here is to pass
from the Boolean problem to its Linear Programming relaxation by replacing the Boolean restrictions
uj ∈ {0; 1} with linear inequalities 0 ≤ uj ≤ 1. Some years ago Shor suggested to use nonlinear relaxation
which is as follows. We can rewrite the Boolean constraints equivalently as quadratic equalities

uj(1− uj) = 0, j = 1, ..., k;

further, we can add to our initial linear equations their quadratic implications like

[qi −
k∑
j=1

pijuj ][qi′ −
k∑
j=1

pi′juj ] = 0, i, i′ = 1, ..., n.
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thus, we can equivalently rewrite our problem as a problem of continuous optimization with linear ob-
jective and quadratic equality constraints

minimize dTu s.t. Ki(u) = 0, i = 1, ..., N, (11.1)

where all Ki are quadratic forms. Let us form the Lagrange function

L(u, x) = dTu+

N∑
i=1

xiKi(u) = uTA(x)u+ 2bT (x)u+ c(x),

where A(x), b(x), c(x) clearly are affine functions of the vector x of Lagrange multipliers. Now let us
pass to the ”dual” problem

maximize f(x) ≡ inf
u
L(u, x). (11.2)

If our primal problem (11.1) were convex, the optimal value c∗ in the dual, under mild regularity as-
sumptions, would be the same as the optimal value in the primal problem; our situation has nothing
in common with convexity, so that we should not hope that c∗ is the optimal value in (11.1); anyhow,
independently of any convexity assumptions c∗ is a lower bound for the primal optimal value2; this is the
bound suggested by Shor.

Let us look how to compute Shor’s bound. We have

f(x) = inf
u
{uTA(x)u+ 2bT (x)u+ c(x)},

so that f(x) is the largest real f for which the quadratic form of u

uTA(x)u+ 2bT (x)u+ [c(x)− f ]

is nonnegative for all u; substituting u = t−1v, we see that the latter quadratic form of u is nonnegative
for all u if and only if the homogeneous quadratic form of v, t

vTA(x)v + 2bT (x)vt+ [c(x)− f ]t2

is nonnegative whenever t 6= 0. By continuity reasons the resulting form is nonnegative for all v, t with
t 6= 0 if and only if it is nonnegative for all v, t, i.e., if and only if the matrix

A(f, x) =

(
c(x)− f bT (x)
b(x) A(x)

)
is positive semidefinite. Thus, f(x) is the largest f for which the matrix A(f, x) is positive semidefinite;
consequently, the quantity supx f(x) we are interested in is nothing but the optimal value in the following
semidefinite program:

maximize f s.t. A(f, x) ≥ 0.

It can be easily seen that the lower bound c∗ given by Shor’s relaxation is not worse than that one given
by the usual LP relaxation. Normally the ”semidefinite” bound is better, as it is the case, e.g., in the
following toy problem

40x1 + 90x2 + 28x3 + 22x4 → min
30x1 + 27x2 + 11x3 + 33x4 = 41
28x1 + 2x2 + 46x3 + 46x4 = 74

x1, x2, x3, x4 = 0, 1

with optimal value 68 (x∗1 = x∗3 = 1, x∗2 = x∗4 = 0); here Shor’s bound is 43, and the LP-based bound is
40.

2the proof is immediate: if u is primal feasible, then, for any x, L(x, u) = dTu (since Ki(u) = 0) and therefore
f(x) ≤ dTu; consequently, c∗ = supx f(x) ≤ dTu. Since the latter inequality is valid for all primal feasible u, c∗ is ≤ the
primal optimal value, as claimed
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11.2.5 Problems arising in Control

An extremely powerful source of semidefinite problems is modern Control; there are tens of problems
which are naturally formulated as semidefinite programs. Let me present two generic examples.

Proving Stability via Quadratic Lyapunov function3. Consider a polytopic differential inclusion

x′(t) ∈ Q(x(t)), (11.3)

where
Q(x) = Conv{Q1x, ..., QMx},

Qi being k × k matrices. Thus, every vector x ∈ Rk is associated with the polytope Q(x), and the
trajectories of the inclusion are differentiable functions x(t) such that their derivatives x′(t) belong, for
any t, to the polytope Q(x(t)). When M = 1, we come to the usual linear time-invariant system

x′(t) = Q1x(t).

The general case M > 1 allows to model time-varying systems with uncertainty; indeed, a trajectory of
the inclusion is the solution to the time-varying equation

x′(t) = A(t)x(t), A(t) ∈ Conv{Q1, ..., QM},

and the trajectory of any time-varying equation of this type clearly is a trajectory of the inclusion.
One of the most fundamental questions about a dynamic system is its stability: what happens with

the trajectories as t→∞ - do they tend to 0 (this is the stability), or remain bounded, or some of them go
to infinity. A natural way to prove stability is to point out a quadratic Lyapunov function f(x) = xTLx,
L being positive definite symmetric matrix, which ”proves the decay rate α of the system”, i.e., satisfies,
for some α, the inequality

d

dt
f(x(t)) ≤ −αf(x(t))

along all trajectories x(t) of the inclusion. From this differential inequality it immediately follows that

f(x(t)) ≤ f(x(0)) exp{−αt};

if α > 0, this proves stability (the trajectories approach the origin at a known exponential rate); if α = 0,
the trajectories remain bounded; if α < 0, we do not know whether the system is stable, but we have
certain upper bound for the rate at which the trajectories may go to infinity. It is worthy to note that
in the case of linear time-invariant system the existence of quadratic Lyapunov function which ”proves
a negative decay rate” is a necessary and sufficient stability condition (this is stated by the famous
Lyapunov Theorem); in the general case M > 1 this condition is only sufficient, and is not anymore
necessary.

Now, where could we take a quadratic Lyapunov function which proves stability? The derivative
of the function xT (t)Lx(t) in t is 2xT (x)Lx′(t); if L proves the decay rate α, this quantity should be
≤ −αxT (t)Lx(t) for all trajectories x(·). Now, x(t) can be an arbitrary point of Rk, and for given
x = x(t) the vector x′(t) can be an arbitrary vector from Q(x). Thus, L ”proves decay rate α” if and
only if it is symmetric positive definite (this is our a priori restriction on the Lyapunov function) and is
such that

2xTLy ≤ −αxTLx

for all x and for all y ∈ Q(x); since the required inequality is linear in y, it is valid for all y ∈ Q(x) if and
only if it is valid for y = Qix, i = 1, ...,M (recall that Q(x) is the convex hull of the points Qix). Thus,
positive definite symmetric L proves the decay rate α if and only if

xT [LQi +QTi L]x ≡ 2xTLQix ≤ −αxTLx

for all x, i.e., if and only if L satisfies the system of Linear Matrix Inequalities

αL+ LQi +OTi L ≤ 0, i = 1, ...,M ; L > 0.

3this example was the subject of exercises to Lecture 7, see Section 7.6.1
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Due to homogeneity with respect to L, we can impose on L nonstrict inequality L ≥ I instead of strict
(and therefore inconvenient) inequality L > 0, and thus come to the necessity to solve the system

L ≥ I; αL+ LQi +QTi L ≤ 0, i = 1, ...,M, (11.4)

of Linear Matrix Inequalities, which is a positive semidefinite program with trivial objective.

Feedback synthesis via quadratic Lyapunov function. Now let us pass from differential inclusion (11.3)
to a controlled plant

x′(t) ∈ Q(x(t), u(t)), (11.5)

where

Q(x, u) = Conv{Q1x+B1u, ..., QMx+BMu}

with k × k matrices Qi and k × l matrices Bi. Here x ∈ Rk denotes state of the system and u ∈ Rl

denotes the control. Our goal is to ”close” the system by a linear time-invariant feedback

u(t) = Kx(t),

K being k × l feedback matrix, in a way which ensures stability of the closed-loop system

x′(t) ∈ Q(x(t),Kx(t)). (11.6)

Here again we can try to achieve our goal via quadratic Lyapunov function xTLx. Namely, if, for
some given α > 0, we are able to find simultaneously a k× l matrix K and a positive definite symmetric
k × k matrix L in such a way that

d

dt
(xT (t)Lx(t)) ≤ −αxT (t)Lx(t) (11.7)

for all trajectories of (11.6), then we will get both the stabilizing feedback and a sertificate that it indeed
stabilizes the system.

Same as above, (11.7) and the initial requirement that L should be positive definite result in the
system of matrix inequalities

[Qi +BiK]TL+ L[Qi +BiK] ≤ −αL, i = 1, ...,M ; L > 0; (11.8)

the unknowns in the system are both L and K. The system is not linear in (L,K); nevertheless, the
LMI-based approach still works. Namely, let us perform nonlinear substitution:

(L,K) 7→ (R = L−1, P = KL−1) [L = R−1,K = PR−1].

In the new variables the system becomes

QTi R
−1 +R−1Qi +R−1PTBTi R

−1 +R−1BiPR
−1 ≤ −αR−1, i = 1, ...,M ; R > 0,

or, which is the same (multiply by R from the left and from the right)

RQTi +QiR+ PTBTi +BiP ≤ −αR, i = 1, ...,M ;R > 0.

Due to homogeneity with respect to R, P , we can reduce the latter system to

RQTi +QiR+ PTBi +BiP ≤ −αR, i = 1, ...,M ;R ≥ I,

which is a system of LMI’s in variables R, P , or, which is the same, a semidefinite program with trivial
objective.

There are many other examples of semidefinite problems arising in Control (and in other areas like
Structural Design), but I believe that the already indicated examples demonstrate that Semidefinite
Programming possesses a wide variety of important applications.
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11.3 Interior point methods for Semidefinite Programming

Semidefinite Programming is a nice field for interior point methods; in fact this family of problems, due
to some intrinsic mathematical properties, is very similar to Linear Programming. Let us look how the
interior point methods can be applied to a semidefinite program

minimize cTx s.t. x ∈ G = {x ∈ Rn | A(x) ≥ 0}, (11.9)

A(x) being m×m symmetric matrix affinely depending on x ∈ Rn:

A(x) = A0 +

n∑
i=1

xiAi.

It is reasonable to assume that A(·) possesses certain structure, namely, that it is is block-diagonal matrix
with certain number M of diagonal blocks, and the blocks are of the row sizes m1, ...,mM . Indeed,
normally A(·) represents a system of LMI’s rather than a single LMI; and when assembling system of
LMI’s

Ai(x) ≥ 0, i = 1, ...,M

into a single LMI
A(x) = Diag{A1(x), ..., AM (x)} ≥ 0,

we get block-diagonal A. Note also that the ”unstructured” case (A(·) has no nontrivial block-diagonal
structure, as, e.g., in the problem associated with the Lovasz capacity number) is also covered by our
assumption (it corresponds to M = 1, m1 = m).

Path-following approach is immediate:

Standard reformulation of the problem: problem from the very beginning is in the standard form.

Barrier: by definition, the feasible set of the problem is the inverse image of the cone Sµ+ of all positive
semidefinite symmetric m ×m matrices belonging to the space Sµ of symmetric matrices of the block-
diagonal structure

µ = (m1, ...,mM )

(M diagonal blocks of the sizes m1, ...,mM ) under the mapping

x 7→ A(x) : Rn → Sµ.

Due to our standard combination rules, the function

Φ(X) = − ln Det X : int Sµ+ → R

is m-logarithmically homogeneous self-concordant barrier for the cone Sµ+; by construction, G is the
inverse image of the cone under the affine mapping

x 7→ A(x),

so that the function
F (x) = Φ(A(x))

is a m-self-concordant barrier for G.

Structural assumption is satisfied simply by the origin of the barrier F : it comes from them-logarithmically
homogeneous self-concordant barrier Φ for Sµ+, and the latter barrier possesses the explicit Legendre
transformation

Φ∗(S) = Φ(−S)−m.

Complexity. The only complexity characteristic which needs special investigation is the arithmetic cost
N of a Newton step. Let us look what is, computationally, this step. First of all, a straigtforward
computation results in the following expressions for the derivatives of the barrier Φ:

DΦ(X)[H] = −Tr{X−1H}; D2Φ(X)[H,H] = Tr{X−1HX−1H}.
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Therefore the derivatives of the barrier F (x) = Φ(A(x)) are given by the relations

∂

∂xi
F (x) = −Tr{A−1(x)Ai}

(recall that A(x) = A0 +
∑n
i=1 xiAi),

∂2

∂xi∂xj
F (x) = Tr{A−1(x)AiA

−1(X)Aj}.

We see that in order to assemble the Newton system

F ′′(x)y = −tc− F ′(x)

we should perform computations as follows (the expressions in brackets {·} represent the arithmetic cost
of the computation; for the sake of clarity, I omit absolute constant factors):

• given x, compute X = A(x) {n
∑M
i=1m

2
i - you should multiply n block-diagonal matrices Ai by xi’s

and take the sum of these matrices and the matrix A0};

• given X, compute X−1 {
∑M
i=1m

3
i ; recall that X is block-diagonal};

• given X−1, compute n components −Tr{X−1Ai} of the vector F ′(x) {n
∑M
i=1m

2
i };

• given X−1, compute n matrices Âi = X−1AiX
−1 {n

∑M
i=1m

3
i } and then compute n(n + 1)/2

quantities F ′′(x)ij = Tr{ÂiAj}, 1 ≤ i ≤ j ≤ n {n2
∑M
i=1m

2
i }.

The total arithmetic cost of assembling the Newton system is therefore

Nass = O(n2
M∑
i=1

m2
i + n

M∑
i=1

m3
i ).

It takes O(n3) operations more to solve the Newton system after it is assembled. Note that we may
assume that A(·) is an embedding - otherwise the feasible set G of the problem contains lines, and the
problem is unstable - small perturbation of the objective makes the problem below unbounded. Assuming
from now on that A(·) is an embedding (as a byproduct, this assumption ensures nonsingularity of F ′′(·)),
we see that n ≤

∑M
i=1mi(mi + 1)/2 - simply because the latter quantity is the dimension of the space

where the mapping A(·) takes its values. Thus, here, as in the (dense) Linear Programming case, the cost

of assembling the Newton system (which is at least O(n2
∑M
i=1m

2
i )) dominates the cost O(n3) of solving

the system, and we come to N = O(Nass). Thus, the complexity characteristics of the path-following
method for solving semidefinite programs are

ϑ = m =

M∑
i=1

mi; N =)(n2
M∑
i=1

m2
i + n

M∑
i=1

m3
i ); C = N

√
m. (11.10)

Potential reduction approach also is immediate: Conic reformulation of the problem is given by

minimize Tr{fy} s.t. y = A(x) ∈ Sµ+, (11.11)

where f ∈ Sµ ”represents the objective xT c in terms of y =
∑n
i=1 xiAi”, i.e., is such that

Tr{fAi} = ci, i = 1, ..., n.

The conic dual to (11.11) is, as it is easily seen, the problem

minimize Tr{A0s} s.t. s ∈ Sµ+, Tr{Ais} = ci, i = 1, ..., n. (11.12)

Logarithmically homogeneous self-concordant barrier: we already know that Sµ+ admits explicit m-
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logarithmically homogeneous self-concordant barrier Φ(X) = − ln Det X with explicit Legendre trans-
formation Φ∗(S) = Φ(−S) −m; thus, we have no conceptual difficulties with applying the methods of
Karmarkar or the primal-dual method.

Complexity: it is easily seen that the complexity characteristics of the primal-dual method associated with
the indicated barrier are given by (11.10); the characteristic C for the method of Karmarkar is O(

√
m)

times worse than that one given by (11.10). Comments. One should take into account that in the case of

Semidefinite Programming, same as in the Linear Programming case, complexity characteristics (11.10)
give very poor impression of actual performance of the algorithms. The first source of this phenomenon
is that ”real-world” semidefinite programs normally possess additional structure which was ignored in
our evaluation of the arithmetic cost of a Newton step; e.g., for the Lyapunov Stability problem (11.4)
we have mi = k, i = 1, ...,M , k being the dimension of the state space of the system, n = O(k2) (# of
design variables equals to # of free entries in a k × k symmetric matrix L). Our general considerations
result in

N = O(k6M)

(see (11.10) and in the qualitative conclusion that the cost of a step is dominated by the cost of assembling
the Newton system. It turns out, anyhow, that the structure of our LMI’s allows to reduce Nass to
O(k4M), which results in N = O(k6 + k4M); in particular, if M << k2, then the cost of assembling the
Newton system is negligible as compared to the cost of solving the system.

Further, numerical experiments demonstrate that the Newton complexity of finding an ε-solution
of a semidefinite program by a long-step path-following or a potential reduction interior point method
normally is significantly less than its theoretical O(

√
m) upper bound; in practice # of Newton steps

looks like a moderate constant (something 30-60). Thus, Semidefinite Programming is, basically, as
computationally tractable as Linear Programming.
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11.4 Exercises on Semidefinite Programming

The goal of the below exercises is to demonstrate additional abilities to represent convex problems via
semidefinite restrictions. Let us start with a useful definition:

let G be a closed convex domain in Rn. We call G semidefinite representable (SDR), if there exists an
affine mapping

AG(x, u) : Rn
x ×Rl

u → Sk

taking values in the space Sk of symmetric matrices of certain row size k such that the image of AG
intersects the interior of the cone Sk+ of positive semidefinite symmetric k × k matrices and

G = {x | ∃u : AG(x, u) ∈ Sk+}.

The above AG is called semidefinite representation of G.

Example: the mapping

A(x, u) =



u3 − x5

u2 u3

u3 u1

x4 u2

u2 x3

x2 u1

u1 x1


: R5

x ×R3
u → S7

(blank space corresponds to zero entries) represents the hypograph

G = {x ∈ R5 | x1, x2, x3, x4 ≥ 0, x5 ≤ [x1x2x3x4]1/4}

of the geometric mean of four variables x1, ..., x4.
Indeed, positive semidefiniteness of A(x, u) says that the north-western entry u3 − x5 is nonnegative,

i.e.,
x5 ≤ u3,

and that the remaining 2× 2 diagonal blocks of A are positive semidefinite symmetric matrices, i.e., say
that x1, ..., x4, u1, u2 are nonnegative and

u1 ≤
√
x1x2, u2 ≤

√
x3x4, u3 ≤

√
u1u2.

It is clear that a given x can be extended, by certain u, to a collection satisfying the indicated inequalities
if and only if x1, ..., x4 are nonnegative and x5 ≤ [x1...x4]1/4, i.e., if and only if x ∈ G.

The relation of the introduced notion to Semidefinite Programming is clear from the following

Exercise 11.4.1 i# Let G be an SDR domain with semidefinite representation AG. Prove that the convex
program

minimize cTx s.t. x ∈ G
is equivalent to the semidefinite program

minimize cTx s.t. AG(x, u) ≥ 0.

SDR domains admit a kind of calculus:

Exercise 11.4.2 #. 1) Let G+ ⊂ Rn be SDR, and let x = B(y) be an affine mapping from Rl into
Rn with the image intersecting int G+. Prove that G = B−1(G+) is SDR, and that a semidefinite
representation of G+ induces, in an explicit manner, a semidefinite representation of G.

2) Let G = ∩mi=1Gi be a closed convex domain in Rn, and let all Gi be SDR. Prove that G also is SDR,
and that semidefinite representations of Gi induce, in an explicit manner, a semidefinite representation
of G.

3) Let Gi ⊂ Rni be SDR, i = 1, ...,m. Prove that the direct product G = G1 ×G2 × ...×Gm is SDR,
and that semidefinite representations of Gi induce, in an explicit manner, a semidefinite representation
of G.
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The above exercises demonstrate that the possibilities to pose convex problems as semidefinite programs
are limited only by our abilities to find semidefinite representations for the constraints involved into the
problem. The family of conves sets which admit explicit semidefinite representations is surprisingly wide.
Lecture 11 already gives us a number of examples which are summarized in the following

Exercise 11.4.3 # Verify that the below sets are SDR and point out their explicit semidefinite represen-
tations:

• half-space

• Lebesque set {x | f(x) ≤ 0} of a convex quadratic form, such that f(x) < 0 for some x

• the second order cone K2 = {(t, x) ∈ R×Rn | t ≥ |x|2}

• the epigraph {(t,X) ∈ R × Sk | t ≥ λmax(X)} of the masimal eigenvalue of a symmetric k × k
matrix X

Now some more examples.

Exercise 11.4.4 Prove that

A(t, x) = Diag{t− x1, t− x2, ..., t− xn}

is SDR for the epigraph
{(t, x) ∈ R×Rn | t ≥ xi, i = 1, ..., n}

of the function max{x1, ..., xn}.

Exercise 11.4.5 Prove that

A(t, x) =

(
t xT

x X

)
is SDR for the epigraph

cl{(t, xi,X) ∈ R×Rn × (int Sn+) | t ≥ xTX−1x}

of fractional-quadratic funtion xTX−1x of vector x and symmetric positive semidefinite matrix X.

Exercise 11.4.6 The above Example gives a SDR of the hypograph of the geometrical mean [x1...x4]1/4

of four nonnegative variables. Find SDR for the hypograph of the geometrical mean of 2l nonnegative
variables.

Exercise 11.4.7 Find semidefinite representation of the epigraph

{(t, x) ∈ R2 | p ≥ (x+)p}, x+ = max[0, x],

of the power function for
1) p = 1; 2) p = 2; 3) p = 3; 4) arbitrary integer p > 0.

11.4.1 Sums of eigenvalues and singular values

For a symmetric k× k matrix X let λ1(X) ≥ λ2(X) ≥ ... ≥ λk(X) be the eigenvalues of X written down
with their multiplicities in the descent order. To the moment all we know about convexity of eigenvalues
is that the maximum eigenvalue λ1(X) is convex; we know even a SDR for this function (Exercise 11.4.3).
the remaining eigenvalues λi(X), i ≥ 2, simply are non convex in X. Nevertheless, they possess nice
property of monotonicity:

X,X ′ ∈ Sk, X ≤ X ′ → λi(X) ≤ λi(X ′), i = 1, ..., k.

This is an immediate corollary of the Courant-Fisher characterization of eigenvalues4:

λi(X) = max
E∈Ei

min
u∈E,|u|=1

uTXu,

4I strongly recommend to those who do not know this characterization pay attention to it; a good (and not difficult)
exercise if to prove the characterization
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Ei being the family of all linear subspaces in Rk of the dimension i.

An important fact is that the functions

Sm(x) =

m∑
i=1

λi(X), 1 ≤ m ≤ k,

are convex.

Exercise 11.4.8 + Prove that

Am(t,X; τ, U) =

 t−mτ − TrU 0 0
0 τI + U −X 0
0 0 U


(τ is scalar, U is symmetric k × k matrix) is a SDR for the epigraph

{(t,X) ∈ R× Sk | t ≥ Sm(X)};

in particular, Sm(x) is convex (since its epigraph is SDR and is therefore convex) monotone function.

For an arbitrary k × k matrix X let σi(X) be the singular values of X, i.e., square roots of the
eigenvalues of the matrix XTX. In what follows we always use the descent order of singular values:

σ1(X) ≥ σ2(X) ≥ ... ≥ σk(X).

Let also

Σm(X) =

m∑
i=1

σi(X).

The importance of singular values is seen from the following fundamental Singular Value Decomposition
Theorem (which for non-symmetric matrices plays basically the same role as the theorem that a symmetric
matrix is orthogonally equivalent to a diagonal matrix):

If X is a k × k matrix with singular values σ1,..., σk, then there exist pair of orthonormal basises {ei}
and {fi} such that

X =

k∑
i=1

σieif
T
i

(geometrically: the mapping x→ Xx takes the coordinates of x in the basis {fi}, multiplies them by the
singular values and makes the result the coordinates of Xx in the basis {ei}).

In particular, the spectral norm of X (the quantity max|x|2≤1 |Xx|2) is nothing but the largest singular
value σ1 of X.

In the symmetric case we, of course, have ei = ±fi (plus corresponds to eigenvectors fi of X with positive,
minus - to those with negative eigenvalues).

What we are about to do is to prove that the functions Σm(X) are convex, and to find their SDR’s.
To this end we make the following important observation:

let A and B be two k×k matrices. Then the sequences of eigenvalues (counted with their multiplicities) of
the matrices AB and BA are equal (more exactly, become equal under appropriate reordering). The proof

is immediate: we should prove that the characteristic polynomials Det (λI −AB) and Det (λI −BA) are
equal to each other. By continuouty reasons, it suffices to establish this identity when A is nondegenerate.
But then it is evident:

Det (λI −AB) = Det (A(λI −BA)A−1) = (Det A) Det (λI −BA)(Det (A−1)) = Det (λI −BA).

Now we are enough equipped to construct SDR’s for sums of singular values.
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Exercise 11.4.9 + Given a k × k matrix X, form the symmetric 2k × 2k matrix

Y (X) =

(
0 X
XT 0

)
.

Prove that the eigenvalues of this matrix are as follows: the first k of them are σ1(X),σ2(X),..., σk(X),
and the remaining k are −σk(X), −σk−1(X),...,−σ1(X). Derive from this observation that

Σm(X) = Sm(Y (X))

and use SDR’s for Sm(·) given by Exercise 11.4.8 to get SDR’s for Σm(X).

The results stated in the exercises from this subsection play the central role in constructing semidefi-
nite representations for the epigraphs of functions of eigenvalues/singular values of symmetric/arbitrary
matrices.

Concluding remark. We see that the family of SDR sets is very rich, and, consequently, the family
of convex problems which can be reformulated as semidefinite programs also is very rich. Nevertheless,
the family of SDR convex domains is smaller than the family of all convex domains. Indeed, a SDR
domain G ⊂ Rn

x , by definition, is a projection of the inverse image G+ ⊂ Rn
x ×Rl

u of the cone of positive
semidefinite matrices of certain dimension under an affine mapping (u, x) 7→ AG(u, x). The cone of
positive semidefinite matrices is a semianalytic set, i.e., a set given by finitely many nonstrict polynomial
inequalities (to say that a symmetric matrix is positive semidefinite is the same as to say that all its
principal minors are nonnegative). Consequently, the inverse image of the cone under affine mapping
- our G+ - also is semianalytic. Now, there exists fundamental Tarski’s Theorem which states that a
projection of a semianalytic set again is semianalytic. Thus, a necessary condition for a convex domain
to be SDR is semianalyticity of the domain. I do not know whether this condition is sufficient. I do not
know the answer even to the following

Open question: Let p(x) be convex polynomial on the axis. Is it true that the epigraph of p is SDR?
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Hints to Exercises

Hints to Section 2.3

Exercise 2.3.7: apply (P) to scalar symmetric forms uTA[h1, ..., hk], u being a vector with

‖ u ‖∗≡ sup
v∈Rk min ‖v‖≤1

uT v ≤ 1.

169
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Hints to Section 3.3

Exercise 3.3.2+:
1): the function

F (x) = −
m∑
i=j

ln(−fj(x)) ≡
n∑
j=1

Fj(x)

is self-concordant barrier for G (Exercise 3.3.1). Since G is bounded, F attains its minimum on int G at
certain point x∗ (V., Lecture 3). Choosing appropriate coordinates in Rn, we may assume that F ′′(x∗)
is the unit matrix. Now let j∗ be the index of that one of the matrices F ′′j (x∗) which has the minimal
trace; eliminate j∗th of the inequalities and look at the Newton decrement of the self-concordant function∑
j 6=j∗ Fj(x) at x∗.
2): we clearly can eliminate from the list of the sets Gα all elements which coincide with the whole

space, without violating boundedness of the intersection. Now, every closed convex set which differs
from the whole space is intersection of closed half-spaces, and these half-spaces can be chosen in such
a way that their interiors have the same intersection as the half-spaces themselves. Representing all
Gα as intersections of the above type, we see that the statement in question clearly can be reduced to
a similar statement with all Gα being closed half-spaces such that the intersection of the interiors of
these half-spaces is the same as the intersection of the half-spaces themselves. Prove that if ∩α∈IGα is
bounded and nonempty, then there exists a finite I ′ ⊂ I such that ∩α∈I′Gα also is bounded (and, of
course, nonempty); after this is proved, apply 1).
Exercise 3.3.5: this is an immediate consequence of II., Lecture 3.
Exercise 3.3.6: without loss of generality we may assume that ∆ = (a, 0) with some a < 0. Choose
an arbitrary x ∈ ∆ and look what are the conclusions of II., III., Lecture 3, when y → −0.

To complete the proof of (P), note that if G differs from Rn, then the intersection of G with certain line
is a sgement ∆ with a nonempty interior which is a proper part of the line, and choose as f the restriction
of F onto ∆ (this restriction is a ϑ-self-concordant barrier for ∆ in view of Proposition 3.1.1.(i)).
Exercise 3.3.7: note that the standard basis orths ei are recessive directions of G (see Corollary 3.2.1)
and therefore, according to the Corollary,

−DF (x)[ei] ≥ {D2F (x)[ei, ei]}1/2. (12.13)

To prove (3.17), combine (12.13) and the fact that D2F (x)[ei, ei] ≥ x−2
i , 1 ≤ i ≤ m (since x−xiei 6∈ int G,

while the open unit Dikin ellipsoid of F centered at x is contained in int G (I., Lecture 2)).
To derive from (3.17) the lower bound ϑ ≥ m, note that, in view of II., Lecture 3, it should be

ϑ ≥ DF (x)[0− x],

while (3.17) says that the latter quantity is at least m.
Exercise 3.3.9: as it was already explained, we can reduce the situation to the case of

G ∩ U = {x ∈ U | xi ≥ hi(x), i = 1, ...,m},

where hi(0) = 0, h′i(0) = 0. It follows that the interval

x(r) = r

m∑
i=1

ei, 0 < r < r0,

associated with certain r0 > 0, belongs to G; here ei are the standard basis orths. Now, let ∆i(r) be
the set of those t for which the vector x(r) − (t + r)ei belongs to G. Prove that ∆i(r) is of the type
[−ai(r), bi(r)] which contains in its interior r, and that bi(r)/r → 0, ai(r)/r → ∞ as r → +0. Derive
from these observations and the statement of Exercise 3.3.8 that −DF (x(r))[ei]r ≥ 1−α(r), i = 1, ...,m,
with certain α(r)→ 0, r → +0. To complete the proof of (Q), apply the Semiboundedness inequality I.,
Lecture 3, to x = x(r) and y = 0.
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Hints to Section 7.6

Exercise 7.6.7: (Pr’) could be used, but not when we intend to solve it by the primal-dual method.
Indeed, it is immediately seen that if (7.44) is solvable, i.e., in the case we actually are interested in, the
objective in (Pr’) is below unbounded, so that the problem dual to (Pr’) is unfeasible (why?) Thus, we
simply would be unable to start the method!
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Hints to Section 8.5

Exercise 8.5.1: we could, of course, assume that the Legendre transformation F ∗ of F is known; but it
would be less restrictive to assume instead that the solution to the problem is given in advance. Indeed,
knowledge of F ∗ means, in particular, ability to solve ”in one step” any equation of the type F ′(x) = d
(the solution is given by x = (F ∗)′(d)); thus, setting x = (F ∗)′(−1020c), we could get - in one step - the
point of the path x∗(·) associated with t = 1020.
Exercise 8.5.3: to get (8.34), prove by induction that

DjΦ(v)[h, ..., h] = (−1)j(j − 1)! Tr{[v−1h]j}

(use the rule d
dt |t=0(v + th)−1 = −v−1hv−1). To derive (8.35) from (8.34), pass to the eigenbasis of ĥ.

Exercise 8.5.5: combine the result of Exercise 5.4.4, the ”symmetric” to this result statement and the
result of Exercise 8.5.2.



HINTS TO EXERCISES 173

Hints to Section 10.5

Exercise 10.4: prove+ that the mapping

A(t,X) = t+ ln Det X : R× int Sn+ → R

is 2
3 -appropriate for the domain G+ = R+ and apply Superposition rule (N) from Lecture 9.

Exercise 10.5.7+: let for a vector v the set Lv on the axis be defined as

Lv = {λ ≥ 0 | vTRv ≤ λvTSv}.

This is a closed convex set, and the premise of the statement we are proving says that the set is nonempty
for every v; and the statement we should prove is that all these sets have a point in common. Of course,
the proof should use the Helley Theorem; according to this theorem, all we should prove is that

(a) Lv ∩ Lv′ 6= ∅ for any pair v, v′;
(b) Lv is bounded for some v.
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Solutions to Exercises

Solutions to Section 2.3

Exercise 2.3.3: let A be the set of all multiindices α = (α1, ..., αk) with nonnegative integer entries αi
and the sum of entries equal to k, let Sk be the # of elements in A, and let for α ∈ A

Aα[h1, ..., hk] = A[

α1 times︷ ︸︸ ︷
h1, ..., h1,

α2 times︷ ︸︸ ︷
h2, ..., h2, ...,

αk times︷ ︸︸ ︷
hk, ..., hk]

For k-dimensional vector r = (r1, ..., rk) we have, identically in h1, ..., hk ∈ Rn:

A[

k∑
i=1

rihi,

k∑
i=1

rihi, ...,

k∑
i=1

rihi] =
∑
α∈A

ωα(r)Aα[h1, ..., hk] (13.14)

(open parentheses and take into account symmetry of A), with ωα(r) being certain polynomials of r.
What we are asked to do is to find certain number m of vectors r1, r2,...,rm and certain weights

w1, ..., wm in such a way that when substituting r = rl into (13.14) and taking sum of the result-
ing identities with the weights w1, ..., wm, we get in the right hand side the only term A[h1, ..., hk] ≡
A(1,...,1)[h1, ..., hk], with the unit coefficient; then the resulting identity will be the required representa-
tion of A[h1, ..., hk] as a linear combination of the restriction of A[·] onto the diagonal.

Our reformulated problem is to choose m vectors from the family

F = {ω̂(r) = (ωα(r) | α ∈ A)}r∈Rk

of Sk-dimensional vectors in such a way that certain given Sk-dimensional vectors (unit at certain specified
place, zeros at the remaining places) will be a linear combination of the selected vectors. This for sure
is possible, with m = Sk, if the linear span of vectors from F is the entire space RSk of Sk-dimensional
vectors; and we are about to prove that this is actually the case (this will complete the proof). Assume,
on contrary, that the linear span of F is a proper subspace in RSk . Then there exists a nonzero linear
functional on the space which vanishes on F , i.e., there exists a set of coefficients λα, not all zeros, such
that

p(r) ≡
∑
α∈A

λαωα(r) = 0

identically in r ∈ Rk. Now, it is immediately seen what is ωα:

ωα(r) =
k!

α1!α2!...αk!
rα1
1 rα2

2 ...rαkk .

It follows that the partial derivative ∂k

∂α1r1∂α2r2...∂
αkrk

of p(·) is identically equal to λα; if p ≡ 0, then all
these derivatives, and, consequently, all λα’s, are zero, which is the desired contradiction.

Exercise 2.3.5: first of all, e1 and e2 are linearly independent since T1 6= T2, therefore h 6= 0, q 6= 0.
Let (Qx, y) = A[x, y, e3, ..., el]; then Q is a symmetric matrix.

Since {T1, ..., Tl} is an extremal, we have

ω = |(Qe1, e2)| = max{|(Qu, v)| | ‖ u ‖, ‖ v ‖≤ 1}.

175
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Therefore if E+ = {x ∈ Rn | Qx = ωx}, E− = {x ∈ Rn | Qx = −ωx} and E = (E+ + E−)⊥, then
at least one of the subspaces E+, E− is nonzero, ‖ Qx ‖≤ ω′ ‖ x ‖, x ∈ E, where ω′ < ω. Rn is the
direct sum of E+, E− and E. Let x = x+ + x− + x′ be the decomposition of x ∈ Rn corresponding to
the decomposition Rn = E+ + E− + E. Since each of the subspaces E+, E− and E is invariant for Q,

ω = |(Qe1, e2)| ≤ |ω(e+
1 , e

+
2 )− ω(e−1 , e

−
2 )|+ ω′ ‖ e′1 ‖‖ e′2 ‖

≤ ω(‖ e+
1 ‖‖ e

+
2 ‖ + ‖ e−1 ‖‖ e

−
2 ‖) + ω′ ‖ e′1 ‖‖ e′2 ‖

≤ ω{‖ e+
1 ‖2 + ‖ e−1 ‖2}1/2{‖ e

+
2 ‖2 + ‖ e−2 ‖2}1/2 + ω′ ‖ e′1 ‖‖ e′2 ‖

≤ ω

(we have taken into account that ‖ e+
i ‖2 + ‖ e−i ‖2 + ‖ e′i ‖2= 1, i = 1, 2). We see that all the

inequalities in the above chain are equalities. Therefore we have

‖ e′1 ‖=‖ e′2 ‖= 0; ‖ e+
1 ‖=‖ e

+
2 ‖; ‖ e−1 ‖=‖ e

−
2 ‖;

moreover, |(e+
1 , e

+
2 )| =‖ e+

1 ‖‖ e
+
2 ‖ and |(e−1 , e

−
2 )| =‖ e−1 ‖‖ e

−
2 ‖, which means that e+

1 = ±e+
2 and

e−1 = ±e−2 . Since e1 and e2 are linearly independent, only two cases are possible:
(a) e+

1 = e+
2 6= 0, e−1 = −e−2 6= 0, e′1 = e′2 = 0;

(b) e+
1 = −e+

2 6= 0, e−1 = e−2 6= 0, e′1 = e′2 = 0.
In case (a) h is proportional to e+

1 , q is proportional to e−1 , therefore

{Rh,Rh, T3, ..., Tl} ∈ T

and
{Rq,Rq, T3, ...Tl} ∈ T.

The same arguments can be used in case (b).

Exercise 2.3.6: let e ∈ T and f ∈ S be unit vectors with the angle between them being equal to α(T ).
Without loss of generality we can assume that t ≤ s (note that reordering of an extremal leads to an
extremal, since A is symmetric). By virtue of Exercise 2.3.5 in the case of α(T ) 6= 0 the collection

T ′ = {
2t times︷ ︸︸ ︷

R(e+ f), ...,R(e+ f),

s−t times︷ ︸︸ ︷
S, ..., S }

belongs to T∗ and clearly α(T ′) = α(T )/2. Thus, either T∗ contains an extremal T with α(T ) = 0,
or we can find a sequence {Ti ∈ T∗} with α(Ti) → 0. In the latter case the sequence {Ti} contains a
subsequence converging (in the natural sense) to certain collection T , which clearly belongs to T∗, and
α(T ) = 0. Thus, T contains an extremal T with α(T ) = 0, or, which is the same, an extremal of the type
{T, ..., T}.
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Solutions to Section 3.3

Exercise 3.3.1: F clearly is C3 smooth on Q = int G and possesses the barrier property, i.e., tends to
∞ along every sequence of interior points of G converging to a boundary point. Let x ∈ Q and h ∈ Rn.
We have

F (x) = − ln(−f(x)); DF (x)[h] = −Df(x)[h]

f(x)
;

D2F (x)[h, h] =
[Df(x)[h]]2

f2(x)
− D2f(x)[h, h]

f(x)
= [DF (x)[h]]

2
+
D2f(x)[h, h]

|f(x)|
;

D3F (x)[h, h, h] = −2
[Df(x)[h]]3

|f |3(x)
+ 3

Df(x)[h]D2f(x)[h, h]

f2(x)
.

Since f is convex, we immediately conclude that

D2F (x)[h, h] = r2 + s2, r =

√
D2f(x)[h, h]

|f(x)|
, s =

|Df(x)[h]|
|f(x)|

,

|DF (x)[h]| = s ≤
√
D2F (x)[h, h]

and
|D3F (x)[h, h, h]| ≤ 2s3 + 3sr2 ≤ 2(s2 + r2)3/2

(verify the concluding inequality yourself!). The resulting bounds on DF and D2F demonstrate that F
is self-concordant and that λ(F, ·) ≤ 1, so that F is a 1-self-concordant barrier for G.

The concluding statement of the exercise in question follows from the already proved one and Propo-
sition 3.1.1.
Exercise 3.3.2:

1): according to Exercise 3.3.1, F is self-concordant barrier for G; since G is bounded, F is nondegener-
ate (II., Lecture 2) and attains its minimum at certain point x∗ (V., Lecture 3). Choosing appropriate co-
ordinates in Rn, we may assume that F ′′(x∗) = I, I being the unit matrix. Now let Fj(x) = − ln(−fj(x)),
Qj = F ′′j (x∗), so that F =

∑
j Fj and I =

∑
j Qj . We have

∑m
j=1 TrQj = Tr I = n, so that

TrQj∗ ≤ n/m, j∗ being the index of Qj with the smallest trace. To simplify notation, in what fol-
lows we assume that j∗ = 1. An immediate computation implies that

Q1 = ggT +H, g = F ′1(x∗), H =
f ′′1

|f1(x∗)|
;

it is seen that H ≥ 0, so that n
m ≥ TrQ1 ≥ Tr{ggT } = |g|22.

Now let us compute the Newton decrement of the function

Φ(x) =

m∑
j=2

Fj(x)

at the point x∗. Since the gradient of F at the point is 0, the gradient of Φ is −g; since the Hessian of
F at x∗ is I, the Hessian of Φ is I −Q1 ≥ (1− n

m )I (the latter inequality immediately follows from the
fact that Q1 ≥ 0 and TrQ1 ≤ n

m . We see that

λ2(Φ, x∗) = [Φ′(x∗)]T [Φ′′(x∗)]−1Φ′(x∗) = gT [Φ′′(x∗)]−1g ≤ |g|22(1− n

m
)−1 ≤ n

m− n
< 1

(we have used the already proved estimate |g|22 ≤ n
m and the fact that m > 2n). Thus, the Newton

decrement of a nondegenerate (in view of Φ′′(x∗) > 0) self-concordant barrier (in view of Exercise 3.3.1)
Φ for the convex domain G+ = {x ∈ Rn | fj(x) ≤ 0, j = 2, ...,m} is < 1; therefore Φ attains its minimum
on int G+ (VII., Lecture 2). Since Φ is a nondegenerate self-concordant barrier for G+, the latter is
possible only when G+ is bounded (V., Lecture 3).

2): as explained in Hints, we can reduce the situation to that one with Gα being closed half-spaces
such that the intersection of the interiors of these half-spaces coincides with the intersection of the half-
spaces themselves; in particular, the intersection of any finite subfamily of the half-spaces Gα possesses
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a nonempty interior. Let us first prove that there exists a finite I ′ ⊂ I such that ∩α∈I′Gα is bounded.
Without loss of generality we may assume that 0 ∈ Gα, α ∈ I (since the intersection of all Gα is
nonempty). Assume that for every finite subset I ′ of I the intersection GI

′
= ∩α∈I′Gα is unbounded.

Then for every R > 0 and every I ′ the set GI
′

R = {x ∈ GI
′ | |x|2 = R} is a nonempty compact set;

these compact sets form a nested family and therefore their intersection is nonempty, which means that
∩α∈IGα contains, for every R > 0, a vector of the norm R and is therefore an unbounded set, which in
fact is not the case.

Thus, we can reduce the situation to a similar one for a finite family of closed half-spaces Gα with the
intersection of the interiors being bounded and nonempty; for this case the required statement is given
by 1).

Remark 13.0.1 I do not think that the above proof of item 1) of Exercise 3.3.2 is the simplest one;
please try to find a better proof.

Exercise 3.3.3: it is clear that F is C3 smooth on the interior of Sm+ and possesses the barrier property,
i.e., tends to ∞ along every sequence of interior point of the cone converging to a boundary point of it.
Now, let x be an interior point of Sm+ and h be an arbitrary direction in the space Sm of symmetric m×m
matrices, which is the embedding space of the cone. We have

F (x) = − ln Det x;

DF (x)[h] =
∂

∂t
|t=0[− ln Det (x+ th)] =

∂

∂t
|t=0[− ln Det x− ln Det (I + tx−1h)] =

= −
∂
∂t |t=0 Det (I + tx−1h)

Det (I)
= −Tr(x−1h)

(to understand the concluding step, look at the matrix I+tx−1h; its diagonal entries are 1+t[x−1h]ii, and
the entries outside the diagonal are of order of t. Representing the determinant as the sum of products,
we obtain m! terms, one of them being

∏
i(1 + t[x−1h]ii) and the remaining being of the type tkp with

k ≥ 2 and p independent of t. These latter terms no not contribute to the derivative with respect to t at
t = 0, and the contribution of the ”diagonal” term is exactly

∑
i[x
−1h]ii = Tr(x−1h)).

Thus,

DF (x)[h] = −Tr(x−1h),

whence

D2F (x)[h, h] = Tr(x−1hx−1h)

(we have already met with the relation DB(x)[h] = −B(x)hB(x), B(x) ≡ x−1; to prove it, differentiate
the identity B(x)x ≡ I).

Differentiating the expression for D2F , we come to

D3F (x)[h, h, h] = −2 Tr(x−1hx−1hx−1h)

(we again have used the rule for differentiating the mapping x 7→ x−1). Now, x is positive definite sym-
metric matrix; therefore there exists a positive semidefinite symmetric y such that x−1 = y2. Replacing
x−1 by y and taking into account that Tr(AB) = Tr(BA), we come to the expressions

DF (x)[h] = −Tr ξ, D2F (x)[h, h] = Tr ξ2, D3F (x)[h, h, h] = −2 Tr ξ3, ξ = yhy

(compare these relations with the expressions for the derivatives of the function − ln t). The matrix ξ
clearly is symmetric; expressing the traces via the eigenvalues λ1, ..., λm of the matrix ξ, we come to

DF (x)[h] = −
m∑
i=1

λi; D
2F (x)[h, h] =

m∑
i=1

λ2
i ; D

3F (x)[h, h, h] = −2

m∑
i=1

λ3
i ,

which immediately implies the desired inequalities

|DF (x)[h]| ≤
√
m
√
D2F (x)[h, h]
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and
|D3F (x)[h, h, h]| ≤ 2

[
D2F (x)[h, h]

]3/2
.

Exercise 3.3.8: If ∆ = (−∞, 0], then the statement in question is given by Corollary 3.2.1. From now
on we assume that ∆ is finite (i.e., that a < +∞). Then f attains its minimum on int ∆ at a unique point
t∗ (V., Lecture 3), and t∗ partitiones ∆ in the ratio not exceeding (ϑ + 2

√
ϑ) : 1 (this is the centering

property stated by the same V.). Thus, t∗ ≤ −a/(ϑ+ 2
√
ϑ+ 1); the latter quantity is < t, since γt ∈ ∆

and therefore t ≥ −a/γ. Since t∗ < t, we have f ′(t) > 0. Note that we have also establish that

t/t∗ ≤ (1 +
√
ϑ)2

γ
.

Let λ be the Newton decrement of a self-concordant function f at t; since f ′(t) > 0, we have

λ = f ′(t)/
√
f ′′(t).

Note that f ′′(t) ≥ t−2 (because the open Dikin ellipsoid of f centered at t should be contained in int ∆
and 0 is a boundary point of ∆), and therefore

λ ≤ −tf ′(t). (13.15)

It is possible, first, that λ ≥ 1. If it is the case, then (3.19) is an immediate consequence of (13.15).
It remains to consider the case when λ < 1. In this case, in view of VIII., Lecture 2, we have

f(t) ≤ f(t∗) + ρ(λ), ρ(s) = − ln(1− s)− s.

On the other hand, from the Lower bound on f (III., Lecture 3) it follows that

f(t) ≥ f(t∗) + f ′(t∗)(t− t∗)− ln(1− πt∗(t))− πt∗(t) ≡ f(t∗) + ρ(πt∗(t)).

Thus, we come to
ρ(λ) ≥ ρ(πt∗(t)),

whence

λ ≥ πt∗(t) ≡ |(t− t∗)/t∗| ≥ 1− (1 +
√
ϑ)2

γ
.

Combining this inequality with (13.15), we come to

−tf ′(t) ≥ 1− (1 +
√
ϑ)2

γ
,

as required in (3.19). (3.20) is nothing but (3.19) applied to the restriction of F onto the contained in G
part of the line passing through x and z.
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Solutions to Section 5.4

Exercise 5.5.4: let α(τ, s) be the homogeneous part of the affine mapping A. A vector w = (r, q1, ..., qk)
is in c+ L⊥ if and only if

(w,α(τ, s)) = (c, α(τ, s))

identically in (τ, s) ∈ E. This relation, in view of the construction of A, can be rewritten as

rT s+

k∑
j=1

[λjτ + Tr{σjA(s)}] = τ

identically in (τ, s) with the zero sum of si, which immediately results in (5.20), (5.21).
To complete the derivation of the dual problem, we should realize what is (b, w) for w ∈ c+L⊥. This

is immediate:

(b, w) = [eT r +

k∑
j=1

Tr{A(e)σj}] + 2

k∑
j=1

zTj fj ,

and the quantity in the parentheses [ ] is nothing but V ρ in view of (5.21).
Exercise 5.5.5: let us perform in (TTDd) partial optimization over σj and r. Given a feasible plan of
(TTDd), we have in our standard notation:

λj ≥ 0; λj = 0⇒ zj = 0; σj ≥ λ−1
j zjz

T
j

(these relations say exactly that the symmetric matrix qj =

(
λj zTj
zj σj

)
is positive semidefinite, cf.

Exercise 5.5.3).
From these observations we immediately conclude that replacing in the feasible plan in question

the matrices σj by the matrices σ′j = λ−1
j zjz

T
j for λj > 0 and zero matrices for λj = 0, we preserve

positive semidefiniteness of the updated matrices qj and ensure that
∑
j b
T
i σ
′
jbi ≤

∑
j b
T
i σjbi; these latter

quantities were equal to ρ − ri with nonnegative ri, so that the former ones also can be represented
as ρ − r′i with nonnegative r′i. Thus, we may pass from a feasible plan of (TTDd) to another feasible
plan with the same value of the objective, and with σj being of the dyadic form λ−1

j zjz
T
j ; the remaining

simplifications are straightforward.
Exercise 5.5.6: as we know, K is self-dual, so that the formalism presented in Exercise 5.4.11 results
in the following description of the problem dual to (π):

minimize βT η by choice of

η = (ζ, π·) ∈ K

and real r subject to the constraint that the equality

(η,A(ξ)) = χT ξ + krpT ξ (13.16)

holds true identically in ξ; here

β = A(p).

Indeed, the requirement that (13.16) is identity in ξ is exactly the same as the relation

AT η = χ+ PT r,

A being the matrix of the mapping A (in our case this mapping is linear homogeneous); we have taken
into account that PT r = krp, see the description of the data of (π).

Now, using in the straightforward manner the description of the data in (π) and denoting

πij =

(
αij βij
βij γij

)
,
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we can rewrite identity (13.16) as the following identity with respect to f , λ, yij and zj (in what follows
i varies from 1 to m, j varies from 1 to k):

∑
i

ζi
f −∑

j

[2zTj fj + V yij ]

+
∑
i,j

{
yijαij + 2βijb

T
i zj + λjγij

]
= f + r

∑
j

λj ,

which results in the following equations on η: ∑
i

ζi = 1; (13.17)

V ζi = αij ; (13.18)

(
∑
i

ζi)fj =
∑
i

βijbi; (13.19)

∑
i

γij = r. (13.20)

Now, the constraint η ∈ K is equivalent to

ζi ≥ 0; πij ≡
(
αij βij
βij γij

)
≥ 0, (13.21)

and the objective βT η ≡ (A(p))T η is nothing but

k−1
∑
ij

γij .

Expressing via equations (13.17) - (13.20) all components of η via in terms of variables φi ≡ V ζi, βij
and r and taking into account that the condition πij ≥ 0 is equivalent to αij ≥ 0, γij ≥ 0, αijγij ≥ β2

ij ,
and eliminating in the resulting problem the variables γij by partial optimization with respect to these
variables, we immediately come to the desired formulation of the problem dual to (π).
Exercise 5.5.7: let (φ, β·) be a feasible solution to (ψ), and let I be the set of indices of nonzero φi.
Then βij = 0 whenever i 6∈ I - otherwise the objective of (ψ) at the solution would be infinite (this is our
rule for interpreting fractions with zero denominators), and the solution is assumed to be feasible. Let
us fix j and consider the following optimization problem:

(Pj) : minimize
∑
i∈I

v2
i φ
−1
i s.t.

∑
i∈I

vibi = fj ,

vi being the control variables. The problem clearly is feasible: a feasible plan is given by vi = βij , i ∈ I.
Now, (Pj) is a quadratic problem with nonnegative objective and linear equality constraints; therefore it
is solvable. Let β∗ij , i ∈ I, be an optimal solution to the problem, and let β∗ij = 0 for i 6∈ I. From the
optimality conditions for (Pj) it follows that there is an n-dimensional vector 2xj - the vector of Lagrange
multipliers for the equality constraints - such that β∗ij , i ∈ I, is an optimal solution to the unconstrained
problem

minimize
∑
i∈I

v2
i φ
−1
i + 2xTj (fj −

∑
i

vibi),

so that for i ∈ I one has
β∗ij = φix

T
j βi; (13.22)

this relation, of course, is valid also for i 6∈ I (where both sides are zero). Since β∗i· is feasible for (Pj),
we have

∑
i β
∗
ijbi = fj , which in view of (13.22) implies that

fj = (
∑
i

φi(bib
T
i ))xj ≡ A(φ)xj . (13.23)

This latter relation combined with (13.22) says that the plan (φ, β∗· ) is the image of the feasible plan
(φ, x1, ..., xk) under the mapping (5.35).
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What are the compliances cj associated with the plan (φ, x1, ..., xk)? In view of (13.22) - (13.23) we
have

cj = xTj fj = xTj
∑
i

β∗ijbj =
∑
i∈I

β∗ij(x
T
j bj) =

∑
i∈I

[β∗ij ]
2φ−1
j ;

and since βij form a feasible, and β∗ij - an optimal plan to (Pj), we come to

cj ≤
∑
i

β2
ijφ
−1
i .

Thus, the value of the objective (i.e., maxj cj) of (TTDini) at the plan (φ, x1, ..., xk) does not exceed the
value of the objective of (ψ) at the plan (φ, β·), and we are done.
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Solutions to Section 6.7

Exercise 6.7.3: if the set Kσ = {y ∈ K ∩M | σT y = 1} were bounded, the set K(σ) = {y ∈ K ∩M |
σT y ≤ 1} also would be bounded (since, as we know from (6.7), σT y is positive on M ∩ int K). From
this latter fact it would follow that σ is strictly positive on the cone K ′ = K ∩M (see basic statements
on convex cones in Lecture 5). The optimal solution x∗ is a nonzero vector from the cone K ′ and we
know that σTx∗ = 0; this is the desired contradiction.

All remaining statements are immediate: φ is nondegenerate self-concordant barrier for Kσ (regarded
as a domain in its affine hull) due to Proposition 5.3.1; Domφ is unbounded and therefore φ is below
unbounded on its domain (V., Lecture 3); since φ is below unbounded, its Newton decrement is ≥ 1 at any
point (VIII., Lecture 2) and therefore the damped Newton step decreases φ at least by ρ(−1) = 1− ln 2
(V., Lecture 2).
Exercise 6.7.5: 1) is an immediate consequence of III.. To prove 2), note that (S, χ∗) = 0 for certain
positive semidefinite χ∗ = I − δ with δ ∈ Π (IVb.). Since (S, I) = 1 (III.), we have (δ, S) = 1; since η
is the orthoprojection of S onto Π and δ ∈ Π, we have (δ, η) = (δ, S), whence (δ, η) = 1. Now, (η, I) = 0
(recall that η ∈ Π and Π is contained in the subspace of matrices with zero trace, see II.). Thus, we
come to (I − δ, η) ≡ (χ∗, η) = −1. Writing down the latter relation in the eigenbasis of η, we come to

n∑
i=1

χigi = −1,

χi being the diagonal entries of χ∗ with respect to the basis; since χi ≥ 0 (recall that χ∗ is positive
semidefinite) and

∑
i χ
∗
i = n (see IVb.), we conclude that maxi |gi| ≥ n−1.

Exercise 6.7.6: one clearly has τ ∈ T , and, consequently, τ ∈ Domφ. We have

φ(0)− φ(τ) =
∑
i

ln(1− τgi)− n ln(1− τ |g|22) ≥

[due to concavity of ln]

≥
∑
i

ln(1− τgi) + nτ |g|22 =

∞∑
j=1

∑
i

j−1(−τgi)j + nτ |g|22 =

[since
∑
i gi = 0, see Exercise 6.7.5, 1)]

=

∞∑
j=2

∑
i

j−1(−τgi)j + nτ |g|22 ≥

≥ −
∞∑
j=2

j−1[τ |g|2]2[τ |g|∞]j−2 + nτ |g|22 =

= − |g|
2
2

|g|2∞

∞∑
j=2

j−1(τ |g|∞)j + nτ |g|22 =

=
|g|22
|g|2∞

[ln(1− τ |g|∞) + τ |g|∞] + nτ |g|22.

Substituting into the resulting lower bound for φ(0) − φ(τ) the value of τ indicated in the exercise, we
come to the lower bound

α ≥ |g|
2
2

|g|2∞
[n|g|∞ − ln(1 + n|g|∞)] ;

it remains to use Exercise 6.7.5, 2).
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Solutions to Section 7.6

Exercise 7.6.3: by construction, K is the direct product of M + r copies of the cone Sν+ of positive
semidefinite symmetric ν × ν matrices. The latter cone is self-dual (Exercise 5.4.7), and therefore K also
is self-dual (Exercise 5.4.9). Now, − ln Det y is a ν-vartheta logarithmically homogeneous self-concordant
barrier for the cone Sν+ (Example 5.3.3, Lecture 5), and the Legendre transformation of this barrier is
− ln Det (−r)−ν (Exercise 5.4.10). From Proposition 5.3.2.(iii) it follows that the direct sum of the above
barriers for the direct factors of K, which is nothing but the barrier F (x) = − ln Det x, is (M + 2)ν-
logarithmically homogeneous self-concordant barrier for K. The Legendre transformation of direct sum
clearly is direct sum of the Legendre transformations.
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Solutions to Section 8.5

Exercise 8.5.4: by definition of ζ ≡ ζ(v, dv) we have v+ rdv ∈ int Sk+ whenever |r| < ζ, so that f(r) is
well-defined. Now, the function f(r) clearly is analytic on its domain, and its Taylor expansion at r = 0
is

∞∑
i=0

f (i)(0)

i!
ri =

∞∑
i=0

DiΦ(v)[dv, ..., dv]

i!
ri =

[Exercise 8.5.3]

= f(0) + f ′(0)r +

∞∑
i=2

(−1)i
Tr{ĥi}
i

ri, ĥ = v−1/2dvv−1/2.

In view of (8.35) the absolute values of the coefficients in the latter series are bounded from above by

i−1|ĥ|22|ĥ|i−2
∞ , so that the series converges (and, consequently, represents f - recall that f is analytic on

its domain) when r < ζ(v, dv) ≡ |h|−1
∞ (see (8.33). It follows that the reminder for the aforementioned r

is bounded from above by the series

|ĥ|22
|ĥ|2∞

∞∑
i=j+1

i−1(r|ĥ|∞)i,

and, taking into account that |ĥ|2 = 1 in view of (8.32), we come to (8.36).
Exercise 8.5.6: Since x ∈ int G, we have u ∈ int Sk+; further,

|du|Φ′′(u) = |πdx|Φ′′(u) = |dx|πTΦ′′(u)π = |dx|F ′′(x) = 1,

so that (u, du) indeed is an arrow; by construction, (s, ds) is the conjugate to (u, du) co-arrow.
It remain to note that by definition of ∆ and due to the normalization |dx|F ′′(x) = 1 we have

∆ = max{p | x± pdx ∈ G} = max{p | u± pdu ∈ Sk+} ≡ ζ(u, du).

Exercise 8.5.7: by Lemma 8.3.1 and Proposition 8.3.1, the upper bound v(r) for the residual Ft+dt(x+
dx(dt))−miny Ft+dt(y) is bounded from above by the reminder ρ∗(r) in the third order Taylor expansion
of the function Φ(u+rdu(dt))+Φ∗(s+rds(dt)); here dt is an arbitrary positive scale factor, and we are in
our right to choose dt in a way which ensures that |dx(dt)|F ′′(x) = 1; with this normalization, Ω = Ω(x)
will be exactly the quantity δt/dt, where δt is the stepsize given by the linesearch. The quantity Ω is
therefore such that v(Ω) = O(1) (since we use linesearch to get the largest r which results in v(r) ≤ κ);
consequently, ρ∗(Ω) ≥ O(1). On the other hand, in view of Exercises 8.5.5 and 8.5.6, ρ∗(r) is exactly
R3

(u,du)(r); combining (8.37) and the inequality ρ∗(Ω) ≥ O(1), we come to

ζ2(u, du)ρ3(Ω/ζ(u, du)) ≥ O(1),

and since ζ(u, du) = ∆ ≡ ∆(x) by Exercise 8.5.6, we obtain

ρ3(Ω/∆) ≥ O(1)∆−2.

Since ρ3(z) ≤ O(1)z4, |z| ≤ 1/2, we conclude that

Ω/∆ ≤ 1/2⇒ Ω ≥ O(1)
√

∆;

the resulting inequality for sure is true if Ω/∆ > 1/2, since, as we know, ∆ ≥ 1.
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Solutions to Section 9.6

Exercise 9.6.1:
1): the ”general” part is an immediate consequence of the Substitution rule (N) as applied to the

mapping

B : (t, x) 7→
(
xTx
t

)
[G− = R×Rn]

which is 1-appropriate for G+ in view of Proposition 9.3.1.
The ”particular” part is given by the general one as applied to

G+ = {(u, s) | u ≤ s2/p, s ≥ 0}

and the 2-self-concordant barrier F+(u, s) = − ln(s2/p − u)− ln s for G+, see Example 9.2.1.
2): the ”general” part is an immediate consequence of the Substitution rule (N) applied to the mapping

B : (t, x) 7→
(
xT x
t
t

)
[G− = R+ ×Rn]

which is appropriate for G+ in view of Proposition 9.3.1.
The ”particular” part is given by the general one as applied to

G+ = {(u, s) | u ≤ s2/p−1, s ≥ 0},

the 2-self-concordant barrier
F+(u, s) = − ln(s2/p−1 − u)− ln s

for G+ (see Example 9.2.1) and the 1-self-concordant barrier

F−(t, x) = − ln t

for the domain G− of the mapping B.
Exercise 9.6.3: apply Proposition 9.3.1 to the data

• G+ = Sm+ , F+(τ) = − ln Det τ ;

• Q[ξ′, ξ′′] = 1
2

∑q
j=1[(ξ′j)

T ξ′′j + (ξ′′j )T ξ′j ],

ξ = (ξ1, ..., ξq);

• A(η)ξ = (y1(η)ξ1, ..., yq(η)ξq),

F−(η) = FY (η).

Exercise 9.6.4.2): specify the data in Exercise 9.6.3 as

• q = k, n1 = ... = nk = m;

• Y = Rk
+, yj(η) = ηjI, j = 1, ..., k;

• FY (η) = −
∑k
j=1 ln ηj .

The resulting cone K clearly is comprised of collections (τ ; η; ξj) (τ is m×m symmetric matrix, η ∈ Rk,
ξj are m×m matrices), for which

η ≥ 0; τ −
k∑
j=1

η−1
j ξTj ξj ≥ 0.

The cone G+ is the inverse image of the ”huge” cone K under the linear mapping

(si; tij ; rj) 7→

 τ = Diag{s1, ..., sm}
ξj = Diag{t1j , ..., tmj}I

ηj = rj

 ,
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and Φ is nothing but the superposition of the barrier F for K given by the result of Exercise 9.6.3 and
this mapping.
Exercise 9.6.5: let us compute derivatives ofA at a point u = (t, y) ∈ int G− in a direction du = (dt, dy)
such that u± du ∈ G−; what we should prove is that

D2A(u)[du, du] ≤ 0 (13.24)

and that
D3A(u)[du, du, du] ≤ −3D2A(u)[du, du]. (13.25)

Let us set ηi = dyi/yi, σk =
∑p
i=1 η

k
i , so that, in the clear notation, dσk = −kσk+1, and let φ(t, y) =

(y1...yp)
1/p. We have

DA(t, y)[du] = p−1σ1φ(t, y)− dt;

D2A(t, y)[du, du] = p−2σ2
1φ(t, y)− p−1σ2A(t, y) = p−2[σ2

1 − pσ2]φ(t, y),

D3A(t, y)[du, du, du] = −p−2[2σ1σ2 − 2pσ3]φ(t, y) + p−3σ1[σ2
2 − pσ2].

Now, let
λ = p−1σ1, αi = ηi − λ.

We clearly have

σ1 = pλ; σ2 =

p∑
i=1

η2
i = pλ2 +

p∑
i=1

α2
i ; σ3 =

p∑
i=1

η3
i = pλ3 + 3λ

p∑
i=1

α2
i +

p∑
i=1

α3
i . (13.26)

Substituting these expressions for σk in the expressions for the second and the third derivative of A, we
come to

d2 ≡ −D2A(t, y)[du, du] = p−1φ(t, y)

p∑
i=1

α2
i ≥ 0, (13.27)

as required in (13.24), and

d3 ≡ D3A(t, u)[du, du, du] = −2p−2φ(u)[p2λ3 + pλ

p∑
i=1

α2
i − p2λ3 − 3pλ

p∑
i=1

α2
i − p

p∑
i=1

α3
i ]−

−p−1φ(u)λ

p∑
i=1

α2
i =

=
3

p
φ(u)λ

p∑
i=1

α2
i +

2

p
φ(u)

p∑
i=1

α3
i =

3

p
φ(u)

p∑
i=1

[λ+
2

3
αi]α

2
i =

=
3

p
φ(u)

p∑
i=1

[
1

3
λ+

2

3
ηi]α

2
i . (13.28)

Now, the inclusion u ± du ∈ G− means exactly that −1 ≤ ηi ≤ 1, i = 1, ..., p, whence also |λ| ≤ 1;
therefore | 13λ+ 2

3ηi| ≤ 1, and comparing (13.28) and (13.27), we come to (13.25).
Exercise 9.6.6: The mapping B(·) is the superposition A(L(·)) of the mapping

A(t, y1, ..., yp) = (y1...yp)
1/p − t : H → R

with the domain
H = {(t, y1, ..., yp) | y ≥ 0}

and the linear mapping
L(τ, ξ, η) = (ξ, τ, η, ..., η) : R3 → Rp+1;

namely, the set G− is exactly L−1(H), and on the interior of G− we have B(·) ≡ A(L(·)).
From Exercise 9.6.5 we know that A is 1-appropriate for R+; the fact that B laso is 1-appropriate for

R+ is given by the following immediate observation:
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Let A : int H → RN (H is a closed convex domain in RK) be β-appropriate for a closed convex
domain G+ ⊂ RN , let L be an affine mapping in certain RM , and let G− be a closed convex domain in
the latter space such that L(int G−) ⊂ int H. Then the composite mapping

B(x) = A(L(x)) : int G− → RN

is β-appropriate for G+.

Thus, our particular B indeed is 1-appropriate with R+; the remaining claims of the Exercise are
given by Theorem 9.1.1 applied with F+(z) = − ln z and F−(τ, ξ, η) = − ln τ − ln η.
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Solutions to Section 10.5

Exercise 10.5.2: what we should prove is that GO is convex and that the solutions to (Outer’) are
exactly the minimum volume ellipsoids which contain Q.

To prove convexity, assume that (r′, x′, X ′) and (r′′, x′′, X ′′) are two points of G′, λ ∈ [0, 1] and
(r, x,X) = λ(r′, x′, X ′) + (1 − λ)(r′′, x′′, X ′′); we should prove that (r, x,X) ∈ G′. Indeed, by the
definition of G′ we have for all u ∈ Q

uT (X ′)u+ 2(x′)Tu+ r′ ≤ 0, uT (X ′′)u+ 2(x′′)Tu+ r′′ ≤ 0,

whence, after taking weighted sum,
uTXu+ 2xTu+ r ≤ 0.

Thus, the points of Q indeed satisfy the quadratic inequality associated with (r, x,X); since X clearly
is symmetric positive definite and Q possesses a nonempty interior, this quadratic inequality does define
an ellipsoid, and, as we have seen, this ellipsoid E(r, x,X) contains Q. It remains to prove that the
triple (r, x,X) satisfies the normalizing condition δ(r, x,X) ≤ 1; but this is an immediate consequence
of convexity of the function xTX−1x − r on the set (r, x,X) with X ∈ int Sn+ (see the section on the
fractional-quadratic mapping in Lecture 9).

It remains to prove that optimal solutions to (Outer’) represent exactly minimum volume ellipsoids
which cover Q. Indeed, let (r, x,X) be a feasible solution to (Outer’) with finite value of the objective. I
claim that δ(r, x,X) > 0. Indeed, X is positive definite (since it is in Sn+ and F is finite at X), therefore
the set E(r, x,X) is empty, a point or an ellipsoid, depending on whether δ(r, x,X) is negative, zero or
positive; since (r, x,X) ∈ GO, the set E(r, x,X) contains Q, and is therefore neither empty nor a point
(since int Q 6= ∅), so that δ(r, x,X) must be positive. Thus, feasible solutions (r, x,X) to (Outer’) with
finite value of the objective are such that the sets E(r, x,X) are ellipsoids containing Q; it is immediately
seen that every ellipsoid with the latter property comes from certain feasible solution to (Outer’). Note
that the objective in (Outer’) is ”almost” (monotone transformation of) the objective in (Outer):

ln Vol(E(r, x,X)) = lnκn +
n

2
ln δ(r, x,X)− 1

2
ln Det X,

and the objective in (Outer’) is F (X) = − ln Det X. We conclude that (Outer) is equivalent to the
problem (Outer”) which is obtained from (Outer’) by replacing the inequality δ(r, x,X) ≤ 1 with the
equation δ(r, x,X) = 1. But this is immediate: if (r, x,X) is a feasible solution to (Outer’) with finite
value of the objective, then, as we know, δ(r, x,X) > 0; setting γ = δ−1(r, x,X) and (r′, x′, X ′) =
γ(r, x,X), we come to E(r, x,X) = E(r′, x′, X ′), δ(r′, x′, X ′) = 1, so that (r′, x′, X ′) ∈ GO, and F (X ′) =
F (X) +n ln γ ≤ F (X). From this latter observation it immediately follows that (Outer’) is equivalent to
(Outer”), and this latter problem, as we just have seen, is nothing but (Outer).
Exercise 10.5.4: to prove that A is 2

3 -appropriate for G+, note that a direct computation says that
for positive definite symmetric X and any (dt, dX) one has

d2 ≡ D2A(t,X)[(dt, dX), (dt, dX)] = −Tr{X−1dXX−1dX} = −Tr{[δX]2},

δX = X−1/2dXX−1/2

and
d3 ≡ D3A(t, x)[(dt, dX), (dt, dX), (dt, dX)] =

= 2 Tr{X−1dXX−1dXX−1dX} = 2 Tr{[δX]3}.
Since the recessive cone K of G+ is the nonnegative ray, the evident relation d2 ≤ 0 says that A is
concave with respect to K. Besides this, if X ± dX is positive semidefinite, then −I ≤ δX ≤ I, whence
Tr{[δX]3} ≤ Tr{[δX]2} (look what happens in the eigenbasis of δX), so that d3 ≤ −2d2. Thus, A indeed
is 2

3 -appropriate for G+.
Exercise 10.5.5: the feasible set in question is given by the following list of constraints:

aTj Xaj + 2xTaj + r ≤ 0, j = 1, ...,m

(corresponding 1-self-concordant barriers are − ln(−aTj Xaj − 2xTaj − r));

− ln Det X ≤ t
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(corresponding (n+ 1)-self-concordant barrier is − ln(t+ ln Det X)− ln Det X, Exercise 10.5.4);
and, finally,

cl{X ∈ int Sn+, 1− r + xTX−1x ≥ 0}.

The set H defined by the latter constraint is the inverse image of G+ = R+ under the nonlinear mapping

(r, x,X) 7→ 1 + r − xTX−1x : int G− → R,

G− = {(r, x,X) | X ∈ Sn+}. Proposition 9.3.1 says that the function

− ln(1 + r − xTX−1x)− ln Det X

is (n+ 1)-self-concordant barrier for H.
To get a self-concordant barrier for G, it remains to take the sum of the indicated barriers.

Exercise 10.5.6: since Y is positive definite, any direction w′ of the type (u, 0) is such that (w′)TRw′ >
0. Now, E(r, x,X) is an ellipsoid, not a point or the empty set, and therefore there is a vector v such
that

vTXv + 2xT v + r < 0;

setting w = (v, 1), we get wTSw < 0.
Exercise 10.5.7: (b) is immediate: we know that wTSw < 0 for some w, so that Lw clearly is bounded.
A nontrivial task is to prove (a). Thus, let us fix v and v′ and prove that Lv and Lv′ have a point in
common.

10. Consider the quadratic forms

S[p, q] = (pv + qv′)TS(pv + qv′), R[p, q] = (pv + qv′)TR(pv + qv′)

on R2, and let

S =

(
a d
d b

)
, R =

(
α δ
δ β

)
be the matrices of these forms. What we should prove is that there exists nonnegative λ such that

α ≤ λa, β ≤ λb. (13.29)

The following four cases are possible:
Case A: a > 0, b > 0. In this case (13.29) is valid for all large enough positive λ.
Case B: a ≤ 0, b ≤ 0. Since a = vTSv and α = vTRv, in the case of a ≤ 0 we have also α ≤ 0 (this

is given by (Impl)). Similarly, b ≤ 0⇒ β ≤ 0. Thus, in the case in question α ≤ 0, β ≤ 0, and (13.29) is
satisfied by λ = 0.

Case C: a ≤ 0, b > 0; Case D: a > 0, b ≤ 0. These are the only nontrivial cases which we should
consider; due to the symmetry, we may restrict ourselves with the case C only. Thus, from now on a ≤ 0,
b > 0.

20. Assume (case C.1) that a < 0. Then the determinant ab−d2 of the matrix S is negative, so that in

appropriate coordinates p′, q′ on the plane the matrix S ′ of the quadratic form S[·] becomes

(
1 0
0 −1

)
.

Let

(
ξ ζ
ζ −η

)
be the matrix of the form R[·] in the coordinates p′, q′. (Impl) says to us that for any

2-dimensional vector z = (p′, q′)T we have

zTS ′z ≡ (p′)2 − (q′)2 ≤ 0⇒ zTR′z = ξ(p′)2 + 2ζp′q′ − η(q′)2 ≤ 0. (13.30)

The premise in this implication is satisfied by z = (0, 1)T , z = (1, 1)T and z = (1,−1)T , and the conclusion
of it says to us that η ≥ 0, ξ − η ± 2ζ ≤ 0, whence

η ≥ 0; η − ξ ≥ 2|ζ|. (13.31)

20.1. Assume, first, that the quantity

λ =
η + ξ

2
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is nonnegative. Then the matrix

λS ′ −R′ =

( η−ξ
2 −ζ
−ζ η−ξ

2

)
is positive semidefinite (see (13.31)), and, consequently, the matrix

λS −R

is positive semidefinite, so that λ satisfies (13.29).
20.2. Now assume that η + ξ < 0. In the case in question −ξ = |ξ| > η ≥ 0 (the latter inequality

is given by (13.31)). Let ρε =
√

(η + ε)|ξ|−1, where ε > 0 is so small that 0 ≤ ρε ≤ 1. The premise in
(13.30) is satisfied by z = (ρε,±1)T , so that from the conclusion of the implication it follows that

−|ξ|ρ2
ε − η ± 2ζρε ≤ 0,

or

|ζ| ≤
(2η + ε)

√
|ξ|

2
√
η + ε

for all small enough positive ε. Passing to limit as ε → 0, we come to |ζ| ≤
√
η|ξ|. Thus, in the

case in question R′ =

(
−|ξ| ζ
ζ −|η|

)
is 2× 2 matrix with nonpositive diagonal entries and nonnegative

determinant; consequently, this matrix is negative semidefinite, so that R also is negative semidefinite,
and (13.29) is satisfied by λ = 0.

30. It remains to consider the case C.2 when b > 0, a = 0. Here we have a = vTSv = 0, so that
α = vTRv ≤ 0 by (Impl). Since b > 0, (13.29) is satisfied for all large enough positive λ.
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Solutions to Section 11.4

Exercise 11.4.8: we should prove that
(i) if Am(t,X; τ, U) is positive semidefinite, then Sm(X) ≤ t;
(ii) if Sm(X) ≤ t, then there exist τ and U such that Am(t,X; τ, U) is positive semidefinite.
Let us start with (i). Due to construction of Am(·), both matrices τI + U − X and U are positive

semidefinite; in particular, X ≤ τI + U , whence, due to monotonicity of Sm(·), Sm(X) ≤ Sm(τI + U),
The latter quantity clearly is mτ+Sm(U) ≤ mτ+TrU . Thus, Sm(X) ≤ mτ+TrU , while t ≥ mτ+TrU ,
again due to the construction of Am(·), Thus, Sm(X) ≤ t, as required.

To prove (ii), let us denote by λ1 ≥ ... ≥ λk the eigenvalues of X, and let U have the same eigenvectors
as X and the eigenvalues

λ1 − λm, λ2 − λm..., λm−1 − λm, 0, ..., 0.

Set also τ = λm. The U is positive senidefinite, while τI + U −X is the matrix with the eigenvalues

0, 0, ..., 0, λm − λm+1, ..., λm − λk,

so that it also is positive semidefinite. At the same time mτ + TrU = Sm(X) ≤ t, so that Am(t,X; τ, U)
is positive semidefinite.
Exercise 11.4.9: let λi, i = 1, ..., 2k, be the eigenvalues of Y (X), and σ1, ..., σk be the singular values of

X. It is immediately seen that Y 2(X) =

(
XXT 0

0 XTX

)
. We know that the sequence of eigenvalues

of XXT is the sasme of sequence of eigenvalues of XTX, and the latter sequence is the same as the
sequence of squared eigenvalues of X, by definition of the singular values. Since Y 2(X) is block diagonal
with diagonal blocks XXT and XTX, and both blocks have the same seqeunces of eigenvalues, to get the
sequence of eigenvalues of Y 2(X), you should twicen the multiplicity of each eigenvalue of XTX. Thus,
the sequence of eigenvalues of Y 2(X) is

(I) σ2
1 , σ

2
1 , σ

2
2 , σ

2
2 , ..., σ

2
k, σ

2
k.

On the other hand, the sequence of eigenvalues of Y 2(x) is comprised of (possibly, reordered) squared
eigenvalues of Y (x). Thus, the sequence

λ2
1, λ

2
2, ..., λ

2
2k

differs from (I) only by order. To derive from this intermediate conclusion the statement in question, it
suffices to prove that if certain λ 6= 0 is an eigenvalue of Y (X) of certain multiplicity s, then −λ also is
an eigenvalue of the same multiplicity s. But this is simple. Let L be the eigenspace of Y (X) associated

with the eigenvalue λ. In other words, L is comprised of all vectors

(
u
v

)
, u, v ∈ Rk, for which

(
Xv
XTu

)
= λ

(
u
v

)
. (13.32)

Now consider the space

L− = {
(

Xv
−XTu

)
|
(
u
v

)
∈ L}.

It is immediately seen that L− is comprised of eigenvectors of Y (X) with the eigenvalue −λ:(
0 X
XT 0

)(
Xv
−XTu

)
=

(
−XXTu
XTXv

)
= −λ

(
Xv
−XTu

)
.

If we could prove that the mapping

(
u
v

)
7→
(

Xv
−XTu

)
, restricted to L, has no kernel, we could conclude

that dim L− ≥ dim L, so that the multiplicity of the eigenvalue −λ is at least that one of the eigenvalue
λ; by swapping λ and −λ, we would conclude that the multiplicities of both the eigenvalues are equal,

as required. Thus, it remains to verify that if

(
u
v

)
∈ L and Xv = 0, XTu = 0, then u and v are both

zeros. But this is an immediate consequence of (13.32) and the assumption that λ 6= 0.



Appendix I: Surface-Following
Methods

Multi-Parameter Surfaces of Analytic Centers
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Long-step Surface-Following Interior Point Methods

Yu. Nesterov1 and A. Nemirovski2
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Abstract

We develop a long-step polynomial time version of the Method of Analytic Centers for
nonlinear convex problems. The method traces a multi-parameter surface of analytic centers
rather than the usual path, which allows to handle cases with non-centered and possibly
infeasible starting point.

The paper is an extended version of [5].

14.1 Introduction

Consider a convex program in the following standard form:

minimize cTx s.t. x ∈ G; (14.33)

here G is a closed and bounded convex subset of Rn with a nonempty interior. One of the most attractive
theoretically ways to solve the problem is to trace the path of analytic centers, i.e., the minimizers over
x ∈ int G of the penalized family of functions

F t(x) = F (x) + tcTx; (14.34)

here F is a barrier (interior penalty function) for G. Under the above parameterization of the path, in
order to converge to the optimal set one should trace the path as t → ∞. The path of analytic centers,
however, can be parameterized in another way, say, as the path of minimizers of the family

Ft(x) = F (x)− ϑ ln(t− cTx); (14.35)

(ϑ > 0 is fixed); here in order to get close to the optimal set one should approach the parameter t to the
optimal value of the problem. As it is well-known, both the parameterizations, under appropriate choice
of F , imply polynomial-time interior-point methods for (14.33). If G is a polytope, then it is reasonable
to choose as F the standard logarithmic barrier for G; polynomiality of the associated path-following
methods for Linear Programming was first established in the seminal papers of Renegar ([8], parame-
terization (14.35)) and Gonzaga ([1], parameterization (14.34)). For the nonpolyhedral case polynomial
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. Research was partly supported by the Vice-President for Research Fund for the promotion of research at Technion,
grant # 191-142

193



194 APPENDIX I: SURFACE-FOLLOWING METHODS

time results for both the parameterizations can be obtained if F is a self-concordant barrier for G (see
below), as it is the case with the standard logarithmic barrier for a polytope.

Now, in order to trace the path of analytic centers F one should once get close to the path; this is
the aim of a special preliminary phase of a path-following method, which, theoretically, is of the same
complexity as following the path itself. Moreover, to initialize the preliminary phase one should know in
advance a strictly feasible solution x̂ ∈ int G. To get such a point, it, generally speaking, again requires
an additional phase of the method; at this phase we, basically, solve an auxiliary problem of the same
type as (14.33), but with a known in advance strictly feasible solution. There are numerous strategies
of combining all these phases; one of the main goals of this paper is to present a kind of a general
framework, based on the notion of a “multi-parameter surface of analytic centers”, for these combined
strategies. The notion is introduced in Section 14.2, along with motivating the advantages of tracing
surface as compared to tracing the usual single-parameter path. Section 14.2 contains also a generic
predictor-corrector scheme of tracing a surface of analytic centers. When tracing a surface, one should
decide, first, where to move - what should be the strategy of choosing the subsequent search directions
- and, second, how to move - what should be the tactics of choosing the stepsize in the chosen direction
in order to move as fast as possible. The “tactics” issues are discussed in Sections 14.3 and 14.4. In
Section 14.3 we develop, under some reasonable assumptions on the structure of the underlying barriers, a
duality-based technique which, roughly speaking, allows to adjust the stepsizes to the “local curvature” of
the surface and thus results, under favourable circumstances, in “long steps”. Main theoretical properties
of the resulting scheme are presented in Section 14.4. In particular, we demonstrate that under reasonable
assumptions on the underlying barriers “long steps” indeed are long – they form a significant fraction of
the way to the boundary of the feasible set. Note that our “long steps” technique is closely related to the
one recently developed in [4] for path-following methods as applied to primal-dual conic formulations of
convex problems, and the results on the length of the steps are similar to those of [6, 7]. The advantage
of our approach as compared to [4, 6, 7] is not only in the fact that now we are able to trace surfaces
rather than paths, but also that now we need neither explicit conic reformulation of the initial problem,
nor the self-scaled property of the associated cone; this allows to avoid necessity to increase the number
of variables and enables to work with problems (e.g., the Geometric Programming ones) which cannot
be covered by methods of [6, 7].

In Section 14.5 we present a strategy of tracing the surface for both the cases of feasible and infeasible
start; the strategy in question fits the standard polynomial time complexity bounds and seems to be
computationally reasonable.

As it was already mentioned, the “long step” technique presented in the paper requires certain as-
sumption on the structure of the barriers in question; Section 14.6 presents a number of barriers satisfying
this assumption and thus allows to understand what might be the applications of the developed technique.

14.2 Surfaces of analytic centers: preliminaries

We start with specifying the basic for what follows notions of a self-concordant function/barrier ([3] ,
Chapter 2; what is called below a self-concordant function, is a “strongly self-concordant function” in the
terminology of [3] ).

14.2.1 Self-concordant functions and barriers

Definition 14.2.1 Let Q be an open nonempty convex domain in certain RN . A function Ψ : Q → R
is called self-concordant (s.-c. for short), if Ψ is a C3 smooth convex function on Q which tends to ∞
along every sequence of points from Q converging to a boundary point of Q and satisfies the differential
inequality ∣∣D3Ψ(u)[h, h, h]

∣∣ ≤ 2
(
D2Ψ(u)[h, h]

)3/2
, u ∈ Q, h ∈ RN ; (14.36)

from now on DsF (u)[h1, ..., hs] denotes s-th differential of a function F taken at a point u along the set
of directions h1, ..., hs.

If, in addition,

|DΨ(u)[h]|2 ≤ ϑD2Ψ(u)[h, h], u ∈ Q, h ∈ RN , (14.37)
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for some ϑ ≥ 1, we say that Ψ is a ϑ-self-concordant barrier (ϑ-s.-c.b. for short) for the closed convex
domain G = clQ.

Let α ≥ 1. We say that a s.-c. function Ψ is α-regular on its domain Q, if Ψ is C4 function such that∣∣D4Ψ(u)[h, h, h, h]
∣∣ ≤ α(α+ 1)D2Ψ(u)[h, h] ‖ h ‖2Q,u, u ∈ Q, h ∈ RN , (14.38)

where
‖ h ‖Q,u= inf{t−1 | t > 0, u± th ∈ Q}

is the (semi)norm on RN with the unit ball being the closure of the symmeterization Q ∩ (2u−Q) of Q
with respect to u.

E.g., the standard logarithmic barrier −
∑m
i=1 ln(bi − aTi u) for a nonempty polytope G = cl{u | aTi u <

bi, i = 1, ...,m} is both m-s.-c.b. for G and 2-regular s.-c. function on int G.
The important for us properties of self-concordant functions/barriers are as follows (for proofs, see

[3] , Chapter 2):

Proposition 14.2.1 [Combination rules]
(i) [summation] Let Qi, i = 1, ..., k, be open convex domains in RN with a nonempty intersection Q

and let Ψi be s.-c. functions on Qi. Then the function Ψ(x) =
∑
i Ψi(x) is s.-c. on Q. If all Ψi are

ϑi-s.-c.b.’s for clQi, then Ψ is a (
∑
i ϑi)-s.-c.b. for clQ, and if all Ψi are α-regular, then so is Ψ.

(ii) [direct summation] Let Qi ⊂ RNi be open convex domains, i = 1, ..., k, and let Ψi be s.-c. on Qi.
Then the function

Ψ(u1..., uk) =
∑
i

Ψi(ui) : Q ≡
∏
i

Qi → R

is s.-c. on Q. If all Ψi are ϑi-s.-c.b.’s for clQi, then Ψ is a (
∑
i ϑi)-s.-c.b. for clQ, and if all Ψi are

α-regular, then so is Ψ.
(iii) [affine substitutions of argument] Let Q+ be an open convex set in RM and A be an affine mapping

from RN into RM with the image intersecting Q+. Let Ψ+ be s.-c. on Q+; then Ψ(·) ≡ Ψ+(A(·)) is s.-c.
on Q = A−1(Q+). If Ψ+ is a ϑ-s.-c.b. for clQ+, then Ψ is a ϑ-s.-c.b. for clQ, and if Ψ+ is α-regular,
then so is Ψ.

From now on, for a positive semidefinite symmetric matrix A and a vector h of the corresponding dimen-
sion,

|h|A = (hTAh)1/2.

Proposition 14.2.2 Let Q be a nonempty open convex domain in RN , G = clQ and Ψ be a s.-c.
function on Q. Then

(i) [behaviour in Dikin’s ellipsoid] For any u ∈ Q the Dikin ellipsoid

WΨ(u) = {v | |v − u|Ψ′′(u) < 1}

is contained in Q, and and

Ψ(u+ h) ≤ Ψ(u) + hTΨ′(u) + ρ(|h|Ψ′′(u)); (14.39)

from now on,
ρ(r) = − ln(1− r)− r. (14.40)

(ii) [nondegeneracy] If Ψ′′(u) is nondegenerate at certain u ∈ Q, then Ψ′′ is nondegenerate everywhere
on Q; this for sure is the case when Q does not contain lines. If Q is bounded, then Ψ attains its minimum
over Q, and the minimizer is unique.

(iii) [stability with respect to Legendre transformation] Let Ψ′′(u) be nondegenerate for some u ∈ Q
(and then, by (ii), for any u ∈ Q). Consider the Legendre transformation

Ψ∗(v) = sup{uT v −Ψ(u) | u ∈ Q}

regarded as a function on the domain Q∗ comprised of those v for which the right hand side is finite.
Then Q∗ is an open nonempty convex domain, the mapping x 7→ Ψ′(x) is a one-to-one correspondence
between Q and Q∗ and Ψ∗ is s.-c. and with nondegenerate Hessian on Q∗; the Legendre transformation
of Ψ∗ is exactly Ψ.
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14.2.2 Surface of analytic centers

Let F be a ϑ-s.-c.b. for a closed and bounded convex domain G ⊂ Rn with a nonempty interior. Aside
from the parameterization issues, the path of analytic centers associated with the barrier can be defined
as the set of points x ∈ int G where −∇F (x) = λc for some positive λ. A natural “multi-parameter”
extension of this description is as follows: let us fix k nonzero vectors c1, ..., ck and associate with this
collection the “surface” Sk = Sk(c1, ..., ck) comprised of all points x ∈ int G where

−∇F (x) =

k∑
i=1

λici

with certain positive λi. A convenient way to parameterize the surface is to introduce the k-dimensional
“parameter”

t = (t1, ..., tk)T

and associate with this parameter the barrier (cf. (14.35))

Ft(x) = ϑ

k∑
i=1

ψi(ti − cTi x) + F (x), ψi(r) = − ln r,

for the convex set
Gt = {x ∈ G | cTi x ≤ ti, i = 1, ..., k}.

In what follows we are interested only in those values of t for which int Gt 6= ∅; the corresponding set
T = Tk(e1, ..., ek) of values of t clearly is a nonempty open convex and monotone (t′ ≥ t ∈ T ⇒ t′ ∈ T )
subset in Rk. Now, since F is a ϑ-s.-c.b. for G, the functions Ft, t ∈ T , are ϑ∗-s.-c.b.’s for the domains
Gt with

ϑ∗ = (k + 1)ϑ (14.41)

(Proposition 14.2.1; note that the function −ϑ ln(s) for ϑ ≥ 1 clearly is a ϑ-s.-c.b. for R+). Since Gt is
bounded, Ft attains its minimum over int Gt, and the corresponding minimizer x∗k(t) - the analytic center

of Gt - is unique (Proposition 14.2.2.(ii)). At this minimizer, of course, −∇F (x) = ϑ
∑k
i=1(ti− cTi x)−1ci,

so that x∗k(t) ∈ Sk. Vice versa, every point of Sk is x∗k(t) for certain t ∈ T : immediate computation
demonstrates that

{λi > 0, i = 1, ..., k}&{−∇F (x) =

k∑
i=1

λici} ⇒ x = x∗k(ϑλ−1
1 + cT1 x, ..., ϑλ

−1
k + cTk x).

Thus, we do have defined certain parameterization of Sk.
The following property of the surfaces of analytic centers is immediate:

Lemma 14.2.1 Let t̂ ∈ Tk(e1, ..., ek) and let tj ≥ t̂, j = 1, 2, ... be such that tji = t̂i for i ∈ I ⊂ {1, ..., k}
and tji →∞, j →∞, for i 6∈ I. Then the points x∗k(tj) converge as j →∞ to the point x∗l ({t̂i}i∈I) of the
surface Sl({ci}i∈I), l = card I (from now on S0 is the 0-dimensional surface comprised of the (unique)
minimizer x∗F of F over int G). Thus, the surfaces of dimensions < k obtained from Sk(c1, ..., ck) by
eliminating some of the vectors ci are contained in the closure of Sk. In particular, the closures of all
surfaces of analytic centers have a point in common, namely, x∗F .

14.2.3 Tracing surfaces of analytic centers: motivation

To solve problem (14.33), we may take an arbitrary set c2, ..., ck of vectors, set c1 = c and trace the surface
Sk(c1, ..., ck) along certain sequence {ti} of values of the parameter, i.e., to produce approximations
xi ∈ int Gti of the analytic centers x∗(ti). If the sequence {ti} is such that ti1 → c∗ as i → ∞, c∗ being
the optimal value in (14.33), then xi clearly form a sequence of feasible solutions to (14.33) converging
to the optimal set. In what follows we demonstrate that there are basically the same possibilities to
trace the surface Sk as in the standard case when Sk is a single-parameter path; with this in mind, let
us explain what are the advantages of tracing a multi-parameter surface Sk rather than the usual path
S1(c).
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1. Difficulty of initialization. As it was already mentioned, in the usual path-following method
we trace the path S1(c); to start the process, we should, anyhow, come close to the path. Now assume
that we are given an initial strictly feasible solution x̂. In the standard path-following scheme, to get
close to S1(c) we trace the auxiliary path S1(d), d = −∇F (x̂) which clearly passes through x̂. According
to Lemma 14.2.1, both the paths S1(c) and S1(d) approach, as the parameter tends to ∞, the minimizer
x∗F of F over G; therefore, tracing the auxiliary path as t → ∞, we in the mean time come close to the
path S1(c) and then may switch to tracing this latter path. On the other hand, given x̂ and arbitrary
t̂1 > cT x̂, we can easily find vector c2 and real t̂2 such that the 2-dimensional surface of analytic centers
S2(c1 ≡ c, c2) would pass, as t = (t̂1, t̂2), through x̂; it suffices to set

c2 = ϑ−1d− (t̂1 − cT x̂)−1c, t̂2 = cT2 x̂+ 1.

Now we have a two-dimensional surface of analytic centers which “links” x̂ with the optimal set, and we
may use various policies of tracing the surface, starting at x̂, in order to approach the optimal set. Note
that our “main path” S1(c), due to Lemma 14.2.1, lies in the closure of S2, while the “auxiliary path”
S1(d), as it is immediately seen, simply belongs to the surface. Thus, the standard path-following scheme
- first trace S1(d) and then S1(c) - is nothing but a specific way to trace the two-dimensional surface
of analytic centers S2(c, c2). After this is realized, it becomes clear that there is no necessity to restrict
ourselves with the above specific route; why not to move in a more “direct” manner, thus avoiding the
preliminary phase where we do not take care of the objective at all?

2. Infeasible start. Now assume that we do not know in advance an initial strictly feasible solution
to the problem. What should we do? Note that normally the situation, under appropriate renaming of
the data, is as follows. We need to solve the problem

(P ′) : minimize cTx s.t. x ∈ G, xn = 0,

where G is a solid in Rn ∩ {xn ≥ 0} with a known in advance interior point x̂. In other words, normally
we can represent the actual feasible set as a kind of a “facet” in a higher-dimensional convex solid with
known in advance interior point. To support this claim, consider a standard form convex program

(CP) f0(u)→ min | fi(u) ≤ 0, i = 1, ...,m [u ∈ Rq],

(fi, 0 ≤ i ≤ m, are convex lower semicontinuous functions) and assume that we know in advance

• a point u0 such that all fi are finite in a neighbourhood of u0,

• an upper bound R > |u0| on the Euclidean norm of the optimal solution to (CP),

• an upper bound V > f0(u0) on the optimal value of the problem.

Then we can equivalently rewrite (CP) in the form of (P ′) with the design vector x = (u, v, w) ∈ Rq+2,
the objective cTx ≡ v and

G = {(u, v, w) | f0(u) ≤ v ≤ V ; uTu ≤ R2; fi(u) ≤ w, i = 1, ...,m; 0 ≤ w ≤W},

where W is an arbitrary constant which is greater than f̂(u0) ≡ max{0, f1(u0), ..., fm(u0)}. Note that G
indeed is a solid in Rq+2 and that there is no difficulty to point out an interior point x0 in G: one can
set x0 = (u0, v0, w0) with arbitrarily chosen v0 ∈ (f0(u0), V ) and w0 ∈ (f̂(u0),W ).

Now assume that we are given a ϑ-s.-c.b. F for G 2). In this situation the standard “big M” approach
to (P ′) is to apply an interior point method to the problem

(P ) : minimize (c+Mf)Tx s.t. x ∈ G
[
fTx ≡ xn

]
,

2Note that in the case of problem (P ′) coming from (CP) such a barrier is readily given by ϑi-s.-c.b.’s Fi(v, u) for the
epigraphs {(u, v) | v ≥ fi(u)} of the functions fi, i = 0, ...,m:

F (u, v, w) = F0(u, v) +

m∑
i=1

Fi(u,w)− ln(R2 − uTu)− ln(V − v)− ln(W − w)− lnw

[
ϑ = 4 +

m∑
i=0

ϑi

]
.
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where M is a “large enough” constant. Here we meet with unpleasant question how big should be the
“big M”. Now note that the path S1(c+Mf) which is traced in the “big M” scheme clearly belongs to
the two-dimensional surface S2(c, f), which is independent of the particular value of M we choose. Thus,
the “big M” approach is nothing but a specific way of tracing certain 2-dimensional surface of analytic
centers. After this is realized, we may ask ourselves why should we trace the surface in this particular
manner rather than to use more flexible strategies.

Note that for the Linear Programming case (G is a polytope, F is the standard logarithmic barrier for
G) the surface S2(c, f) was introduced and studied in details, although from a slightly different viewpoint,
in [2].

Now, to trace S2(c, f), we should first get close to the surface. Here again the traditional way would be
to note that all surfaces Sk(c1, ..., ck) in G come close to each other, so that tracing the path S1(−∇F (x̂))
(which passes through the given point x̂) and pushing the parameter to ∞, we come close to x∗F and,
consequently, to S2(c, f) and then can switch to tracing the surface S2(c, f). But this is nothing but a
particular way to trace the 3-parameter surface S3(c, f, d) in G given by

d = −ϑ−1∇F (x̂)− (t̂1 − cT x̂)−1c− (t̂2 − x̂n)−1f

(t̂1 > cT x̂, t̂2 > x̂n are arbitrary). The surface S3 clearly passes through x̂ and links x̂ with the optimal
set of the initial problem. After this is realized, why should we restrict ourselves with certain particular
route?

14.2.4 The “surface-following” scheme

We believe that the aforementioned discussion demonstrates that it makes sense to trace not only paths
of analytic centers, but also multi-parameter surfaces of these centers, at least 2- and 3-parameter ones.
The point is, of course, how to trace such a surface; this is the issue we address in this section.

14.2.5 Surface of analytic centers: general definition

To make the presentation more compact it is convenient to get rid of particular structure of the surfaces
introduced so far and speak about general situation as follows. Assume that G+ is a closed convex
domain with a nonempty interior in certain RN and Ψ is a ϑ∗-s.-c.b. for G+ with nondegenerate Ψ′′.
Let, further, π and σ be N × n and N × k matrices, respectively, and let ε ∈ RN . Consider the affine
mapping

(t, x) 7→ A(t, x) = σt+ πx+ ε : Rk ×Rn → RN ,

and assume that

(A) the image of the mapping A intersects the interior of G+.

(A) implies that the set

Q = {(t, x) | A(t, x) ∈ int G+}

is a nonempty open convex subset of Rk×Rn. Let T be the projection of Q onto the “parameter space”
Rk; for t ∈ T let

Qt = {x ∈ Rn | (t, x) ∈ Q}, t ∈ T ; Gt = clQt,

so that Qt is a nonempty open convex set in Rn.
Our second, and for the time being the last, assumption is

(B) for some (and, consequently, for all) t ∈ T the set Qt is bounded.

Since Ψ is a ϑ∗-s.-c.b. for G+, (A) implies that the function

F (t, x) = Ψ(A(t, x))

is a ϑ∗-s.-c.b. for clQ, and for t ∈ T the function

Ft(x) ≡ F (t, x)
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is a ϑ∗-s.-c.b. for Gt (Proposition 14.2.1). Since Gt is bounded, the Hessian of Ft(·) is nondegenerate at
any point from Qt = int Gt, and Ft(·) attains its minimum over Qt at exactly one point x∗(t) (Proposition
14.2.2.(ii)). From now on we call the set

S = {(t, x) ∈ Q | x = x∗(t)}

the surface of analytic centers associated with the data G+, Ψ, A(·). Note that the surface of analytic
centers Sk(c1, ..., ck) is obtained from the general definition by setting

G+ = Rk
+ ×G, Ψ(u1, ..., uk, x) = −ϑ

k∑
i=1

lnui + F (x), A(t, x) =


t1 − cT1 x
. . .

tk − cTk x
x

 , ϑ∗ = (k + 1)ϑ, (14.42)

ϑ being the parameter of the s.-c.b. F .

14.2.6 Tracing a surface of analytic centers: basic scheme

Our general scheme of tracing the surface S associated with the data G+,Ψ,A is as follows. First, we fix
the “tolerances”

κ ∈ (0, 0.125], κ > 2ρ(κ)− κ2.

We say that a pair (t, x) is κ-close to S if it satisfies the predicate

Pκ(t, x) : (t, x) ∈ Q and λ(t, x) ≤ κ,

where
λ(t, x) =

(
(∇xF (t, x))T [∇2

xF (t, x)]−1∇xF (t, x)
)1/2

is the Newton decrement of the s.-c.b. Ft(·) at x; the quantity is well-defined, since, as it was already
mentioned, boundedness of Gt implies nondegeneracy of ∇2Ft(x) at any x ∈ Qt.

We say that a pair (t, x) is κ-good with respect to S, if it satisfies the predicate

Rκ : {(t, x) ∈ Q}& {V (t, x) ≡ F (t, x)−minu∈Qt F (t, u) ≤ κ}.

When tracing S, at each step we are given a κ-close to S pair (t, x) and transform it into a new pair
(t+, x+) with the same property according to the following

Basic Updating Scheme:
1. Choose a search direction δt ∈ Rk, “lift” it to the direction

(δt, δx) ∈ Π(t, x) ≡ {(dt, dx) ∈ Rk ×Rn | ∂
∂t
∇xF (t, x)dt+∇2

xF (t, x)dx = 0} =

= {(dx, dt) | dx = −[∇2
xF (t, x)]−1 ∂2

∂t∂x
F (t, x)dt} =

= {(dt, dx) | πTΨ′′(σt+ πx+ ε)[σdt+ πdx] = 0} (14.43)

and define the primal search line

R = {X(p) = (t+ pδt, x− dx(t, x) + pδx) | p ∈ R}, dx(t, x) = [∇2
xF (t, x)]−1∇xF (t, x). (14.44)

2. [predictor step] Choose a stepsize r > 0 along the primal search line and form the forecast
(t+, x̃) ≡ X(r) which should be κ-good with respect to S (this is a restriction on the stepsize; a stepsize
satisfying this restriction will be called proper, and it will be proved that proper stepsizes do exist).

3. [corrector step] Apply to the function F (t+, ·) the damped Newton minimization

ys+1 = ys − 1

1 + λ(t+, ys)
[∇2

xF (t+, ys)]−1∇xF (t+, ys), y0 = x̃. (14.45)

(14.45) is terminated when it turns out that λ(t+, ys) ≤ κ; the corresponding ys is taken as x+, which
ensures Pκ. The updating (t, x) 7→ (t+, x+) is completed.
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Comment. The origin of equations (14.43) and (14.44) is clear: (14.43) is the equation in variations
corresponding to the equation ∇xF (s, y) = 0 of the surface S, so that Π(t, x) is the “approximate tangent
plane” to the surface at the point (t, x). The primal search line R is given by the linearization

∇xF (t, x) +
∂

∂t
∇xF (t, x)dt+∇2

xF (t, x)dx = 0

of the equation of the surface at the point (t, x): it is comprised of the points (t + dt, x + dx) with dx
and dt linked by the above equation and dt is proportional to δt.

We do not discuss here how to choose the direction δt; it depends on an “upper-level” strategy of
tracing the surface, the issue to be discussed in Section 14.5.

Since (t+, x̃) is a κ-good pair, the number of iterations (14.45) at a corrector step - the Newton
complexity of the step - can be bounded as follows:

Proposition 14.2.3 [[3] , Theorem 2.2.3 and Proposition 2.2.2] Process (14.45) is well-defined (i.e., it
keeps the iterates ys in int Gt+) and results in ys such that Pκ(t+, ys) is satisfied in no more than

N = O(1) {κ+ ln ln(1/κ)} (14.46)

Newton iterations (14.45); here and further O(1) denote appropriately chosen absolute constants.

The point is, of course, how to choose the “large” stepsize r for which the forecast X(r) = (t, x) +
r(δt, δx) satisfies the predicate Rκ. To this end it is natural to use line search in r. A straightforward
line search is impossible, since V (τ, y) involves the implicitly defined quantity

f∗(τ) = min
u∈Qτ

F (τ, u).

What we intend to do is to derive “computationally cheap” lower bound for the latter quantity. This is
the issue we are coming to.

14.3 Dual bounds

14.3.1 Basic assumption

From now on we make the following assumption on the barrier Ψ under consideration:

(C) we know the Legendre transformation

Ψ∗(s) = sup
u
{sTu−Ψ(u)} (14.47)

of the barrier Ψ.

”We know Ψ∗” means that, given s, we are able to check whether s belongs to the domain Dom Ψ∗ of
the Legendre transformation, and if it is the case, are able to compute Ψ∗(s).

Note that by assumption Ψ′′ is nondegenerate, so that the domain of Ψ∗ is an open convex set and
Ψ∗ is s.-c. on its domain (Proposition 14.2.2, (ii) and (iii)).

14.3.2 Dual bounds

Let us start with the following simple observation

Lemma 14.3.1 Let s ∈ Dom Ψ∗ satisfy the linear homogeneous equation

πT s = 0. (14.48)

Then for any τ ∈ T we have

f∗(τ) ≥ [στ + ε]T s−Ψ∗(s). (14.49)
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Proof. Since Ψ is the Legendre transformation of Ψ∗ (Proposition 14.2.2.(iii)), we have for any y ∈ Qτ

F (τ, y) = Ψ(στ + πy + ε) ≥ [στ + πy + ε]T s−Ψ∗(s) = [στ + ε]T s−Ψ∗(s)

(we have used that πT s = 0).
According to Lemma, each dual feasible vector s (a vector s from Dom Ψ∗ satisfying (14.48)) results in

an affine lower bound for the function f∗(·), and these are the bounds we intend to use in order to ensure
R. Note that dual feasible vectors belong to the subspace D ⊂ RN of all solutions to linear equation
(14.48); the vectors from this subspace will be called dual feasible directions. The set D∗ of dual feasible
vectors clearly is an open convex subset of D.

We are about to present a systematic way to generate dual feasible directions and dual feasible vectors.

14.3.3 Dual search line

Lemma 14.3.2 Given a primal search line

R = {X(p) = (t+ pδt, x− dx(t, x) + pδx) | p ∈ R} (14.50)

((t, x) ∈ Q, δt ∈ Rk, δx and dx(t, x) are given by (14.43) and (14.44)), set

u = σt+ πx+ ε, s(t, x) = Ψ′(u), ds(t, x) = Ψ′′(u)πdx(t, x), δs = Ψ′′(u)[σδt+ πδx] (14.51)

and define the dual search line as

R∗ = {S(p) = s(t, x)− ds(t, x) + pδs | p ∈ R}. (14.52)

Then all vectors from R∗ are dual feasible directions:

πTS(p) = 0, p ∈ R. (14.53)

Moreover,
λ(t, x) < 1⇒ S(0) ∈ Dom Ψ∗, (14.54)

so that under the premise of (14.54) all points S(p) corresponding to small enough |p| are dual feasible
vectors.

Proof. To simplify notation, let us omit explicit indicating the argument values in the below computa-
tions; the values of all quantities related to Ψ are taken at the point u, and the values of the quantities
related to Ψ∗ are taken at the point s = s(t, x) = Ψ′(u).

By virtue of (14.44), (14.51) and (14.52) we have

πTS(p) = πTΨ′ − πTΨ′′π[∇2
xF (t, x)]−1∇xF (τ, x) + pπTΨ′′[σδt+ πδx] =

[since ∇2
xF (t, x) = πTΨ′′π, ∇xF (t, x) = πTΨ′ and due to (14.43)]

= pπTΨ′′[σδt+ πδx] = 0,

as required in (14.53).
To prove (14.54), note that

λ2(t, x) = |∇xF (t, x)|2[∇2
xF (t,x)]−1 =

∣∣[∇2
xF (t, x)]−1∇xF (t, x)

∣∣2
∇2
xF (t,x)

=

= |dx(t, x)|2πTΨ′′π = |πdx(t, x)|2Ψ′′ =

[see (14.51) and take into account that [Ψ′′]−1 = Ψ′′∗ ]

=
∣∣[Ψ′′]−1ds(t, x)

∣∣2
Ψ′′

= |ds(t, x)|2[Ψ′′]−1 = |ds(t, x)|2Ψ′′∗ .

Thus, we come to
|ds(t, x)|Ψ′′∗ = |πdx(t, x)|Ψ′′ = λ(t, x). (14.55)
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It remains to note that, as we know, Ψ∗ is s.-c. on its domain and that s = Ψ′ ∈ Dom Ψ∗, so that (14.55)
combined with Proposition 14.2.2.(i) (applied to Ψ∗) implies that if λ(t, x) < 1, then S(0) = s−ds(t, x) ∈
Dom Ψ∗.

Now we are ready to present the “computationally cheap” sufficient condition for a forecast X(r) to
satisfy the predicate R:

Basic Test: given r, compute X(r) and S(r) (see (14.50) - (14.52)) and verify whether X(r) ∈ Q
and S(r) ∈ Dom Ψ∗ (then S(r) is a dual feasible vector, see Lemma 14.3.2). If one of these inclusions is
not valid, reject r, otherwise check the inequality

v(r) ≡ F (t+ rδt, x− dx(t, x) + rδx) + Ψ∗(S(r))− [σ[t+ rδt] + ε]
T
S(r) ≤ κ. (14.56)

If it is satisfied, accept r, otherwise reject it.
An immediate consequence of lemmas 14.3.1 and 14.3.2 is as follows.

Proposition 14.3.1 Let (t, x) ∈ Q, (δt, δx) ∈ Π(t, x), and let r ≥ 0 be such that r passes the Basic Test.
Then the forecast X(r) = (t+ rδt, x− dx(t, x) + rδx) satisfies the predicate Rκ.

We should, of course, prove that the test is “reasonable”, namely, that it accepts at least “small” steps
in the parameters leading to the standard overall complexity of the algorithm. This is the issue we are
coming to.

14.4 Main results on tracing a surface

14.4.1 Acceptable stepsizes

Our main observation is that a stepsize r such that the displacement rδt is not too large in the Euclidean
metric defined by the matrix ∇2

tF (t, x) for sure passes the Basic Test. We start from the following simple

Proposition 14.4.1 Given u ∈ Dom Ψ and du ∈ RN , let us set s = Ψ′(u), so that s ∈ Dom Ψ∗, and
ds = Ψ′′(u)du. Let also

ρ∗u[du] = Ψ(u+ du) + Ψ∗(s+ ds)
−
[
Ψ(u) + Ψ∗(s) + (du)TΨ′(u) + (ds)TΨ′∗(s) + 1

2 (du)TΨ′′(u)du+ 1
2 (ds)TΨ′′∗(s)ds

]
be the remainder in the second-order Taylor expansion of the function Ψ + Ψ∗ at the point (u, s) along
the displacement (du, ds) (if this displacement moves the point outside the domain of the function, then
ρ∗ =∞). Then

(i) |du|2Ψ′′(u) = |ds|2Ψ′′∗ (s) = (du)T ds,

(ii) if χ ≡ |du|Ψ′′(u) < 1, then ρ∗u[du] is well-defined and, moreover,

ρ∗u[du] ≤ 2ρ(χ)− χ2, (14.57)

(ρ(·) is given by (14.40)) and
(iii) The third derivative of the function Ψ + Ψ∗ taken at the point (u, s) along the direction (du, ds)

is zero, so that ρ∗u(du) is in fact the remainder in the third order Taylor expansion of Ψ + Ψ∗ at the point
(u, s) along the direction (du, ds).

Proof. (i) is an immediate consequence of the relations ds = Ψ′′(u)du and Ψ′′∗(s) = [Ψ′′(u)]−1. (i)
combined with the upper bound on the remainder in the first-order Taylor expansion of a s.-c. function
(Proposition 14.2.2.(i)) results in (ii). To verify (iii), let us differentiate the identity (y varies, h is fixed)

hTΨ′′∗(Ψ
′(y))h = hT [Ψ′′(y)]−1h

at the point y = u in the direction du, which results in

D3Ψ∗(s)[h, h,Ψ
′′(u)du] = −D3Ψ(u)[[Ψ′′(u)]−1h, [Ψ′′(u)]−1h, du];

substituting h = Ψ′′(u)du ≡ ds, we come to D3Ψ∗(s)[ds, ds, ds] = −D3Ψ(u)[du, du, du], as required in
(iii).
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Theorem 14.4.1 Let (t, x) satisfy Pκ, (δt, δx) ∈ Π(t, x), let

R∗ = {S(p) = s(t, x)− ds(t, x) + pδs | p ∈ R}

be the dual search line associated with the primal search line

R = {X(p) = (t, x− dx(t, x)) + p(δt, δx) | p ∈ R}

(see Lemma 14.3.2) and let

u = σt+ πx+ ε, du(r) = rσδt+ π[−dx(t, x) + rδx].

Then
(i) The vector δx is the minimizer of the quadratic form |σδt + πh|2Ψ′′(u) over h ∈ Rn, and, in

particular,
ζ ≡ |σδt+ πδx|Ψ′′(u) ≤ |σδt|Ψ′′(u). (14.58)

(ii) One has

χ(r) ≡ |du(r)|Ψ′′(u) =
√
r2ζ2 + λ2(t, x) (14.59)

and
v(r) ≡ F (X(r)) + Ψ∗(S(r))− [σ(t+ rδt) + ε]TS(r) = ρ∗u[du(r)]; (14.60)

in particular,
χ(r) < 1⇒ v(r) ≤ 2ρ(χ(r))− χ2(r), (14.61)

so that if

ω∗ = max
[
ω | 2ρ(

√
κ2 + ω2)− κ2 − ω2 ≤ κ

]
(14.62)

then all stepsizes r with

|r| ≤ ω∗
|σδt|Ψ′′(u)

(14.63)

for sure pass the Basic Test.

Proof. From now on the quantities related to F , Ψ and Ψ∗, if no argument values are explicitly
indicated, are taken at the points (t, x), u = σt+ πx+ ε, s = s(t, x) = Ψ′(u), respectively.
10. The minimizer of the quadratic form |σδt+ πh|2Ψ′′ = [σδt+ πh]TΨ′′[σδt+ πh] of h ∈ Rn is given by

πTΨ′′[σδt+ πh] = 0;

this is exactly the equation defining δx, see (14.43), which proves the first statement of the theorem.
20. By definition of dx(t, x) (see (14.44)), ds(t, x) (see (14.51)) and the correspondence between δx and
δs given by (14.51) we have

ds(t, x) = Ψ′′πdx(t, x), δs = Ψ′′[σδt+ πδx] (14.64)

whence
ds(r) ≡ −ds(t, x) + rδs = Ψ′′du(r). (14.65)

By construction s = Ψ′(u). From (14.55) we know that

|ds(t, x)|Ψ′′∗ = |πdx(t, x)|Ψ′′ = λ(t, x);

besides this, [πdx(t, x)]TΨ′′[σδt+ πδx] = 0 in view of (14.43), so that

χ2(r) ≡ |du(r)|2Ψ′′ = |−πdx(t, x) + r[σδt+ πδx] |2Ψ′′ = λ2(t, x) + r2ζ2, (14.66)

as claimed in (14.59).
30. We have (see the definitions of X(r), S(r), du(r), ds(r))

F (X(r)) + Ψ∗(S(r)) = Ψ(u+ du(r)) + Ψ∗(s+ ds(r)) =
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[definition of ρ∗u[·] combined with (14.65)]

= Ψ(u) + Ψ∗(s) + (du(r))TΨ′ + (ds(r))TΨ′∗ +
1

2
|du(r)|2Ψ′′ +

1

2
|ds(r)|2Ψ′′∗ + ρ∗u[du(r)] =

[Proposition 14.4.1.(i) as applied to du = du(r) combined with (14.65); relations Ψ′ = s,Ψ′∗ = u]

= uT s+ (du(r))T s+ (ds(r))Tu+ |du(r)|2Ψ′′ + ρ∗u[du(r)] =

= (u+ du(r))T (s+ ds(r))− (du(r))T ds(r) + |du(r)|2Ψ′′ + ρ∗u[du(r)] =

[Proposition 14.4.1.(i)]
= (u+ du(r))T (s+ ds(r)) + ρ∗u[du(r)]. (14.67)

By construction,

(u+ du(r))T (s+ ds(r)) = [σ(t+ rδt) + ε]TS(r) + [−dx(t, x) + rδx]TπTS(r) =

[Lemma 14.3.2]
= [σ(t+ rδt) + ε]TS(r),

so that (14.67) implies (14.60). Relation (14.61) follows from (14.57) and (14.60), and the concluding
statement of the Theorem is a corollary of (14.58) and (14.61).

How long are “long steps”

Theorem 14.4.1 says that if the tolerances κ and κ are chosen reasonably (say, κ = 0.125 and κ = 2) and
(t, x) is κ-close to S, then any step

(t, x) 7→ (t+, x̃) = (t+ δt, x− dx(t, x) + δx)

“along the surface” (i.e., with (δt, δx) ∈ Π(t, x)) of “O(1)-local length”, namely, with

ζ ≡ |σδt+ πδx|Ψ′′(σt+πx+ε) ≤ 0.89

results in a κ-good forecast (t+, x̃) (indeed, for κ = 0.125 and ζ = 0.89 the right hand side in (14.61) is
< 2). The natural question is whether we could ensure a larger step, still resulting in a κ-good forecast.
For the sake of simplicity, let us answer this question for the case when the point (t, x) belongs to S
(i.e., λ(t, x) = 0) rather than is κ-close to the surface (modifications required in the case of small positive
λ(t, x) are quite straightforward).

When answering the question, we can normalize the direction (δt, δx) ∈ Π(t, x) to have unit local
length:

|du|Ψ′′ = 1, du = σδt+ πδx (14.68)

(here and in what follows all quantities related to Ψ, Ψ∗ are evaluated at the points u = σt+ πx+ ε and
s = Ψ′(u), respectively). Recall that we have associated with the data (t, x, δt) the primal and the dual
search lines R and R∗; it is convenient to aggregate these lines in a single “primal-dual” line

Rpd = (u, s) + R(du, ds) ⊂ R2N
pd = RN

p ×RN
d ,

where ds = Ψ′′du; the projection of Rpd onto the space Rn
d of dual variables is R∗, while the projection

of Rpd onto the space RN
p of the primal variables is the image of the primal search line R under the

embedding (τ, y) 7→ στ +πy+ ε. It is convenient to equip the primal-dual space R2N
pd with the Euclidean

norm
|(vp, vd)|pd =

√
|vp|2Ψ′′ + |vd|2Ψ′′∗ ;

this is nothing but the local norm | · |Ξ′′(z0) given by the Hessian of the s.-c. function

Ξ(vp, vd) = Ψ(vp) + Ψ∗(vd)

at the point z0 = (u, s).
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Let us define T as the distance from z0 to the boundary of the domain Dom Ξ = (Dom Ψ)× (Dom Ψ∗)
along the line Rpd:

T = min{|z − z0|pd | z ∈ Rpd\Dom Ξ};

note that T ≥ 1 due to Proposition 14.2.2.(i). Now, when choosing a stepsize r, forming the corresponding
forecast and subjecting it to the Basic Test, we in fact generate and process the point zr = (u+rdu, s+rds)
on the primal-dual search line Rpd, i.e., perform certain step along Rpd. The | · |pd-length of this step
|zr − z0|pd is simply |r|

√
2 (indeed, ds = Ψ′′du, so that |ds|Ψ′′∗ = |du|Ψ′′ by Proposition 14.4.1, while du

is normalized by (14.68)). It follows that T is a natural upper bound on the acceptable step |zr − z0|pd
– when r = 2−1/2T and du is “badly oriented”, the stepsize r results in zr 6∈ Dom Ξ and is therefore
rejected by the Basic Test. With these remarks, the above question “how long are long steps” can be
posed as follows:

Which fraction of T indeed is accepted by the Basic Test, i.e., which fraction of the way to the boundary
of the primal-dual feasible set Dom Ξ along the direction (du, ds) can we cover in one step of the Basic
Updating scheme ?

According to the above discussion, we for sure can move towards the boundary by the fixed distance
0.89
√

2; this is a “short step” allowed in any path-following interior point method, and to get a result
of this type, no structural assumption (C) on the s.-c.b. in question and no dual bounding are needed.
If T is large, then a short step covers small part of the way to the boundary, and a short-step method
becomes slow.

In fact our approach in many cases enables much larger steps:

Proposition 14.4.2 Let both the barrier Ψ and its Legendre transformation Ψ∗ be α-regular (Definition
14.2.1), let (t, x) ∈ S and let δt be such that (14.68) takes place. Then all stepsizes satisfying

|r| ≤ r∗(α)
√
T , (14.69)

same as all stepsizes satisfying

|r| ≤ r∗(α)Tϑ
−1/4
∗ (14.70)

are accepted by the Basic Test. Here r∗(α) > 0 depends on α only and ϑ∗ is the parameter of the s.-c.b.
Ψ.

Proof. Let Rpd = z0 + Rdz, dz = (du, ds), be the primal-dual search line associated with t, x, δt, and let
∆ = {r | z0 + 2−1/2rdz ∈ cl Dom Ξ}, so that ∆ is a closed convex set on the axis containing the segment
[−T, T ]. By Proposition 14.2.1, the function

φ(r) = Ξ(z0 + 2−1/2rdz)

is self-concordant and α-regular on int ∆. Since we clearly have ‖ 1 ‖int ∆,r≤ (T − |r|)−1 for |r| < T (for
notation, see Definition 14.2.1), inequality (14.38) implies that the function ψ(r) ≡ φ′′(r) satisfies

|ψ′′(r)| ≤ α(α+ 1)

(T − |r|)2
ψ(r), |r| < T. (14.71)

Besides this, we have
ψ(0) = 1, ψ′(0) = 0, (14.72)

the first relation coming from ψ(0) = |2−1/2dz|2pd = 1 (note that |dz|pd =
√

2 due to the discussion
preceding the Proposition), and the second relation being given by Proposition 14.4.1.

We claim that

0 ≤ φ′′(r) ≡ ψ(r) ≤ Tα

(T − |r|)α
, |r| < T. (14.73)

The left inequality follows from convexity of φ. By symmetry reasons, it suffices to establish the right
inequality for 0 ≤ r < T . To this end note that the function

ω(r) =
Tα

(T − r)α
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clearly satisfies the relations

ω′′(r) =
α(α+ 1)

(T − r)2
ω(r), 0 ≤ r < T ; ω(0) = 1; ω′(0) > 0. (14.74)

From (14.74), (14.71), (14.72) we see that the function ξ(r) = ω(r)− ψ(r) satisfies the relations

ξ′′(r) ≥ α(α+ 1)

(T − r)2
ξ(r), 0 ≤ r < T ; ξ(0) = 0; ξ′(0) > 0. (14.75)

To establish (14.73) for 0 ≤ r < T is the same as to prove that ξ ≥ 0 on [0, T ), which is immediate: since
0 = ξ(0) < ξ′(0), ξ is positive on (0, r̂) with some positive r̂. Consequently, if ξ < 0 somewhere on [0, T ),
then ξ possesses a zero on [r̂, T ). Let r∗ be the smallest of zeros of ξ on [r̂, T ); then ξ is nonnegative on
[0, r∗], whence, due to (14.75), ξ is convex on [0, r∗]. This observation combined with ξ(0) = 0, ξ′(0) > 0
contradicts the relation ξ(r∗) = 0.

Combining (14.73) and (14.71), we come to

|φ(4)(r)| ≤ α(α+ 1)Tα

(T − |r|)α+2
, |r| < T. (14.76)

According to Theorem 14.4.1.(ii) and Proposition 14.4.1.(ii), the quantity v(2−1/2r), v(·) being defined
by (14.56), is the remainder in the third-order Taylor expansion of φ(·) at the point r = 0. From (14.76)
we therefore conclude that

v(r) ≤ α(α+ 1)Tαr4

6(T − |r|
√

2)α+2
,
√

2|r| < T. (14.77)

Since the Basic Test accepts all stepsizes with v(r) ≤ κ, we see from (14.77) that it accepts all stepsizes
satisfying (14.69), with properly chosen r∗(α) (recall that T ≥ 1).

In view of already proved part of the statement, in order to demonstrate acceptability of the stepsizes
(14.70) with properly chosen r∗(α), it suffices to verify that

T ≤ γ(α)
√
ϑ∗. (14.78)

This inequality is an immediate consequence of the following

Lemma 14.4.1 Let Ψ be α-regular ϑ∗-s.c.b. for convex domain G+, let u ∈ int G+, let du be such that
|du|Ψ′′(u) = 1, and let T be such that u± Tdu ∈ G+. Then

T ≤ 22+α/2
√
ϑ∗. (14.79)

Proof. Without loss of generality we may assume that (du)TΨ′(u) ≥ 0 (otherwise we could replace du
with −du). Let

φ(r) = Ψ(u+ rdu), r ∈ ∆ = {r | u+ rdu ∈ G+} ⊃ [−T, T ];

by Proposition 14.2.1, φ is α-regular ϑ∗-s.-c.b. for ∆. We claim that if r ∈ int ∆ and d > 0 is such that
r ± 2d ∈ int ∆, then

0 ≤ φ′′(r − d) ≤ 2α+1φ′′(r). (14.80)

Indeed, by Proposition 14.2.1 the function χ(s) = φ(r − s) + φ(r + s) is α-regular on the set ∆r = {s |
r± s ∈ int ∆} ⊃ [−2d, 2d] and is such that χ′(0) = χ′′′(0) = 0. From these properties, same as above (cf.
(14.73)), one can derive the inequality

χ′′(s) ≤ (2d)α

(2d− |s|)α
χ′′(0), |s| < 2d.

Substituting s = d, we get

φ′′(r − d) + φ′′(r + d) = χ′′(d) ≤ 2αχ′′(0) = 2α+1φ′′(r),

which, in view of the convexity of φ, implies (14.80).
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Now let 0 ≤ r < T/3. Applying (14.80) to d = r, we get

φ′′(r) ≥ 2−α−1φ′′(0) = 2−α−1, 0 < r < T/3 (14.81)

(the equality is given by |du|Ψ′′(u) = 1), whence, in view of φ′(0) = (du)TΨ′(u) ≥ 0,

φ′(r) ≥ 2−α−1r, 0 < r < T/3.

Now note that φ is ϑ∗-self-concordant barrier for ∆, whence, by [3] , Proposition 2.3.2, φ′(r)(s− r) ≤ ϑ∗
for all s ∈ ∆. Applying this inequality to s = T ∈ ∆ and r ∈ (0, T/3), we get 2−α−1r(T − r) ≤ ϑ∗,
0 < r < T/3, and (14.79) follows.

Results similar to those stated by Proposition 14.4.2 were recently obtained in [6, 7] for the predictor-
corrector interior point methods associated with the self-scaled cones. Note that the property of Ψ and
Ψ∗ to be α-regular seems to be less restrictive that the one imposed in [6, 7]; we shall see in Section 14.6
that the property of 6-regularity is shared by the functions Ψ and Ψ∗ responsible for Linear, Quadratically
Constrained Quadratic and Semidefinite Programming (these applications are covered by the results of
[6, 7] as well), same as by those responsible for Geometric Programming (where [6, 7] is inapplicable).

14.4.2 Centering property

To proceed, we need certain centering property of the surface of analytic centers given by the following

Proposition 14.4.3 Let (t, x) satisfy Pκ with κ ≤ 0.125, and let t′ ∈ clT . Then

[Ψ′(σt+ πx+ ε)]Tσ(t′ − t) ≤ (1 + 6κ)ϑ∗ + 4κ. (14.82)

Proof. By evident reasons, it suffices to consider the case t′ ∈ T . Let x′ ∈ Qt′ . From general properties
of s.-c.b.’s ([3] , Proposition 2.3.2) it follows that

(∇F (t, x))T (t′ − t, x′ − x) ≤ ϑ∗,

so that (in what follows the derivatives of Ψ are taken at σt+ πx+ ε)

(Ψ′)T [σ(t′ − t) + π(x′ − x)] ≤ ϑ∗.

Therefore
(Ψ′)Tσ(t′ − t) ≤ ϑ∗ + (Ψ′)Tπ(x− x′) = ϑ∗ + (∇xF (t, x))T (x− x′). (14.83)

On the other hand, let x∗ be the minimizer of F (t, ·), and let

|h| = (hT∇2
xF (t, x∗)h)1/2, |h|∗ = (hT [∇2

xF (t, x∗)]−1h)1/2.

From the relation λ(t, x) ≤ κ ≤ 0.125 it follows (see [3] , Theorem 2.2.2 and Proposition 2.3.2) that

|x− x∗| ≤ 1, |x′ − x∗| ≤ 1 + 3ϑ∗, |∇xF (t, x)|∗ ≤ 2κ.

Therefore the concluding expression in (14.83) does not exceed |x− x′||∇xF (t, x)|∗ ≤ 2κ(3ϑ∗ + 2) + ϑ∗,
and we come to (14.82).

What we are interested in is the following consequence of the latter theorem:

Corollary 14.4.1 Let F (t, x) be the barrier associated with a surface of the type Sk(c1, ..., ck):

F (t, x) = −ϑ
k∑
i=1

ln(ti − cTi x) + F (x),

where F is a ϑ-s.-c.b. for a closed and bounded convex domain G ⊂ Rn, and let (t, x) satisfy Pκ with
some κ ≤ 0.125. If t′ ≤ t belongs to clT , then

k∑
i=1

ti − t′i
∆i

≤ 2(k + 1), ∆i = ∆i(t, x) = ti − cTi x. (14.84)
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Geometrically: The part of clT “to the left of t”, i.e., comprised of t′ ≤ t, belongs to the simplex

∆(t, x) = {t′ ≤ t |
k∑
i=1

ti − t′i
∆i

≤ 2(k + 1)}

and contains the box

C(t, x) = {t′ ≤ t | ti − t
′
i

∆i
≤ 1, i = 1, ..., k}.

In particular, if
t∗i (t) = inf{cTi y | y ∈ G, cTj y ≤ tj , j = 1, ..., k},

then, for every i ≤ k,
ti − t∗i (t) ≤ 2(k + 1)∆i(t, x). (14.85)

Proof. In the case in question the left hand side in (14.82) is equal to ϑ
∑k
i=1(ti − t′i)∆

−1
i , while the

right hand side is (1 + 6κ)ϑ∗ + 4κ ≤ 1.75(k + 1)ϑ + 0.5 ≤ 2ϑ(k + 1) (recall that ϑ ≥ 1, see Definition
14.2.1). Thus, (14.82) implies (14.84). The inclusion C(t, x) ⊂ clT is evident, since for t′ ∈ int C(t, x)
we simply have cTi x < t′i, i = 1, ..., k, so that (t′, x) ∈ Q = {(τ, y) | y ∈ int G, τi > cTi y, i = 1, ..., k}.
Relation (14.85) is an immediate consequence of the preceding statements of the Corollary.

14.5 Solving convex programs via tracing surfaces

To the moment we know what are our local abilities to trace a surface of analytic centers, but did not
discuss the “strategy” - where to move in order to solve the problem the surface is associated with. This
question does not occur in the usual path-following approach, since there is a unique reasonable strategy:
to vary the parameter in the only direction of interest at the highest possible rate compatible with the
restriction on the Newton complexity of the corrector steps. In the multi-parameter case the strategy of
tracing the surface requires special investigation; this is the issue we are coming to.

We intend to apply our surface-following scheme to convex programs

(P ) minimize cTx s.t. x ∈ G,
(P ′) minimize cTx s.t. x ∈ G, fTx ≤ 0;

in both of the problems, G is a closed and bounded convex domain in Rn represented by a ϑ-s.-c.b. F ,
and we are given a starting point x̂ ∈ int G. In the second problem it is assumed that the quantity

f∗ = min
x∈G

fTx (14.86)

is nonnegative (the case of feasible (P ′) clearly corresponds to the case of f∗ = 0).
To make presentation more compact, we shall focus on (evidently more general) problem (P ′); to get

constructions and results for (P ), it suffices to set in what follows f = 0.
In Section 14.2.3 problem (P ′) was associated with the barrier

F (t, x) = −ϑ ln(t1 − cTx)− ϑ ln(t2 − fTx)− ϑ ln(t3 − dTx) + F (x) (14.87)

and the 3-parameter surface S3(c, f, d); here d is readily given by the requirement that the pair (t̂, x̂),
with certain explicit t̂, belongs to the surface. In what follows we deal with the setup

t̂1 = cT x̂+
[
cT [∇2F (x̂)]−1c

]1/2
,

t̂2 = fT x̂+
[
fT [∇2F (x̂)]−1f

]1/2
,

d = −ϑ−1∇F (x)− [t̂1 − cT x̂]−1c− [t̂2 − fT x̂]−1f,

t̂3 = dT x̂+ 1;

(14.88)

Note that t̂j , j = 1, 2, are nothing but the maxima of the linear forms cTx, respectively, fTx, over
the closed Dikin ellipsoid WF (x̂), see Proposition 14.2.2; according to this Proposition, the ellipsoid is
contained in G, so that

t̂1 ≤ max
x∈G

cTx; t̂2 ≤ max
x∈G

fTx. (14.89)
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Below c∗ denotes the optimal value in the problem in question. When measuring accuracy of an
approximate solution x ∈ G, we normalize the residuals cTx − c∗ and fTx by the variations of the
corresponding linear forms on the domain of the problem, the variation of a linear form eTx on a bounded
set U being defined as

VU (e) = max
x∈U

eTx−min
x∈U

eTx.

When solving (P ′) via tracing the surface S3(c, f, d), our goal is to enforce the “objective parameter”
t1 and the “constraint parameter” t2 to converge to the optimal value c∗ and to 0, respectively. As for
the “centering parameter” t3, all we need is to control it in a way which allows us to achieve the indicated
goals, and a reasonable policy is to push the parameter to∞, since with a “small” value τ of the centering
parameter the artificial constraint dTx ≤ τ may vary the optimal value in the problem.

14.5.1 Assumption on the structure of F

In order to use the long-step tactics presented in Section 14.3, from now on we make the following
assumption on the structure of the barrier F for the domain G:
Q : we are given a closed convex domain H ∈ RM , a ϑ-s.-c.b. Φ for H such that Φ′′ is nondegenerate

and the Legendre transformation Φ∗ is known, and an affine mapping B(x) = πx + ε : Rn → RM with
the image of the mapping intersecting int H, such that

G = B−1(H), F (x) = Φ(B(x)).

Note that under this assumption any barrier of the type

F (t, x) = ϑ

k∑
i=1

ψi(ti − cTi x) + F (x), ψi(s) = − ln s, (14.90)

and, in particular, the barrier underlying the surface S3(c, f, d), satisfies assumptions (A) - (C) from
sections 14.2.5 and 14.3.1. The corresponding data are

G+ = Rk
+ ×H, Ψ(u1, ..., uk, u) = ϑ

k∑
i=1

ψi(ui) + Φ(u), ϑ∗ = (k + 1)ϑ,

A(t, x) = (t1 − cT1 x, ..., tk − cTk x,B(x));

the Legendre transformation of Ψ is

Ψ∗(s1, ..., sk, s) = ϑ

k∑
i=1

ψi(−si) + Φ∗(s) + kϑ(lnϑ− 1),

Dom Ψ∗ = {(s1, ..., sk) < 0} ×Dom Φ∗.

14.5.2 Preliminary remarks

In what follows we speak about tracing the surface S3(c, f, d). Sometimes we write ci instead of the i-th
vector identifying the surface (so that c1 = c, c2 = f , c3 = d).

Let us fix the tolerances κ, κ such that

κ ∈ (0, 0.125]; κ > 2ρ(κ)− κ2.

When tracing the surface S3, we form a sequence of pairs (ti, xi) satisfying the predicate Pκ associated
with the surface. To update the pair (ti−1, xi−1) into the new pair (ti, xi), we use the Basic Updating
Scheme equipped with the Basic Test for choosing a proper stepsize ri in the current direction (δti, δxi),
so that the forecast we use is

(ti, x̃i) = (ti−1, xi−1 − dx(ti−1, xi−1)) + ri(δt
i, δxi).

The above remarks specify the method up to the following two “degrees of freedom”:
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(I) strategy of choosing the direction δti;
(II) tactics of choosing a proper stepsize ri.

(I) is the main subject of this section. As about (II), we are not going to be too specific. The only
assumption on ri is that it is at least the “short step” r∗i given by Theorem 14.4.1, i.e. (see (14.63)),

ri ≥ r∗i ≡
ω∗√

ϑ
∑3
j=1(δtij)

2/∆2
j (t

i−1, xi−1)
, ∆j(t, x) = tj − cTj x (14.91)

(from now on, the superscript in notation like δtij denotes the number of the step, and the subscript is
the coordinate index). In view of the origin of ω∗ (see (14.62)) and Theorem 14.4.1 (applied to barrier
(14.87)), the default value r∗i of the stepsize for sure passes the Basic Test (so that to use the default
stepsize no Basic Test, and, consequently, no assumptions on the structure of F are needed). One is
welcome to combine the Basic Test with any kind of line search to get a larger (proper) stepsize. Note
that in what follows we sometimes impose certain “safety” upper bounds on ri; each time it can be
immediately verified that these bounds are valid for ri = r∗i , so that the safety bounds are consistent
with the aforementioned lower bound on ri.

With the above remarks, we may completely focus on the “strategic” issue (I).
As it was already explained, when tracing surface S3(c, f, d), we should get rid of the centering

parameter; the simplest way is to push it to ∞. How to ensure this, this is the issue we start with.
Consider a surface Sk(c1, ..., ck) associated with barrier (14.90), and let (t, x) satisfy the predicate Pκ

associated with the surface. Let

q =
2k

4k + 3
. (14.92)

We say that a direction δt = (δt1, ..., δtk) in the space of parameters is k-safe, if

δtk ≥ 0,
δtk

∆k(t, x)
≥ 2(2k + 1)

−δti
∆i(t, x)

, i = 1, ..., k − 1, (14.93)

where, same as in Corollary 14.4.1,

∆i(t, x) = ti − cTi x, i = 1, ..., k,

and we say that a stepsize r ≥ 0 in the direction δt is k-safe, if

t+ q−1rδt ∈ T ≡ {t ∈ Rk | ∃y ∈ int G : ti > cTi y, i = 1, ..., k}. (14.94)

Lemma 14.5.1 Let (t, x) satisfy Pκ with respect to Sk(c1, ..., ck), δt be a safe direction, r be a safe
stepsize, and let t+ = t+ rδt. Then

t+k − t
∗
k(t+) ≥ min{1 +

1

2k + 2
; 1 +

rδtk
4(k + 1)∆k(t, x)

}(tk − t∗k(t)), (14.95)

where, same as in Corollary 14.4.1, t∗i (t) = min{cTi y | y ∈ G, cTj y ≤ tj , j = 1, ..., k}.

Proof is given in Appendix A.

14.5.3 How to trace S3(c, f, d)

The algorithm

Our strategy for solving (P ′) is as follows. Given (t, x) κ-close to S ≡ S3(c, f, d), we say that (t, x) is
good, if

t2 ≤ 16∆2(t, x) (14.96)

and is bad otherwise; here and in what follows, as always,

∆1(t, x) = t1 − cTx, ∆2(t, x) = t2 − fTx, ∆3(t, x) = t3 − dTx.
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At step i (where zi−1 ≡ (ti−1, xi−1) is updated into zi ≡ (ti, xi)), we act as follows.
1) If the current iterate (ti−1, xi−1) is bad, we apply

Infeasibility Test: If both the inequalities

∆1(ti−1, xi−1) > 9ϑ∗
(
cT [∇2

xF (ti−1, xi−1)]−1c
)1/2

(14.97)

and

∆3(ti−1, xi−1) > 9ϑ∗
(
dT [∇2

xF (ti−1, xi−1)]−1d
)1/2

(14.98)

are valid, claim that (P ′) is infeasible and terminate.
2) If the method is not terminated by 1), we set

δti =

{
(−∆1(zi−1), −∆2(zi−1), 16∆3(zi−1)), zi−1 is good
( ∆1(zi−1), 0 , 16∆3(zi−1)), otherwise

. (14.99)

After the direction δti is determined, we use the Basic Updating Scheme to update (ti−1, xi−1) into
(ti, xi); in this updating, we subject the stepsize ri to the “safety restriction”

ri|δtij | ≤
1

8
∆j(t

i−1, xi−1), j = 1, 2 (14.100)

(this does not forbid “long steps”: the short step r∗i in our case is by factor O(
√
ϑ) less than the upper

bound in (14.100)).
The recurrence is started at (t0, x0) = (t̂, x̂) ∈ S3, see (14.88).

Remark 14.5.1 In the case of problem (P) – according to our convention, it means that f = 0 – all
(ti−1, xi−1) are good, since ti−1

2 = ∆2(ti−1, xi−1), so that (14.99) always results in δti1 < 0: we decrease
the parameter of interest, as it should be in the case of feasible start.

Complexity

To describe the rate of convergence of the resulting method, let us denote by N∗ the index of the iteration
where the method terminates (if it happens; otherwise N∗ =∞), and let N(ε), 0 < ε ≤ 1, be the index
i of the first iteration starting with which all iterates are ε-solutions to (P ′):

cTxj − c∗ ≤ εVG(c), fTxj ≤ εVG(f), ∀j, N∗ ≥ j > i

(note that in the case of N∗ < ∞ the latter relations are for sure satisfied when i = N∗, so that
N(ε) ≤ N∗). The efficiency estimate for the presented method is given by the following.

Theorem 14.5.1 The method never claims a feasible problem (P ′) to be infeasible, and if (P ′) is infea-
sible, this is detected in no more than

N∗ = O(1)ω−1
∗
√
ϑ ln

(
2ϑ[G : x̂](VG(f) + f∗)

f∗

)
(14.101)

iterations; here ω∗ is given by (14.62), f∗ is given by (14.86) and

[G : x̂] = max{s | ∃y 6∈ G : x̂+ s(x̂− y) ∈ G}

is the asymmetry coefficient of G with respect to x̂.
If (P ) is feasible, then

N(ε) ≤ O(1)ω∗
−1
√
ϑ ln

(
2ϑ[G : x̂]

ε

)
∀ε ∈ (0, 1). (14.102)

The Newton complexity of any corrector step of the method does not exceed

O(1){κ+ ln ln(1/κ)}.
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Proof. 10. The upper bound on the Newton complexity of corrector steps is given by Propositions 14.2.3
and 14.3.1.
20. Note that (14.91), (14.99) and (14.100) result in

1

8
≥ ri ≥ O(1)ω∗ϑ

−1/2. (14.103)

Let, same as before,

Gt = {x ∈ G | cTx ≤ t1, fTx ≤ t2, dT f ≤ t3}, T = {t ∈ R3 | int Gt 6= ∅}

and
t∗1(t) = min{cTx | x ∈ G, fTx ≤ t2, dTx ≤ t3}
t∗2(t) = min{fTx | x ∈ G, cTx ≤ t1, dTx ≤ t3}
t∗3(t) = min{dTx | x ∈ G, cTx ≤ t1, fTx ≤ t2}

, t ∈ T.

30. Let us prove that if the method terminates at certain step i, then (P ′) is infeasible. Let x be an
arbitrary point of the domain Gti−1 , let x∗ be the minimizer of F (ti−1, ·), and let H∗ = ∇2

xF (ti−1, x∗),
H = ∇2

xF (ti−1, xi−1). As we know, F (ti−1, ·) is ϑ∗-s.-c.b. for Gti−1 and λ(ti−1, xi−1) ≤ κ ≤ 0.125; from
these observations by [3] , Theorem 2.2.2.(iii) and Proposition 2.3.2, it follows that

|x∗ − x|H∗ ≤ 3ϑ∗ + 1, |xi−1 − x∗|H ≤ 2κ, H∗ ≤ (1− 2κ)−2H,

whence |x− xi−1|H ≤ 9ϑ∗, x ∈ Gti−1 . Therefore for an arbitrary vector e we have

max
x∈Gti−1

eTx ≤ cTxi−1 + 9ϑ∗|e|H−1 .

Applying this relation to e = c and e = d and taking into account (14.97) and (14.98), we see that

ti−1
1 > max

x∈Gti−1

cTx, ti−1
3 > max

x∈Gti−1

dTx.

Thus, the constraints cTx ≤ ti−1
1 and dTx ≤ ti−1

3 are redundant in the description of Gti−1 , whence

t∗2(ti−1) = min{fTx | x ∈ G}.

By Corollary 14.4.1 applied with k = 3, we have (see (14.85))

ti−1
2 − t∗2(ti−1) ≤ 8∆2(ti−1, xi−1);

since the Infeasibility Test was applied at the step i, the pair (ti−1, xi−1) is bad, so that ti−1
2 >

16∆2(ti−1, xi−1), and we come to

min
x∈G

fTx = t∗2(ti−1) ≥ ti−1
2 − 8∆2(ti−1, xi−1) > 8∆2(ti−1, xi−1) > 0,

and (P ′) is infeasible, as claimed.
The algorithm in question terminates when the Infeasibility Test detects that (P ′) is infeasible. In

what follows it is however more convenient to think that we ignore the “reports on infeasibility”, if any,
and continue the process as if there were no Infeasibility Test at all.
40. Note that all directions δti satisfy (14.93) with k = 3. Besides this, (14.100) ensures that the stepsizes
ri are 3-safe. Indeed, in our case q−1 = 5/2, so that by (14.100) we have for j = 1, 2:

ti−1
j + q−1riδt

i
j ≥ ti−1

j −∆j(t
i−1, xi−1) =

{
cTxi−1, j = 1
fTxi−1, j = 2

;

since δti3 > 0, we also have ti−1 + q−1riδt
i
3 > dTxi−1, whence ti−1 + q−1δti ∈ T .

50. Applying Lemma 14.5.1 and taking into account (14.103), we observe that

ti3 − t∗3(ti) ≥ (1 + ri)(t
i−1
3 − t∗3(ti−1)) ≥ (1 +O(1)ω∗ϑ

−1/2)(ti−1
3 − t∗3(ti−1)). (14.104)
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Let us derive from this observation that there exists the first moment i, let it be called i∗, when ti3 ≥
maxx∈G d

Tx, and that

i∗ ≤ O(1)ω−1
∗ ϑ1/2 ln(2ϑ[G : x̂]). (14.105)

To derive (14.105) from (14.104), it clearly suffices to verify that

VG(d) ≤ 14ϑ[G : x̂](t̂3 − t∗3(t̂)). (14.106)

To get (14.106), note that by (14.89) the domain

Gini = {x ∈ G | cTx ≤ t̂1, fTx ≤ t̂2}

contains the closed Dikin ellipsoid

W = {y | |y − x̂|
F ′′(x̂)

≤ 1}.

Let Ĝ = G∩ (2x̂−G) be the symmeterization of G with respect to x̂; by definition of the quantity [G : x̂],
we have

G ⊂ x̂+ [G : x̂](Ĝ− x̂). (14.107)

On the other hand, the function

F̂ (x) = F (x) + F (2x̂− x)

is ϑ̂-s.-c.b. for Ĝ, ϑ̂ = 2ϑ (Proposition 14.2.1.(i)), and clearly ∇F̂ (x̂) = 0. From the latter inequality it

follows ([3] , Theorem 2.2.2.(iii)) that Ĝ is contained in | · |
F̂ ′′(x̂)

-ball of the radius 1 + 3ϑ̂ ≤ 7ϑ centered

at x̂, whence

Ĝ− x̂ ⊂ 7ϑ(W − x̂);

combining this relation with (14.107), we get

G ⊂ x̂+ 7ϑ[G : x̂](W − x̂).

It follows that for an arbitrary vector e one has

VG(e) ≤ 7ϑ[G : x̂]VW (e) = 14ϑ[G : x̂](eT x̂− min
x∈W

eTx). (14.108)

Taking into account that

t̂3 − t∗3(t̂) = t̂3 −min{dTx | x ∈ G, cTx ≤ t̂1, fTx ≤ t̂2, dTx ≤ t̂3} =

= t̂3 −min{dTx | x ∈ G, cTx ≤ t̂1, fTx ≤ t̂2} = t̂3 − min
x∈Gini

dTx ≥

[since t̂3 ≥ dT x̂ and W ⊂ Gini]

≥ dT x̂− min
x∈W

dTx

and applying (14.108) to e = d, we come to (14.106).
60. Let

Ωi =
ti1 − t∗1(ti)

(ti2)32
.

Our key argument is as follows: for properly chosen O(1) and all i one has

Ωi/Ωi−1 ≥ 1 +O(1)ω∗ϑ
−1/2. (14.109)

To establish the inequality, let us fix i and consider separately the cases of good and bad (ti−1, xi−1).
60.1. Assume that (ti−1, xi−1) is bad. According to (14.99), in the case in question

ti1 = ti−1
1 + ri∆1(ti−1, xi−1), ti2 = ti−1

2 , ti3 ≥ ti−1
3 .
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Since t∗1(t) clearly depends only on t2, t3 and is nonincreasing in (t2, t3), we have t∗1(ti) ≤ t∗1(ti−1), whence,
in view of ti2 = ti−1

2 ,

Ωi
Ωi−1

=
ti1 − t∗1(ti)

ti−1
1 − t∗1(ti−1)

≥ ti−1
1 + ri∆1(ti−1, xi−1)− t∗1(ti−1)

ti−1
1 − t∗1(ti−1)

= 1 + ri
∆1(ti−1, xi−1)

ti−1
1 − t∗1(ti−1)

.

According to Corollary 14.4.1 applied with k = 3 (see (14.85)), the concluding quantity is ≥ 1 + 1
8ri.

Taking into account (14.103), we come to (14.109).
60.2. Now assume that (ti−1, xi−1) is good. For the sake of brevity, let us write (t, x) instead of

(ti−1, xi−1), r instead of ri, and let t+ = ti. By definition of t∗1(·), there exists u ∈ G such that

cTu = t∗1(t); fTu ≤ t2; dTu ≤ t3; (14.110)

by definition of ∆j(·, ·) and since x ∈ Gt, we have

cTx = t1 −∆1(t, x); fTx = t2 −∆2(t, x); dTx ≤ t3, (14.111)

and since (t, x) is good, we have

t2 ≤ 16∆2(t, x). (14.112)

Let

v = (1− r)u+ rx,

and let us verify that v ∈ Gt+ . Indeed, by (14.110) - (14.111) and due to t+3 ≥ t3 we have dT v ≤ t+3 .
Further, by (14.110), (14.111) and (14.99)

fT v = (1− r)fTu+ rfTx ≤ (1− r)t2 + r(t2 −∆2(t, x)) = t2 − r∆2(t, x) = t+2 .

Last, by (14.110) and (14.111)

cT v = (1− r)cTu+ rcTx ≤ cTx = t1 −∆1(t, x) ≤ t+1

(concluding inequality is given by (14.100)).
Thus, v ∈ Gt+ ; consequently,

t∗1(t+) ≤ cT v = (1− r)cTu+ rcTx = (1− r)t∗1(t) + r(t1 −∆1(t, x)). (14.113)

With this inequality, we have

t+1 − t∗1(t+) = t1 − r∆1(t, x)− t∗1(t+) ≥ t1 − r∆1(t, x)− (1− r)t∗1(t)− r(t1 −∆1(t, x)) =

= (1− r)(t1 − t∗1(t)),

whence
Ωi

Ωi−1
≥ (1− r)

(
t2

t+2

)32

= (1− r)
(

t2
t2 − r∆2(t, x)

)32

≥

[see (14.112)]

≥ (1− r)
(

1

1− r
16

)32

≥ (1− r)
(

1 +
r

16

)32

≥ (1− r)(1 + 2r) ≥ 1 +
3

4
r

(we have taken into account that r ≤ 1/8, see (14.103)); this inequality combined with (14.103) results
in (14.109).
70. Let (P ′) be infeasible, and let us prove (14.101). Indeed, we have ti2 ≥ f∗ > 0, whence Ωi ≤
∆1(ti, xi)(f∗)−32. We conclude from (14.109) that

∆1(ti, xi) ≥ (1 +O(1)ω∗ϑ
−1/2)i∆1(t̂, x̂)

(
f∗

∆2(t̂, x̂)

)32

.
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Taking into account that ∆2(t̂, x̂) ≤ VG(f) due to t̂2 ≤ maxx∈G f
Tx (see (14.89)) and that

∆1(t̂, x̂) ≥ (14ϑ[G : x̂])−1
VG(c)

(apply (14.108) to e = c and note that cT x̂−minx∈W cTx = t̂1 − cT x̂ by (14.88)), we come to

∆1(ti, xi) ≥ (1 +O(1)ω∗ϑ
−1/2)i

VG(c)

14ϑ[G : x̂]

(
f∗

VG(f)

)32

.

It follows that

i ≥ ic = O(1)ω−1
∗
√
ϑ ln

(
2ϑ[G : x̂]VG(f)

f∗

)
⇒ ∆1(ti, xi) ≥ 5ϑ∗VG(c). (14.114)

Further, from (14.85), (14.104) and (14.106) we have

∆3(ti, xi) ≥ 1

8
(ti3 − t∗3(ti)) ≥

1

8
(1 +O(1)ω∗ϑ

−1/2)i(t̂3 − t∗3(t̂)) ≥

≥ (1 +O(1)ω∗ϑ
−1/2)i(112ϑ[G : x̂])−1

VG(d),

whence
i ≥ id = O(1)ω−1

∗
√
ϑ ln(2ϑ[G : x̂])⇒ ∆3(ti, xi) ≥ 5ϑ∗VG(d). (14.115)

Last, ti2 ≤ ti−1
2 for all i, and if (ti−1, xi−1) is good, then

ti2 = (1− ri∆2(ti−1, xi−1)/ti−1
2 )ti−1

2 ≥ (1− ri/16)ti−1
2 ≥ (1−O(1)ω∗ϑ

−1/2)ti−1
2

(we have used (14.103)). We clearly have ti2 ≥ f∗, while t̂2 ≤ f∗ + VG(f) by (14.89). Combining these
observations, we see that the total number if of those i with good (ti−1, xi−1) can be bounded as follows:

if ≤ O(1)ω−1
∗
√
ϑ ln

(
2ϑ(VG(f) + f∗)

f∗

)
. (14.116)

From (14.114), (14.115) and (14.116) we conclude that there exists

i+ ≤ O(1)ω−1
∗
√
ϑ ln

(
2ϑ[G : x̂](VG(f) + f∗)

f∗

)
such that (ti

+−1, xi
+−1) is bad and

∆1(ti
+−1, xi

+−1) ≥ 5ϑ∗VG(c), ∆3(ti
+−1, xi

+−1) ≥ 5ϑ∗VG(d). (14.117)

Now let H = ∇2
xF (ti

+−1, xi
+−1). The Dikin ellipsoid {x | |x − xi

+−1|H ≤ 1} is contained in G, so

that the variation 2
√
eTH−1e of a linear form eTx on the ellipsoid is ≤ VG(e). Thus, (14.117) implies

(14.97) and (14.98); since (ti
+−1, xi

+−1) is bad, we see that the Infeasibility Test detects infeasibility at
the iteration i+, and (14.101) follows.
80. It remains to consider the case when (P ′) is feasible, as it is assumed from now on. We need the
following observation:

Lemma 14.5.2 Let i be such that ti−1
3 ≥ maxx∈G d

Tx. If (ti−1, xi−1) is bad, then both ti−1
1 and ti1 are

≤ c∗.

Proof. For the sake of brevity, let us write (t, x) instead of (ti−1, xi−1) and t+ instead of ti. Since
t3 ≥ maxx∈G d

Tx, we have

t∗2(τ, τ ′, t3) = φ(τ) ≡ min{fTx | x ∈ G, cTx ≤ τ}, (τ, τ ′, t3) ∈ T.

SinceG is compact convex set, φ(τ) is continuous nonincreasing convex function on the ray [minx∈G c
Tx,∞);

this function is positive to the left of c∗ and is zero to the right of c∗ (recall that since (P ′) is feasible,
we have minx∈G f

Tx = 0 and c∗ = minx∈G:fT x≤0 c
Tx}).
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By Corollary 14.4.1 and since (t, x) is bad, we have

16∆2(t, x) < t2 = t∗2(t) + [t2 − t∗2(t)] ≤ t∗2(t) + 8∆2(t, x) = φ(t1) + 8∆2(t, x),

whence

φ(t1) ≥ 1

2
t2 > 8∆2(t, x) > 0. (14.118)

Consequently, t1 < c∗. Besides this,

cTx = t1 −∆1(t, x), fTx = t2 −∆2(t, x),

whence
φ(t1 −∆1(t, x)) ≤ t2 −∆2(t, x).

Since φ is convex, we have

φ(t1 + ∆1(t, x)) ≥ 2φ(t1)− φ(t1 −∆1(t, x)) ≥ 2φ(t1) + ∆2(t, x)− t2 ≥

[see (14.118)]
≥ ∆2(t, x) > 0,

whence t1 + ∆1(t, x) < c∗. It remains to note that in view of (14.99), (14.103)

t+1 = t1 + ri∆1(t, x) < t1 + ∆1(t, x).

90. According to Lemma 14.5.2, the behaviour of the sequence {ti1} starting with the moment i∗ is as
follows: if (ti, xi) is bad, then both ti1 and ti+1

1 are less than c∗, and if (ti, xi) is good, then, by (14.99),
ti+1
1 < ti1. Consequently, the sequence

{εi = max[ti1 − c∗, 0]}i≥i∗

is nonincreasing and

φi ≡ ti1 −min
x∈G

cTx ≤ φ∗ ≡ max[c∗, ti
∗

1 ]−min
x∈G

cTx, i ≥ i∗. (14.119)

Since one clearly has ti1 − t∗1(ti) ≤ φi, we come to

ti1 − t∗1(ti) ≤ φ∗, i ≥ i∗. (14.120)

By definition of Ωi, for i ≥ i∗ we have

fTxi ≤ ti2 =

[
Ω0

Ωi

ti1 − t∗1(ti)

t̂1 − t∗1(t̂)

]1/32

t̂2 ≤

[see (14.109), (14.89) and (14.120)]

≤ (1−O(1)ω∗ϑ
−1/2)i

[
φ∗

t̂1 − t∗1(t̂)

]1/32

max
x∈G

fTx.

Applying (14.108) to e = c and taking into account that by definition of t̂1 one has

t̂1 − t∗1(t̂) ≥ t̂1 − cT x̂ = cT x̂− min
x∈W

cTx,

we get

i ≥ i∗ ⇒ fTxi ≤ (1−O(1)ω∗ϑ
−1/2)i(φ∗∗)1/32 max

x∈G
fTx, φ∗∗ = 14ϑ[G : x̂]

φ∗

VG(c)
. (14.121)

100. Let us prove that
φ∗ ≤ 20ϑ[G : x̂]VG(c). (14.122)
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Let di = ti3 − t∗3(ti). By (14.104) we have di ≥ (1 + ri)di−1, while (see (14.119), (14.99))

φi
φi−1

≤ 1 + ri
∆1(ti−1, xi−1)

φi−1
≤ 1 + ri

(we have taken into account that φi−1 > ∆1(ti−1, xi−1) = ti−1
1 − cTxi−1). Consequently,

φi ≤ φ0
di
d0
≤ VG(c)

di
d0

(the second inequality is given by (14.89)). In the case of i∗ = 0 the resulting relation clearly implies
φi∗ ≤ VG(c). If i∗ > 0, then the above inequalities lead to

φi∗ ≤ (1 + ri∗)φi∗−1 ≤ (1 + ri∗)VG(c)
di∗−1

d0
≤

[see (14.103) and note that di∗−1 ≤ VG(d) by definition of i∗, while d0 ≥ (14ϑ[G : x̂])−1VG(d) by (14.106)]

≤ 20ϑ[G : x̂]VG(c).

To get (14.122), it remains to note that, by definition,

φ∗ = max[c∗, ti
∗

1 ]−min
x∈G

cTx = max[c∗ −min
x∈G

cTx, φi∗ ] ≤ max[VG(c), φi∗ ].

Combining (14.122) and (14.121). we come to

i ≥ i∗ ⇒ fTxi ≤ O(1)ϑ[G :x](1−O(1)ζ∗ϑ−1/2)i max
x∈G

fTx. (14.123)

110. Now let i∗∗ be the first i ≥ i∗ such that (ti, xi) is bad (if no such i exists, we set i∗∗ = +∞). As it
was explained in the beginning of 90, we have

cTxi − c∗ ≤ εi ≡
{

0, i ≥ i∗∗
max

[
ti1 − c∗, 0

]
, i∗ ≤ i < i∗∗

(14.124)

According to Corollary 14.4.1,
ti−1
1 − t∗1(ti−1) ≤ 8∆1(ti−1, xi−1);

when i > i∗, we have
t∗1(ti−1) = min{cTx | x ∈ G, fTx ≤ ti−1

2 } ≤ c∗,
so that for i∗ < i < i∗∗

ti1 − c∗ ≤ ti−1
1 − ri∆1(ti−1, xi−1)− c∗ ≤ ti−1

1 − c∗ − ri
8

(ti−1
1 − t∗1(ti−1)) ≤

(
1− ri

8

)
(ti−1

1 − c∗),

whence, due to (14.103),
εi ≤ (1−O(1)ω∗ϑ

−1/2)εi−1, i > i∗.

Combining this observation with (14.124), we come to

cTxi − c∗ ≤ (1−O(1)ω∗ϑ
−1/2)i−i

∗
εi∗ , i > i∗,

whence, in view of εi∗ ≤ φ∗ and (14.122)

cTxi − c∗ ≤ O(1)ϑ[G : x̂](1−O(1)ω∗ϑ
−1/2)i−i

∗
VG(c), i ≥ i∗. (14.125)

Combining (14.125), (14.123) and taking into account (14.105), we come to (14.102).

14.6 Application examples

Our “long step” technique for tracing a surface of analytic centers heavily exploits assumption Q (Section
14.5.1) on structure of the s.-c.b. F for the domain G of problems (P ), (P ′); let us call barriers satisfying
this assumption good. The goal of this section is to demonstrate that the s.-c.b.’s responsible for many
important applications indeed are good.
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14.6.1 Combination rules

Let us start from the following general remark. The desired structure is “stable with respect to inter-
sections”. Namely, assume that G is represented as an intersection ∩mi=1Gi of closed convex domains; we
shall say that Gi represents (or simply is) i-th constraint of the problem. The aforementioned stability
means that if every Gi admits a good ϑi-s.-c.b. Fi(x) = Φi(πix+ εi) (so that Φi is a ϑi-s.-c.b. for certain
closed convex domain Hi ⊂ Rqi and we know the Legendre transformation Φi,∗ of Φi), then a good
(
∑
i ϑi)-s.c.b. for G is

F (x) = Φ(πx+ ε),

where

Φ(u1, ..., um) =

m∑
i=1

Φi(ui) : int (H1 × ...×Hm)→ R, πx+ ε = (π1x+ ε1, ..., πmx+ εm);

note that

Φ∗(s1, ..., sm) =

m∑
i=1

Φi,∗(si)

(see Proposition 14.2.1).
Thus, our assumption is “separable with respect to the constraints” involved into the description of

G.
The structure in question is also stable with respect to affine substitutions of argument: if G is the

inverse image of certain closed convex domain G+ under an affine mapping A (the image of the mapping
intersects int G+) and we know a good ϑ-s.-c.b. F+ for G+, then we can equip G with the ϑ-s.-c. barrier
F (x) = F+(A(x)), and this barrier clearly is good.

14.6.2 “Building blocks”

The indicated combination rules can be applied to a number of “building blocks”, i.e., good barriers for
certain standard convex domains. These blocks are as follows:

1. Nonnegative half-axis R+: The standard 1-s.-c.b. Φ(x) = − lnx for R+ is good: its Legendre
transformation is Φ∗(s) = − ln(−s) − 1, s < 0; both Φ and Φ∗ are 2-regular (regularity of all functions
mentioned in this section is proved in Appendix B).

This elementary observation, in view of the combination rules, allows to handle arbitrary linear
inequality constraints and, in particular, covers all needs of Linear Programming.

2. Convex domain G ⊂ Rn which is a connectedness component of the Lebesgue set cl{x | f(x) < 0}
of a quadratic function f : Such a domain can be represented as the inverse image of the second-order
cone

H = {u ∈ Rq | uq ≥ (

q−1∑
i=1

u2
i )

1/2}

under an easily computable affine mapping x 7→ u = πx+ ε with the image of the mapping intersecting
the interior of H; setting

Φ(u) = − ln(u2
q −

q−1∑
i=1

u2
i ),

we obtain a 2-s.-c.b. for H ([3] , Chapter 5) with the explicit Legendre transformation

Φ∗(s) = − ln(s2
q −

q−1∑
i=1

s2
i )− 2 + 2 ln 2, s ∈ −H,

and consequently can equip G with the good 2-s.-c.b. F (x) = Φ(πx+ ε); both Φ and Φ∗ are 6-regular.
This observation covers convex quadratically constrained problems and even more general family of

convex programs (note that f should not necessarily be convex, e.g., we may handle the hyperbolic

domain of the type
∑n−1
i=1 x

2
i + 1 ≤ x2

n, xn > 0).
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3. Geometrical Programming in the exponential form: Assume that among the constraints defining
the feasible domain of a convex program there is a constraint of the form

q∑
i=1

exp{aTi x+ bi} ≤ pTx+ r.

Adding q extra variables y1, ..., yq, one may pass from the initial problem to an equivalent one where the
indicated constraint is represented by the system of convex inequalities

exp{aTi x} ≤ yi, i = 1, ..., q;

q∑
i=1

exp{bi}yi ≤ pTx+ r.

We already know how to handle the concluding linear constraint, and all we need is to understand how
to deal with the exponential inequality

exp{aTi x} ≤ yi.

In order to penalize the latter constraint by a good barrier, it suffices to point out a good barrier for the
epigraph

G = {(τ, x) ∈ R2 | τ ≥ exp{x}}

of the exponent and to use the combination rule related to affine substitutions of argument. A good
2-s.-c.b. for G can be written down explicitly ([3] , Chapter 5):

Φ(τ, x) = − ln(ln τ − x)− ln t, Φ∗(s, ξ) = (ξ + 1) ln

(
ξ + 1

−s

)
− ξ − ln ξ − 2,

Dom Φ∗ = {(s, ξ) ∈ R2 | s < 0, ξ > 0}.

Both Φ and Φ∗ turn out to be 6-regular.
4. Linear Matrix Inequality constraint: A constraint of this type arises in numerous applications and

defines the domain of the form

G = {x | A(x) is positive semidefinite},

where A(x) is an affine in x matrix-valued function taking values in the space of symmetric matrices of
a given row size m. A good m-s.-c.b. for G is given by

F (x) = Φ(A(x)), Φ(y) = − ln Det y;

Φ is the standard m-s.-c.b. for the cone Sm+ of symmetric m×m positive semidefinite matrices (see [3] ,
Chapter 5) with the Legendre transformation

Φ∗(s) = − ln Det (−s)−m, Dom Φ∗ = − int Sm+ ;

both Φ and Φ∗ are 2-regular. This example covers all needs of Semidefinite Programming.
We see that our assumption on the structure of F is compatible with a wide spectrum of important

Convex Programming problems.

Appendix A: Proof of Lemma 14.5.1

Proof of Lemma 14.5.1. The function t∗k(·) clearly depends on the first k− 1 components of argument
only; let us denote the vector comprised of these first k − 1 components by τ , so that t∗k = t∗(τ). Since
G is bounded, t∗(τ) is a convex continuous function on the closure T ′ of the projection of T on the
plane of the first k − 1 parameters; this projection is monotone (τ ′ ≥ τ ∈ T ′ ⇒ τ ′ ∈ T ′), and t∗(τ) is
monotonically nonincreasing on T ′.

Let

τ = (t1, ..., tk−1), δτ = ((δt1)−, (δt2)−, ..., (δtk−1)−),
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where a− = min{a, 0}, and let ∆τ = (δt1−δτ1, ..., δtk−1−δτk−1); then ∆τ ≥ 0. It is possible that δτ = 0;
then the statement in question is evident, since here

t∗k(t+ rδt) = t∗(τ + r∆τ) ≤ t∗(τ) = t∗k(t)

(we have used the monotonicity of t∗(·)), so that

tk + rδtk − t∗k(t+ rδt) ≥ tk + rδtk − t∗k(t) = (tk − t∗(t))
(

1 +
rδtk

tk − t∗k(t)

)
≥

≥
(

1 + r
δtk

2(k + 1)∆k(t, x)

)
(tk − t∗k(t))

(the concluding inequality follows from (14.85)), and we come to (14.95).
Now consider the case when δτ 6= 0. Let z be the largest real p ≥ 0 such that

|pδτi| ≤ ∆i(t, x), i = 1, ..., k − 1.

As we know from Corollary 14.4.1, one has (τ + zδτ, tk −∆k(t, x)) ∈ clT, and consequently

t∗(τ + zδτ) ≤ tk −∆k(t, x). (14.126)

Let, further,
r̂ = min{r, z}, θ = r̂/z;

since t∗ is convex, we have

t∗(τ + r̂δτ) ≤ t∗(τ) + θ(t∗(τ + zδτ)− t∗(τ)) ≤ t∗(τ) + θ[tk −∆k(t, x)− (tk − 2(k + 1)∆k(t, x))]

(the latter inequality follows from (14.126) and (14.85)). Thus, we come to

t∗(τ + r̂δτ) ≤ t∗(τ) + (2k + 1)θ∆k(t, x),

and since t∗(·) is monotonically nonincreasing, we have also

t∗k(t+ r̂δt) = t∗(τ + r̂δτ + r̂∆τ) ≤ t∗(τ) + (2k + 1)θ∆k(t, x),

or
t∗k(t+ r̂δt) ≤ t∗k(t) + (2k + 1)θ∆k(t, x). (14.127)

On the other hand, by definition of z one has z|δti| = ∆i(t, x) for certain i < k with δti < 0; since, by
assumption, δta k-safe,

δtk
∆k(t, x)

≥ (4k + 2)
|δti|

∆i(t, x)
,

and we come to
zδtk ≥ (4k + 2)z|δti|∆k(t, x)∆−1

i (t, x) = (4k + 2)∆k(t, x), (14.128)

whence
∆k(t, x) ≤ (4k + 2)−1zδtk.

Combining this inequality with (14.127), we come to

(tk + r̂δtk)− t∗k(t+ r̂δt) ≥ r̂δtk + (tk − t∗k(t))− θz(4k + 2)−1(2k + 1)δtk =

[since θz = r̂]

=
r̂

2
δtk + (tk − t∗k(t)),

whence, again in view of tk − t∗k(t) ≤ 2(k + 1)∆k(t, x),

(tk + r̂δtk)− t∗k(t+ r̂δt) ≥ (1 +
r̂δtk

4(k + 1)∆k(t, x)
)(tk − t∗k(t)). (14.129)
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It is possible that r̂ = r; in this case (14.95) immediately follows from (14.129). It remains to consider
the case when r̂ < r. By definition of r̂, it means that r̂ = z < r, and in view of (14.128) relation (14.129)
implies that

∆ ≡ (tk + r̂δtk)− t∗k(t+ r̂δt) ≥ (1 +
4k + 2

4k + 4
)(tk − t∗k(t)) =

4k + 3

2k + 2
(tk − t∗k(t)). (14.130)

Now consider the function
g(l) = (tk + lrδtk)− t∗k(t+ lrδt);

since r is a safe stepsize, it is a well-defined concave nonnegative function on the segment [0, 1/q]; the

value of this function at the point l̂ = r̂/r ≤ 1 is, as we know from (14.130), ≥ (4k + 3)(2k + 2)−1g(0),
and from concavity it follows that

g(1) ≥ q−1 − 1

q−1 − l̂
g(l̂) ≥ (1− q)g(l̂),

whence

tk + rδtk − t∗k(t+ rδt) = g(1) ≥ (1− q)4k + 3

2k + 2
g(0) = (1− q)4k + 3

2k + 2
(tk − t∗k(t)),

as required in (14.95).

Appendix B: Regularity of some self-concordant functions

Example 14.6.1 The function
f(X) = − ln Det X

is 2-regular on the interior Sn++ of the cone Sn+ of n× n positive semidefinite symmetric matrices.

Proof. Let X ∈ Sn++, and let dX be a symmetric n× n matrix. Direct computation results in

Dkf(X)[dX, ..., dX] = (−1)k(k − 1)! Tr
[
(X−1dX)k

]
= (−1)k(k − 1)! Tr

[
X−1dXX−1dX...X−1dX

]
= (−1)k(k − 1)! Tr

[
X−1/2dXX−1...X−1dXX−1/2

]
= (−1)k(k − 1)! Tr

[
(dZ)k

]
, dZ = X−1/2dXX−1/2.

Since the mapping Y 7→ X−1/2Y X−1/2 is a linear one-to-one mapping of the space Sn of symmetric n×n
matrices onto itself which maps X onto the unit matrix I, maps dX onto dZ and maps Q ≡ Sn++ onto
itself, we have

|dX|Q,X = |dZ|Q,I .
Now let λ = (λ1, ..., λk) be the vector comprised of the eigenvalues of dZ. We have for k ≥ 2:

|Dkf(X)[dX, dX, ..., dX]| = (k − 1)!|Tr
[
(dZ)k

]
|

= (k − 1)!|
∑n
i=1 λ

k
i |

≤ (k − 1)!|λ|k−2
∞ |λ|22 = (k − 1)!|λ|k−2

∞ Tr
[
(dZ)2

]
= (k − 1)!|λ|k−2

∞ D2f(X)[dX, dX].

It remains to note that by evident reasons,

[|dX|Q,X =] |dZ|Q,I = [max{t | 1± tλi ≥ 0}]−1 = |λ|∞.

Example 14.6.2 The standard logarithmic barrier

f(t, x) = − ln(t2 − xTx)

for the second-order cone

Kn = {(t, x) ∈ R×Rn | t ≥
√
xTx}

is 6-regular on int Kn.
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Proof. Let g(x, t) = −t−1xTx, so that

f(t, x) = − ln(t+ g(t, x))− ln t.

Let z = (t, x) ∈ int Kn, and let dz = (dt, dx) be such that z ± dz ∈ Kn; what we should prove is the
inequality

|D4f(z)[dz, dz, dz, dz]| ≤ 42D2f(z)[dz, dz]. (14.131)

Denoting for the sake of brevity

dkf = Dkf(z)[dz, ..., dz], dkg = Dkg(z)[dz, ..., dz], τ =
dt :

t
,

we have
df = −dt+dgt+g − τ,
d2f = (dt+dg)2

(t+g)2 −
d2g
t+g + τ2,

d3f = −2 (dt+dg)3

(t+g)3 + 3 (dt+dg)d2g
(t+g)2 − d3g

t+g − 2τ3,

d4f = 6 (dt+dg)4

(t+g)4 − 12 (dt+dg)2d2g
(t+g)3 + 3 (d2g)2

(t+g)2

+4 (dt+dg)d3g
(t+g)2 − d4g

t+g + 6τ4,

and
dg = −2 (dx)T x

t + xT x
t τ,

d2g = −2 (dx)T dx
t + 4 (dx)T x

t τ − 2x
T x
t τ2

= −2w
Tw
t ,

w ≡ τx− dx.
We have

dw = −τ2x+ τdx = −τw,

whence
d3g = +4w

Tw
t τ + 2w

Tw
t τ

= 6w
Tw
t τ,

d4g = −12w
Tw
t τ2 − 6w

Tw
t τ2 − 6w

Tw
t τ2

= −24w
Tw
t τ2.

Denoting

φ =
dt+ dg

t+ g
,

we come to

d2f = φ2 + τ2 + 2
wTw

t(t+ g)
, (14.132)

d4f = 6φ4 + 6τ4 + 2
wTw

t(t+ g)

[
12φ2 + 12φτ + 12τ2 + 6

wTw

t(t+ g)

]
. (14.133)

Since z ± dz ∈ Kn, we have t± dt ≥ 0, whence |τ | ≤ 1. Now, the function h(t, x) = t+ g(t, x) clearly is
concave in (t, x) on the set {(t, x) | t > 0}. Since z ± dz ∈ Kn, the function is nonnegative at the points
z ± dz, whence

t+ g ± (dt+ dg) ≥ h(z ± dz) ≥ 0,

so that
|φ| ≤ 1; |τ | ≤ 1. (14.134)

Now let us verify that
wTw

t(t+ g)
≤ 1− τ2. (14.135)

Indeed, since z ± dz ∈ Kn, we have

xTx+ 2xT dx+ (dx)T dx ≤ (t+ dt)2 ≡ t2(1 + τ)2

xTx− 2xT dx+ (dx)T dx ≤ (t− dt)2 ≡ t2(1− τ)2 ;
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multiplying the first inequality by (1 − τ)/2, the second – by (1 + τ)/2 and taking sum of the resulting
inequalities, we come to

xTx− 2τxT dx+ (dx)T dx ≤ t2(1− τ2),

or
wTw ≡ τ2xTx− 2τxT dx+ (dx)T dx ≤ (t2 − xTx)(1− τ2) = t(t+ g)(1− τ2),

as required in (14.135).
From (14.133), (14.134) and (14.135) it follows that quantity

[0 ≤] 12φ2 + 12φτ + 12τ2 ≤ 12φ2 + 12φτ + 12τ2 + 6
wTw

t(t+ g)
≤

≤ 12φ2 + 12φτ + 6τ2 + 6 ≤ 36,

so that (14.132) and (14.133) result in (14.131).

Example 14.6.3 The standard barrier

F (t, s) = − ln(ln t− s)− ln s

for the epigraph
G = {x = (t, s) ∈ R2 | t ≥ exp{s}}

of the exponent is 6-regular on Q = int G.

Proof. Let x = (t, s) ∈ Q, and let dx = (dt, ds) ∈ R2. We should prove that

|D4F (x)[dx, dx, dx, dx]| ≤ 42D2F (x)[dx, dx]|dx|2Q,x,

or, which is the same, that

x± dx ∈ Q⇒ |D4F (x)[dx, dx, dx, dx]| ≤ 42D2[dx, dx]. (14.136)

Let (x, dx) satisfy the premise in (14.136). Direct computation results in

D2F (x)[dx, dx] =
(ds− dt/t)2

(ln t− s)2
+

(dt/t)2

ln t− s
+ (dt/t)2,

D4F (x)[dx, dx, dx, dx] = 6
(ds− dt/t)4

(ln t− s)4
+ 12

(ds− dt/t)2(dt/t)2

(ln t− s)3

−8
(ds− dt/t)(dt/t)3

(ln t− s)2
+ 3

(dt/t)4

(ln t− s)2
+ 6

(dt/t)4

ln t− s
+ 6(dt/t)4.

Setting
σ = ln t− s > 0, dσ = ds, dτ = dt/t,

we get from the premise in (14.136) that

exp{−σ + dσ} ≤ 1 + dτ, exp{−σ − dσ} ≤ 1− dτ, (14.137)

d2F ≡ D2F (x)[dx, dx] =
(dσ − dτ)2

σ2
+

(dτ)2

σ
+ (dτ)2, (14.138)

|d4F | ≡ |D4F (x)[dx, dx, dx, dx]| ≤ 6
(dσ − dτ)4

σ4
+ 12

(dσ − dτ)2(dτ)2

σ3
+ 8
|dσ − dτ |(dτ)3

σ2

+3
(dτ)4

σ2
+ 6

(dτ)4

σ
+ 6(dτ)4

≡ 6a1 + 12a2 + 8a3 + 3a4 + 6a5 + 6a6.

(14.139)

What we should prove is that
|d4F | ≤ 42d2F. (14.140)
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When proving this statement, one can assume that dτ ≥ 0 (since both the premise (14.137) and the
quantities d2F and |d4F remain invariant under the substitution (dσ, dτ) 7→ (−dσ,−dτ)).
10. Since exp{u} ≥ 1 + u, we get from (14.137) −σ + dσ ≤ dτ, −σ − dσ ≤ −dτ, whence

|dσ − dτ | ≤ σ. (14.141)

Besides this, from (14.137) and our assumption that dτ ≥ 0 it of course follows

0 ≤ dτ ≤ 1. (14.142)

20. From (14.141)-(14.142) it immediately follows that

a1 =
(dσ − dτ)4

σ4
≤ (dσ − dτ)2

σ2

a2 =
(dσ − dτ)2(dτ)2

σ3
≤ (dτ)2

σ

a3 =
|dσ − dτ |(dτ)2

σ2
≤ (dτ)2

σ

a5 =
(dτ)4

σ
≤ (dτ)2

σ
a6 = (dτ)4 ≤ (dτ)2

whence

|d4F | ≤ [6a1 + 12a2 + 8a3 + 6a5 + 6a6] + 3a4 ≤ 6
(dσ − dτ)2

σ2
+ 24

(dτ)2

σ
+ 6(dτ)2 + 3a4. (14.143)

30. We have

a4 =
(dτ)4

σ2
≤ (dτ)2

σ
ω, ω =

(dτ)2

σ
. (14.144)

Let us prove that
ω ≤ 18. (14.145)

To this end let us first assume that
2|dσ − dτ | ≥ dτ.

In this case, in view of (14.141),

ω ≤ 2|dσ − dτ |dτ
σ

≤ 2dτ,

so that, by (14.142),
ω ≤ 2. (14.146)

Note also that (14.146) is valid in the case of σ > 1
2 in view of (14.142). Now consider the case when

0 < σ ≤ 1

2
, 2|dσ − dτ | < dτ,

whence also 2dτ − 2dσ < dτ, or
dτ ≤ 2dσ. (14.147)

From (14.137) (take the sum of the inequalities) it follows that

cosh {dσ} ≤ exp{σ}, (14.148)

whence, due to 0 < σ ≤ 1/2, also

|dσ| ≤ ln(2 exp{σ}) ≤ 1

2
+ ln 2.

On the segment |r| < 1/2 + ln 2 one clearly has

cosh {r} ≥ exp{γr2}, γ =
1

2(1/2 + ln 2)2
≥ 2

9
.
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Combining the resulting inequality with (14.148), we get γ|dσ|2 ≤ σ, whence |dσ|2 ≤ 9
2σ and consequently

(see (14.147)) (dτ)2 ≤ 18σ; The resulting inequality implies that in the case in question ω = (dτ)2/σ ≤ 18;
taking into account (14.146), we come to (14.145).
40. Combining (14.145), (14.144) and (14.143), we get

|d4F | ≤ 6
(dσ − dτ)2

σ2
+ 42

(dτ)2

σ
+ 6(dτ)2 ≤ 42d2F,

and (14.140) follows.

Example 14.6.4 The Legendre transformation

F∗(τ, σ) ≡ sup
t,s:t≥exp{s}

[sσ − tτ + ln(ln t− s) + ln t] ≡

≡ (σ + 1) ln(σ + 1)− (σ + 1) ln τ − lnσ − 2 : R2
++ → R

of the barrier from Example 14.6.3 is 5-regular on Q ≡ R2
++.

Proof. Let ξ = (τ, σ) ∈ Q, dξ = (dτ, dσ) ∈ R2 be such that ξ ± dξ ∈ Q, i.e., such that

τ ± dτ ≥ 0, σ ± dσ ≥ 0; (14.149)

we should prove that

|d4F∗| ≡ |D4F∗(ξ)[dξ, dξ, dξ, dξ]| ≤ 30d2F∗, d2F∗ ≡ D2F∗(ξ)[dξ, dξ]. (14.150)

Direct computation results in

d2F∗ = (1 + σ)(dω)2 +
(dσ)2

σ2
, dω =

dσ

1 + σ
− dτ

τ
, (14.151)

d4F∗ = 4(1 + σ)(dω)2(dζ)2 + 2(1 + σ)(dω)3dζ − 3dσ(dω)2dζ + 6
(dσ)4

σ4
, dζ =

dσ

1 + σ
+
dτ

τ
. (14.152)

From (14.149) it follows that |dω| ≤ 2, |dζ| ≤ 2, |dσ/σ| ≤ 1, and therefore (14.152) implies that

|d4F∗| ≤ 16(1 + σ)(dω)2 + 8(1 + σ)(dω)2 + 6σ(dω)2 + 6
(dσ)2

σ2
≤ 30

[
(1 + σ)(dω)2 +

(dσ)2

σ2

]
≤

[see (14.151)]
≤ 30d2F∗,

as required in (14.150).
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Appendix II: Robust Truss Topology
Design

Robust Truss Topology Design

via

Semidefinite Programming
A. Ben-Tal1) and A. Nemirovski1)

Faculty of Industrial Engineering and Management
Technion - the Israel Institute of Technology, Technion City, Haifa 32000, Israel

e-mail: morbt@techunix.technion.ac.il nemirovs@ie.technion.ac.il

Abstract

We present and motivate a new model of the Truss Topology Design problem, where
the rigidity of the resulting truss with respect both to given loading scenarios and small
“occasional” loads is optimized. It is shown that the resulting optimization problem is a
Semidefinite Program. We derive and analyze several equivalent reformulations of the problem
and present illustrative numerical examples.
Key words: structural optimization, truss topology design, robustness, semidefinite pro-
gramming, interior point methods.

15.1 Introduction

Truss Topology Design (TTD) deals with the selection of optimal configuration for structural systems
(mechanical, civil engineering, aerospace) and constitutes one of the newest and most rapidly growing
fields of Structural Design (see the excellent survey paper by Rozvany, Bendsøe and Kirsch [12]). The
TTD problem was studied extensively, both mathematically and algorithmically, in [1, 2, 3, 4, 5].

In this paper we bring forth the issue of the robustness of the truss; here we say that a truss is
robust, if it is reasonable rigid with respect both to the given set of loading scenarios and to all small
uncertain (in size and direction) load which may act at any of the active nodes of the truss, i.e., those
which are linked at least by one bar. In the engineering literature rigidity is modeled by considering
different loading scenarios on the structure (the multi-load TTD problem) or by imposing upper and
lower bounds on nodal displacements. The first approach depends on the engineer’s ability to “guess
right” the relevant scenarios, while the second approach leads to a mathematical problem which is not
tractable computationally. Here we suggest a new modeling approach which circumvents both of the
above mentioned difficulties.

The paper is organized as follows. Section 15.2 describes the modeling approach in question. The
preliminary Section 15.2.1 presents the basic notions related to the TTD problem and the traditional

1The research was partly supported by the Israeli Academy of Sciences grant # and grant # 191-142 of The Fund for
Promotion of Research at Technion
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formulations of the problem. We demonstrate by simple example (Section 15.2.2) that robustness re-
strictions (which are basically ignored in the traditional formulations) are critical to obtain reasonable
designs; this observation motivates our modeling approach presented in Section 15.2.3. Its computational
tractability is demonstrated in Section 15.2.4, where we show that the TTD problem in our new formula-
tion can be equivalently cast as a semidefinite program. This brings the problem into the realm of Convex
Programming for which efficient (polynomial time) interior point algorithms can be employed. Sections
15.3 – 15.5 are devoted to mathematical processing of the semidefinite program of Section 15.2.4; the goal
is to get a program better suited for interior point algorithms. Possibilities for Robust Truss Topology
Design by these algorithms are discussed in Section 15.6. We end up (Section 15.7) with illustrating use-
fulness of our approach by considering several examples of optimal trusses with and without robustness
considerations. We show that at least for these examples robustness can be gained without sacrificing
much in the optimality of the resulting trusses. Concluding Section 15.8 contains remarks on the possi-
bility to extend the idea of “robust reformulation” of an optimization program from the particular case
of the TTD problem to other problems of Mathematical Programming.

15.2 Truss Topology Design with Robustness Constraints

15.2.1 Trusses, loads, compliances

Informally, a truss is a 2D or 3D construction comprised of thin elastic bars linked with each other at nodes
– points from finite nodal set V given in advance in 2D plane, respectively, 3D space. When subjected
to a given load – distribution of external forces applied at the nodes – the construction deformates, until
the reaction forces caused by deformations of the bars compensate the external load. The deformated
truss capacitates certain potential energy, and this energy – the compliance – measures stiffness of the
truss, its ability to withstand the load; the less is compliance, the more rigid is the truss with respect to
the load.

In the usual Truss Topology Design (TTD) problem we are given the nodal set and one (single-load
TTD) or several (multi-load TTD) loads, along with total volume of the bars. The displacements of
some of the nodes are completely or partially fixed, so that the space Rv of virtual displacements of node
v is certain linear subspace and the problem is to distribute the given volume of the truss between the
bars in order to get the most rigid construction, i.e., the one which minimizes the maximal compliance
over the given set of loads. Some of the bars can get zero volume, i.e., be eliminated from the resulting
construction, so that in fact the topology of the construction is optimized as well (this is the origin of
the term “Topology Design”).

The mathematical formulation of the problem, in its simplest form, is as follows.

Given are:

• graph (V,B) (ground structure) with the nodal set V ⊂ RD (D = 2, 3) comprised of n̂ nodes and
with arc set B of m tentative bars;

• collection of linear subspaces Rv ⊂ RD, v ∈ V – the spaces of virtual displacements of the nodes.

We refer to the quantity n =
∑
v∈V dimRv as the number of degrees of freedom of the nodal set and

call the space Rn =
∏
v∈V Rv the space of nodal displacements. A vector x ∈ Rn can be naturally

interpreted as collection of virtual displacements of the nodes. Similarly, a load – collection of
external forces applied at the nodes – can be interpreted as a vector from Rn (one can ignore the
components of the forces orthogonal to the subspaces of virtual nodal displacements, since these
components are compensated by supports restricting virtual displacements of nodes; the remaining
components of the forces can be naturally assembled in a vector from Rn).

• When designing the truss, we are given a finite set F ⊂ Rn of loading scenarios; the truss should
be able to carry the load for each of the scenarios.

• The design variables in the problem are bar volumes ti, i = 1, ...,m; along with the nodal set V,
they completely determine the truss. We are given the total volume V > 0 of the bars, so that the
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set of all admissible vectors of bar volumes is the simplex

T = {t ∈ Rm | t ≥ 0,

m∑
i=1

ti = V }.

With the elastic model of the bars, deformation of truss accompanied by displacement x ∈ Rn of
the nodes results in the vector of reaction forces A(t)x, where t is the vector of bar volumes and

A(t) =

m∑
i=1

tiAi

is the n× n bar-stiffness matrix of the truss. The bar-stiffness matrix Ai of the i-th bar is readily
given by the geometry of the nodal set, and involves the Young modulus of the material. What is
crucial for us, is that, for all i,

Ai = bib
T
i (15.153)

is a rank 1 positive semidefinite symmetric matrix (for explanations and details, see, e.g., [1, 2, 3]).

Given t ∈ T and a load f ∈ F , one can associate with this pair the equilibrium equation

A(t)x = f (15.154)

(as was explained, x is the vector of nodal displacements caused by the load f , provided that the vector
of bar volumes is t). Solvability of this equation means that the truss is capable of carrying the load f ,
and if this is the case, then the compliance2)

cf (t) ≡ fTx = sup
u∈Rn

[
2fTu− uTA(t)u

]
(15.155)

is regarded as a measure of internal work done by the truss with respect to the load f ; the smaller is
the compliance, the larger is the stiffness of the truss. If the equilibrium equation (15.154) for a given t
is unsolvable, then it is convenient to define the compliance cf (t) as +∞, which is compatible with the
second equality in (15.155).

The problem of optimal minmax Truss Topology Design is to find the vector of bar volumes which
results in the smallest possible worst-case compliance:

(TDminmax) : find t ∈ T which minimizes the worst-case compliance cF (t) = supf∈F cf (t).

From now on we assume that the problem is well-posed, i.e., that

A. The matrix
∑m
i=1Ai is positive definite

(this actually means that the supports prevent rigid body motion of the truss).

15.2.2 Robustness constraint: Motivation

The “standard” case of problem (TDminmax) is the one when F is a singleton (single-load TTD problem) or
a finite set comprised of small number (3-5) of loads (multi-load TTD problem). An evident shortcoming
of both these settings is that they do not take “full” care of the robustness of the resulting truss. The
associated optimal design ensures reasonable (in fact the best possible) behaviour of the truss under the
loads from the list of scenarios F ; it may happen however that a load not from this set, even a “small” one,
will cause an inappropriately large deformation of the truss. Consider, e.g., the following toy example.
Fig. 1 represents 6-element nodal set with 2 fixed nodes (Rv = {0}) and 4 free nodes (Rv = R2), the
“ground structure” – the set of all tentative bars, and the load f which is the unique element of F .

2) The “true” compliance, as defined in Mechanics, is one half of the quantity given by (15.155); we rescale the compliance
in order to avoid multiple fractions 1

2
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Fig. 1: Ground structure and loading scenario
* – free nodes; # – fixed nodes; arrows - forces
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Fig. 2: Optimal single-load design

Fig. 2 shows the results of the usual single-load design which results in the optimal compliance 16.000.
Note that the resulting truss is completely unstable: e.g., the bar linking nodes 5 and 6 can rotate around
node 5, so that arbitrarily small non-horizontal force applied at node 6 will cause infinite compliance.

It seems that a “good” design should ensure reasonable compliances under all tentative loads of
reasonable magnitude acting at the nodes of the resulting truss, not only “the best possible” compliance
under the small list of loads in F of primary interest.

The indicated requirement can be modeled as follows. When formulating the problem, the engineer
embeds a small finite set of loads F = {f1, ..., fq} he is especially interested in (“primary” loads) into
a “more massive” set M containing F , but also “occasional loads” of perhaps much smaller magnitude
(“secondary” loads), and looks for the truss t ∈ T which minimizes the worst-case compliance cM (t)
taken with respect to this extended set M of loading scenarios.

In order to get a computationally tractable problem, in what follows we restrict ourselves to the case
where M is an ellipsoid centered at the origin3).

M = QWq ≡ {Qe | e ∈ Rq, eT e ≤ 1}.

Here Q is a given n× q “scale” matrix, and Wq is the unit Euclidean ball in Rq. Note that we allow the
case q < n as well, where M is ”flat” q-dimensional ellipsoid.

The corresponding modification of (TDminmax) is as follows:

(TDrobust) : find t ∈ T which minimizes the compliance

cM (t) = max
eT e≤1

max
x∈Rn

[
2(Qe)Tx− xTA(t)x

]
.

3the only other case when the indicated problem is computationally tractable seems to be that one of a polytope M
given by the list of its vertices. This case hardly deserves a special consideration, since it leads to the standard multi-load
TTD problem
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15.2.3 Selection of scale matrix Q

Problem (TDrobust) takes care of all loads f ∈M , M being the image of the unit q-dimensional Euclidean
ball under the mapping e 7→ Qe. It follows that if a load f ∈M has a nonzero force acting at certain node
l, then this node will for sure be present in the resulting construction. This observation means that we
should be very careful when forming Q – otherwise we enforce incorporating into the final construction
the nodes which in fact are redundant. There are two ways to meet the latter requirement:

• A. We could use the indicated approach as a postoptimality analysis; after we have found the
solution to the usual multi-load TTD problem, given the resulting nodal structure, we can improve
the robustness of the solution by solving (TDrobust) associated with this nodal structure.

• B. We know in advance some nodes which for sure will present in the solution (certainly the nodes
where the forces from the given loading scenarios are applied) and it seems to be natural to require
rigidity with respect to all properly scaled forces acting at these ”active” nodes.

Let us discuss in more details the latter possibility. Let F = {f1, ..., fk} be the given set of loading
scenarios. We say that a node v ∈ V is active with respect to F if the projection of certain load fj on the
space Rv of virtual displacements of the node is nonzero. Let V∗ be the set of all active nodes. Our goal
is to embed F into a ”reasonably chosen” ellipsoid M in the space Rq =

∏
v∈V∗ Rv (which for sure will

be the part of the displacement space in the final construction). According to our motivation, M should
contain

• the set F of given loads;

• the ball B = {f ∈ Rq | fT f ≤ r2} of all “occasional” loads of prescribed magnitude r.

The most adequate to our motivation setup M = F ∪ B is inappropriate – as it was explained, we need
M to be an ellipsoid in order to get a computationally tractable problem, so that we should look for “the
smallest possible” ellipsoid M containing F ∪ B. The simplest interpretation of “the smallest possible”
here is in terms of q-dimensional volume. Thus, it is natural to choose as M the ellipsoid in Rq centered at
the origin and containing F ∪B of the minimum q-dimensional volume. To form the indicated ellipsoidal
envelope M of F and B is a convex problem; since normally q is not large, there is no difficulty to solve
the problem numerically. Note, however, that there exists an “easy case” where M can be pointed out
explicitly. Namely, let L(F ) ⊂ Rk be the linear span of F . Assume that

• the loads f1, ..., fk are linearly independent;

• the convex hull F̂ of the set F ∪ (−F ) contains the k-dimensional ball B′ = B ∩ L(F ).

Note that in actual design both these assumptions normally are satisfied.

Lemma 15.2.1 Under the indicated assumptions the ellipsoidal envelope of F and B is

M = QWq, Q = [f1; ...; fk; re1; ...; req−k] , (15.156)

where e1, ..., eq−k is an orthonormal basis in the orthogonal complement to L(F ) in Rq.

Proof. We can choose an orthonormal basis in Rq in such a way that the first k vectors of the basis span
L(F ) and the rest q−k vectors span the orthogonal complement L⊥(F ) to L(F ) in Rq. Let x = (u, v) be
the coordinates of a vector in this basis (u are the first k and v are the rest q−k coordinates). A centered
at the origin ellipsoid E in Rq can be parameterized by a positive definite symmetric q × q matrix A:

E = {x | xTAx ≤ 1};

the squared volume of E is inversely proportional to detA. The matrix A∗ corresponding to the minimum
volume centered at the origin ellipsoid containing F and B is therefore an optimal solution to the following
convex program:

ln detA→ max | A = AT > 0, xTAx ≤ 1 ∀x ∈ B ∪ F̂ . (15.157)

The problem clearly is solvable, and since its objective is strictly concave on the cone of positive definite
symmetric q× q matrices, the solution is unique. On the other hand, let J be the matrix of the mapping
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(u, v) 7→ (u,−v); then the mapping A 7→ JTAJ clearly is a symmetry of (15.157): this mapping preserves
feasibility and does not vary the value of the objective. We conclude that the optimal solution is invariant
with respect to the indicated mapping: A∗ = JA∗J , whence A∗ is block diagonal with k × k diagonal
block U∗ and (q − k) × (q − k) diagonal block V∗. Since the ellipsoid {x | xTA∗x ≤ 1} contains B ∪ F̂ ,

the k-dimensional ellipsoid M ′ = {u | uTU∗u ≤ 1} in L(F ) contains F̂ , while the (q − k)-dimensional
ellipsoid M ′′ = {v | vTV∗v ≤ 1} in L⊥(F ) contains the ball B′′ centered at the origin of the radius r in
L⊥(F ).

Now let U = UT > 0 and V = V T > 0 be k× k and (q− k)× (q− k) matrices such that the ellipsoids

E′ = {u | uTUu ≤ 1} and E′′ = {v | vTV v ≤ 1} contain F̂ and B′′, respectively. We claim that then

the ellipsoid {x | xTAx ≤ 1}, A = Diag(U, V ), contains B ∪ F̂ . Indeed, the ellipsoid clearly contains

F̂ , and all we need is to verify that if x = (u, v) ∈ B, i.e., uTu + vT v ≤ r2, then uTUu + vTV v ≤ 1.

This is immediate: since E′ ⊃ F̂ ⊃ B′, we have uTUu ≤ 1 whenever uTu ≤ r2, or, which is the same,
uTUu ≤ r−2uTu for all u. Similarly, E′′ ⊃ B′′ implies that vTV v ≤ r−2vT v, so that uTu + vT v ≤ r2

indeed implies uTUu+ vTV v ≤ 1.
The above observations combined with the identity ln detA = ln detU + ln detV for positive definite

symmetric A = Diag(U, V ) demonstrate that the block U∗ of the optimal solution to (15.157) corresponds

to the minimum volume ellipsoid in L(F ) containing F̂ , and similarly for V∗, L
⊥(F ) and B′′. In other

words, M is the “ellipsoidal product” of the ellipsoid M ′ of the minimum volume in L(F ) containing
F ∪ (−F ) and the ball B′′ in L⊥(F ): if M ′ = Q′Wk, then

M = [Q′; re1; ...; req−k]Wq.

To conclude the proof, it suffices to verify that one can choose, as Q′, the matrix [f1; ...; fk], which is
immediate. Indeed, let s1, ..., sk be an orthonormal basis in L(F ), and let D be the linear transformation
of L(F ) which maps si onto fi, i = 1, ..., k. Since the ratio of k-dimensional volumes of solids in L(F )
remains invariant under the transformation D, M ′ = DN ′, where N ′ is the minimum volume ellipsoid
centered at the origin in L(F ) containing s1, ..., sk. The latter ellipsoid is clearly [s1; ...; sk]Wk, whence

M ′ = DN ′ = {D(

k∑
i=1

λisi) | λ ∈Wk} = {
k∑
i=1

λifi | λ ∈Wk} = [f1; ...; fk]Wk.

Remark 15.2.1 Evident modification of the proof of Lemma 15.2.1 demonstrates that the minimum
volume ellipsoid in Rq centered at the origin and containing F ∪ B always is the “ellipsoidal product”
of the minimum volume ellipsoid M ′ in L(F ) containing F ∪ (−F ) ∪ B′ and the ball B′′ in L⊥(F ): if

M ′ = Q′W
k̂
, k̂ = dim L(F ), then M =

[
Q′; re1, ..., req−k̂

]
Wq, e1, ..., eq−k̂ being an orthonormal basis in

L⊥(F ). Thus, to find M is, basically, the same as to find M ′, and this latter convex problem normally

is of quite a small dimension, since k̂ ≤ k and typically k ≤ 5.

The outlined way of modeling the robustness constraint is, perhaps, more reasonable than the usual
multi-load setting of the TTD problem. Indeed, the new model enforces certain level of rigidity of the
resulting construction with respect not only to the primary loads, but also to loads associated with
“active” nodes. At the same time, it turns out, as we are about to demonstrate, that the resulting
problem (TDrobust) is basically not more computationally demanding than the usual multi-load TTD
problem of the same size (i.e., with the same ground structure and the number of scenario loads equal to
the dimension of the loading ellipsoid used in (TDrobust)).

15.2.4 Semidefinite reformulation of (TDrobust)

Our goal now is to rewrite (TDrobust) equivalently as a so called semidefinite program. To this end we
start with the following simple result.

Lemma 15.2.2 Let A be a positive semidefinite n× n matrix, and let

c = max
x∈Rn;e∈Rq :eT e≤1

[
2(Qe)Tx− xTAx

]
. (15.158)
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Then the inequality c ≤ τ is equivalent to positive semidefiniteness of the matrix

A =

(
τIq QT

Q A

)
,

Iq being the unit q × q matrix.

Proof. We have

c ≤ τ ⇔ ∀(x ∈ Rn, e ∈ Rq, eT e ≤ 1) : τ − 2(Qe)Tx+ xTAx ≥ 0⇔

[by homogeneity reasons]

∀(λ > 0, x ∈ Rn, e ∈ Rq, eT e ≤ 1) : τλ2 − 2(Qλe)T (λx) + (λx)TA(λx) ≥ 0⇔

[set λe = f, λx = y]

∀(λ > 0, y ∈ Rn, f ∈ Rq, fT f ≤ λ2) : τλ2 − 2(Qf)T y + yTAy ≥ 0⇒

∀(
(
f
y

)
∈ Rq+n) :

(
f
y

)T (
τIq QT

Q A

)(
f
y

)
≡ τfT f − 2(Qf)T y + yTAy ≥ 0.

Thus, τ ≥ c ⇒ A ≥ 0. Vice versa, if A ≥ 0, then clearly τ ≥ 0, and therefore the implication ⇒ in the
above chain can be inverted.

Remark 15.2.2 It is well-known that a symmetric matrix

(
U QT

Q A

)
with positive definite U is positive

semidefinite if and only if A ≥ QU−1QT . Applying this observation to the case of U = τIq, we can
reformulate the result of Lemma 15.2.2 as follows:

The compliance c of a truss t with respect to the ellipsoid of loads M = QWq is ≤ τ if and only if
A(t) ≥ τ−1QQT .
In the particular case when QQT is the orthoprojector P onto the linear span L of the columns of Q, the
above observation can be reformulated as follows:

c ≤ τ if and only if the minimum eigenvalue of the restriction of A(t) onto L is ≥ τ−1

(in the general case, the interpretation is similar, but instead of the usual minimum eigenvalue of the
restriction we should speak about minimum eigenvalue of the matrix pencil (A |L, QQT |L) on L).

In view of Lemma 15.2.2, problem (TDrobust) can be rewritten equivalently as the following Semidef-
inite Program:

(TDsd)
min

t∈Rm,τ∈R
τ

s.t. (
τIq QT

Q A(t)

)
≥ 0,

t ≥ 0∑m
i=1 ti = V

(here and in what follows the inequality A ≥ B between symmetric matrices means that the matrix A−B
is positive semidefinite).

15.3 Deriving a dual problem to (TDsd)

Here we derive the Fenchel-Rockafellar [11] dual to the problem (TDsd) . The latter problem is of the
form

min{τ : A(τ, t) +B ∈ S+, t ∈ T},

where

A(τ, t) =

(
τIq 0
0 A(t)

)



236 APPENDIX II: ROBUST TRUSS TOPOLOGY DESIGN

is a linear mapping from R×Rn to the space S of symmetric (n+ q)× (n+ q) matrices equipped with
the standard Frobenius Euclidean structure 〈X,Y 〉 = Tr(XY ), S+ is the cone of positive semidefinite
matrices from S and

B =

(
0 QT

Q 0

)
∈ S.

We write the problem in the Fenchel-Rockafellar primal scheme:

(P) min {f(τ, t)− g(A(τ, t))} ,

where

f(τ, t) = τ + δ(t | T ), g(X) = −δ(X +B | S+)

and δ(x | W ) is the indicator function of a set W . To derive the dual to (P), we need to compute the
conjugates f∗ and g∗ of the convex function f and the concave function g, which is quite straightforward:

f∗(σ, s) = sup
τ,t
{στ + sT t− τ | t ∈ T} =

{
V max1≤i≤n si ,σ = 1
+∞ ,otherwise

;

g∗(R) = inf
S
{Tr(SR) | S +B ∈ S+} = inf{Tr((Z −B)R) | Z ∈ S+} =

=

{
−Tr(BR), R ∈ S+

−∞, otherwise

(we have used the well-known fact that the cone of positive semidefinite matrices is self-conjugate with
respect to the Frobenius Euclidean structure).

The Fenchel-Rockafellar dual to (P) is

(D) supR∈S {g∗(R)− f∗(A∗R)} ,

where A∗ : S→ R×Rn is the adjoint to A.
Representing R ∈ S in the block form

R =

(
Λ XT

X Y

)
(Λ is q × q, Y is n× n), we get

A∗R =


τ = Tr Λ

t1 = Tr(A1Y )
...

tn = Tr(AnY )

 .

Substituting the resulting expressions for f∗, g∗ and A∗, we come to the following explicit formulation of
the dual problem (D):

(D) max
[
−2 Tr(QXT )− V maxi=1,...,m[Tr(AiY )]

]
,

s.t. (
Λ XT

X Y

)
≥ 0, Tr Λ = 1,

the design variables being: symmetric q × q and n× n matrices Λ, Y , respectively, and n× q matrix X.
Note that the functions f and g in (P) are clearly closed convex and concave, respectively. Moreover,

from the well-posedness assumption A, it immediately follows that (P) is strictly feasible (i.e., the relative
interiors of the domains of f(τ, t) and φ(τ, t) = g(A(τ, t)) have nonempty intersection, and the image of
the mapping A intersects the interior of the domain of g); to see this, choose arbitrary positive t ∈ T and
enforce τ to be large enough). Of course (P) is bounded below (the compliance always is nonnegative),
thus, all requirements of the Fenchel-Rockafellar Duality Theorem are satisfied, and we come to

Proposition 15.3.1 (D) is solvable, and the optimal values in (P) and (D) are equal to each other.
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Remark 15.3.1 To the moment, we dealt with the TTD problem with simple constraints on the bar
volumes:

t ∈ T = {t ∈ Rn | t ≥ 0,

n∑
i=1

ti = V }.

In the case when there are also lower and upper bounds on the bar volumes, so that the constraints on t
are

t ∈ T+ = {t ∈ T | L ≤ t ≤ U},

(U > L ≥ 0 are given n-dimensional vectors), the above derivation results in a dual problem as follows:

(Db) max
[
−2 Tr(QXT )− λV −

∑n
i=1 max [(Tr(Y Ai)− λ)Li; (Tr(Y Ai)− λ)Ui]

]
s.t. (

Λ XT

X Y

)
≥ 0, Tr Λ = 1,

the design variables being real λ, symmetric q× q matrix Λ, symmetric n×n matrix Y and n× q matrix
X.

15.4 A simplification of the dual problem (D)

Our next goal is to simplify problem (D), derived in the previous section, by eliminating the matrix
variable Y . To this end it suffices to note that (D) can be rewritten as

(TDdl)
min

X∈Rn×q,Λ=ΛT∈Rq×q,Y=Y T∈Rn×n,ρ∈R
2 Tr(QXT ) + V ρ

s.t.
(α) Tr(Y Ai) ≤ ρ, i = 1, ...,m

(β)

(
Λ XT

X Y

)
≥ 0

(γ) Tr(Λ) = 1

(we have replaced the maximization problem (D) by an equivalent minimization one). Note that (TDdl) is
strictly feasible – there exists a feasible solution where all scalar inequality constraints and the matrix
inequality one are strict (take Λ = q−1Iq, Y = In and enforce ρ to be large enough).

The matrix inequality (β) clearly implies that Λ is positive semidefinite. Thus, we do not vary
(TDdl) when adding (in fact, redundant) inequality Λ ≥ 0. Now let us strengthen, for a moment, the
latter inequality to one

Λ > 0 (15.159)

i.e. positive definiteness of Λ; it is immediately seen from strict feasibility of (TDdl) that this transfor-
mation does not violate the optimal value of the problem, although it may cut off the optimal solution
(anyhow, from the computational viewpoint the exact solution is nothing but a fiction). Thus, we may
focus on the problem (TD′dl) obtained from (TDdl) by adding to the list of constraints inequality (15.159).

The pair of matrix inequalities (β), (15.159) which are present among the constraints of (TD′dl) is
equivalent to the pair of matrix inequalities

Λ > 0; Y ≥ Y ∗(Λ, X) = XΛ−1XT .

Now let (Λ, X, Y, ρ) be a feasible solution to (TD′dl) ; then, as we just have mentioned, Y ≥ Y ∗(Λ, X)
and the collection (Λ, X, Y ∗ = Y ∗(Λ, X), ρ) satisfies (β), (γ) and (15.159). Moreover, since Ai are
symmetric positive semidefinite and Y ≥ Y ∗, we have Tr(Y Ai) ≥ Tr(Y ∗Ai), so that the updated collection
satisfies (α) as well, and (Λ, X, Y ∗, ρ) is feasible for (TD′dl) . Note that the transformation (Λ, X, Y, ρ) 7→
(Λ, X, Y ∗(Λ, X), ρ) does not affect the objective function of the problem. We conclude that (TD′dl) can
be equivalently rewritten as

min
X∈Rn×q,Λ=ΛT∈Rq×q,ρ∈R

2 Tr(QXT ) + V ρ s.t. Λ > 0, Tr(Λ) = 1, ρ ≥ Tr(XΛ−1XTAi), i = 1, ...,m.
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Substituting Ai = bib
T
i (see (15.153)), we can rewrite the constraints

ρ ≥ Tr(XΛ−1XTAi)

as
ρ ≥ (XT bi)

TΛ−1(XT bi),

which is the same (since Λ = ΛT > 0), as(
Λ XT bi
bTi X ρ

)
≥ 0.

With this substitution, the problem (TD′dl) becomes

min
X∈Rn×q,Λ=ΛT∈Rq×q,ρ∈R

2 Tr(QXT ) + V ρ s.t. Λ > 0, Tr(Λ) = 1,

(
Λ XT bi
bTi X ρ

)
≥ 0, i = 1, ...,m.

When replacing the strict inequality Λ > 0 in the latter problem with the nonstrict one Λ ≥ 0, we clearly
do not vary the optimal value of the problem; in the modified problem, the inequality Λ ≥ 0 is in fact

redundant (it follows from positive semidefiniteness of any of the matrices

(
Λ XT bi
bTi X ρ

)
). With these

modifications, we come to the final formulation of the problem dual to (TDrobust) :

(TDfn)

min
Λ=ΛT∈Rq×q,X∈Rn×q,ρ∈R

2 Tr(QXT ) + V ρ

s.t. (
Λ XT bi
bTi X ρ

)
≥ 0, i = 1, ...,m,

Tr(Λ) = 1

.

Note that (TDfn) is very similar to the standard multi-load TTD problem in dual setting [5]; the only
difference is that in the latter problem Λ is further restricted to be diagonal.

15.5 Recovering the bar volumes

To the moment, the only relation between the initial primal problem (TDrobust) and the dual one (TDfn) is
that their optimal values are negations of each other (note that when coming to (TDfn) from the max-
imization problem (TDdl) which has the same optimal value as (TDsd) , we have changed the sign of
the objective and have replaced maximization with minimization). Thus, the problem arises: how to
restore good approximate solutions to (TDrobust) via good approximate solutions to (TDfn) . To resolve
this problem, we first derive the Fenchel-Rockafellar dual (TD∗fn) to (TDfn) and recognize in it the initial
problem (TDrobust) , and then use the well-known relation in Interior-Point Theory between “central
path” approximate solutions to (TDfn) and approximate solutions to (TD∗fn) .

15.5.1 A dual problem to (TDfn)

Similar to the above, we represent problem (TDfn) in the Fenchel-Rockafellar scheme:

(PI) min {f(Λ, X, ρ)− g(A(Λ, X, ρ))} ,

where
f(Λ, X, ρ) = 2 Tr(QXT ) + V ρ+ δ(Tr(Λ) | {1}),

A(Λ, X, ρ) = Diag

{(
Λ XT bi
bTi X ρ

)
, i = 1, ...,m

}
is the linear mapping from the space of design variables of (TDfn) to the space S of block-diagonal
symmetric matrices with m diagonal blocks of the sizes (q + 1)× (q + 1) each, and

g(W ) = −δ(W | S+),
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S+ being the cone of positive semidefinite matrices from S.
The dual to (P) is

(DI) maxR∈S {g∗(R)− f∗(A∗R)} ,

where A∗ is the operator adjoint to A. Here

f∗(L,Ξ, r) = sup
Λ,X,ρ

[
Tr(ΛL) + Tr(ΞXT ) + rρ− f(Λ, X, ρ)

]
=

= sup
Λ

[Tr(ΛL)− δ(Tr(Λ) | {1})] + sup
X

[
Tr(ΞXT )− 2 Tr(QXT )

]
+ sup

ρ
[rρ− V ρ] =

=
1

q
Tr(L) + δ((L,Ξ, r) | {(L = λIq, 2Q,V ) | λ ∈ R}) =

=

{
λ, if L = λIq for some λ ∈ R and Ξ = 2Q, r = V
∞, otherwise

and

g∗(R) = inf
S

[Tr(SR) + δ(S | S+)] = −δ(R | S+)

(here we again used the fact that the cone S+ is self-dual with respect to the Frobenius Euclidean structure
of S).

Denoting a generic element of S as

R = Diag

{(
Li di
dTi ti

)
, i = 1, ...,m

}
(Li are symmetric q × q matrices, di are q-dimensional vectors, ti are reals) it can be seen that:

A∗R = (L =

m∑
i=1

Li,Ξ = 2

m∑
i=1

bid
T
i , r =

m∑
i=1

ti).

With these relations, the dual (DI) to (PI) becomes

(TD∗fn)
min

λ∈R,Li=LTi ∈Rq×q,di∈Rq,ti∈R
λ

s.t.
(α)

∑m
i=1 Li = λIq,

(β)
∑m
i=1 bid

T
i = Q,

(γ)
∑m
i=1 ti = V,

(δ)

(
Li di
dTi ti

)
≥ 0, i = 1, ...,m

(we again have replaced a maximization problem with the equivalent minimization one).
Problem (TDfn) clearly satisfies the assumption of the Fenchel-Rockafellar Duality Theorem, and this

together with Proposition 15.3.1 proves

Proposition 15.5.1 Problem (TD∗fn) is solvable, and its optimal value λ∗ is equal to the optimal value
c∗ of the initial problem (TDrobust) .

It is not difficult to guess that the variables ti involved into (TD∗fn) can be interpreted as our initial
bar volumes ti. The exact statement is given by the following

Theorem 15.5.1 Let R = {λ;Li, di, ti, i = 1, ...,m} be a feasible solution to (TD∗fn) . Then the vector
t = (t1, ..., tm) is a feasible solution to (TDrobust) , and the value of the objective of the latter problem at
t is less than or equal to λ. In particular, if R is an ε-solution to (TD∗fn) (i.e., λ− λ∗ ≤ ε), then t is an
ε-solution to (TDrobust) (i.e., cM (t)− c∗ ≤ ε).
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Proof. The “in particular” part of the statement follows from its first part due to Proposition 15.5.1,
and all we need is to prove the first part. From the positive semidefiniteness constraints (δ) in (TD∗fn) it
follows that t ≥ 0, which combined with (γ) implies the inclusion t ∈ T . To complete the proof, we
should verify that cM (t) ≤ λ.

Let e ∈ Rq, eT e ≤ 1. From (β) we have

Qe =

m∑
i=1

(dTi e)bi.

Let x ∈ Rn. Due to Ai = bib
T
i , we have

φe(x) ≡ 2(Qe)Tx− xTA(t)x =

m∑
i=1

2(dTi e)(b
T
i x)− ti

m∑
i=1

(bTi x)2 =

=

m∑
i=1

[
2(dTi e)(b

T
i x)− ti(bTi x)2

]
=

[denoting si = −bTi x]

−
m∑
i=1

[
eTLie+ 2(dTi e)si + tis

2
i

]
+

m∑
i=1

eTLie = −
m∑
i=1

(
e
si

)T (
Li di
dTi ti

)(
e
si

)
+

m∑
i=1

eTLie ≤

[by (δ)]

≤
m∑
i=1

eTLie =

[by (α)]
= λ.

Thus, φe(x) ≤ λ for all x. By definition, cM (t) is the upper bound of φe(x) over x, and the inequality
cM (t) ≤ λ then follows.

Remark 15.5.1 Note that (TD∗fn) is a natural modification of the “bar-forces” formulation of the usual
multi-load Truss Topology Design problem, see [5].

15.6 Solving (TDfn) and (TD∗fn)via interior point methods

Among numerical methods available for solving semidefinite programs like (TDfn) and (TD∗fn) , the most
attractive (in fact the only meaningful in the large scale case) are the recent interior point algorithms
(for relevant general theory, see [10]). Here we discuss the corresponding possibilities. In what follows
we restrict ourselves with outlining the main elements of the construction, since our goal now is not to
present detailed description of the algorithms, but to demonstrate that

I. From the above semidefinite programs related to Truss Topology Design with robustness constraints,
the most convenient for numerical processing by interior point methods is the problem (TDfn)

II. Solving (TDfn) by interior point path-following methods, one has the possibility of generating, as
a byproduct, good approximate solutions to the problem of interest (TD∗fn) , i.e., of recovering the primal
design variables (bar volumes).

When solving a generic semidefinite program

(SP) σT ξ → min | A(ξ) ∈ S+,

ξ ∈ RN being the design vector, A(ξ) being an affine mapping from RN to the space S of symmetric
matrices of certain fixed block-diagonal structure, and S+ being the cone of positive semidefinite matrices
from S, by a path-following interior point method, one defines the family of barrier-type functions

Fs(ξ) = sσT ξ + Φ(A(ξ)), Φ(Ξ) = − ln Det Ξ,
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and traces the central path – the path of minimizers

ξ∗(s) = argmin
ξ∈DomFs

Fs(ξ).

If (SP) is strictly feasible (i.e., A(ξ) is positive definite for certain ξ) and the level sets

{ξ ∈ RN | A(ξ) ∈ S+, σ
T ξ ≤ a},

a ∈ R, are bounded, then the path ξ∗ is well-defined and converges, as s→∞, to the optimal set of the
problem. In the path-following scheme, one generates close (in certain exact sense) approximations ξi to
the points ξ∗(si) along certain sequence {si} of penalty parameters “diverging to ∞ fast enough”, thus
generating a sequence of strictly feasible approximate solutions converging to the optimal set. Updating
(si, ξi) 7→ (si+1, ξi+1) is as follows: first, we increase, according to certain rule, the current value si to
a larger value si+1. Second, we restore closeness to the path of the new point ξ∗(si+1) by running the
damped Newton method – the recurrence

y 7→ y+ = y − (1 + λ(Fs, y))−1[∇2
yFs(y)]−1∇yFs(y), λ(Fs, y) =

√
∇Ty Fs(y)[∇2

yFs(y)]−1∇yFs(y),

(15.160)
with s set to si+1. The recurrence is started at y = ξi and is terminated when, for the first time, it turns
out that λ(Fsi+1 , y) ≤ κ, κ ∈ (0, 1) being a once for ever fixed threshold. (Thus, the exact meaning of
“closeness of a point ξ to the point ξ∗(s) is given by the inequality λ(Fs, ξ) ≤ κ. In what follows, for the
sake of definiteness, it is assumed that κ = 0.1). The resulting y is chosen as ξi+1, and the process is
iterated.

It is known that

• it is possible to trace the path “quickly”: with reasonable policy of updating the values of the
penalty parameter, it takes, for any T > 2, no more than

M = M(T ) = O(1)
√
µ lnT

Newton steps (15.160) to come from a point ξ0 close to ξ∗(s0) to a point ξM close to ξ∗(sM ), with
sM ≥ Ts0; here µ is the total row size of the matrices from S and O(1) is an absolute constant;

• if ξ is close to ξ(s), then the quality of ξ as an approximate solution to (SP) can be expressed via
the value of s alone:

σT ξ − σ∗ ≤ 2µ

s
, (15.161)

σ∗ being the optimal value in (SP);

• being close to the path, it is easy to come “very close” to it: if λ ≡ λ(Fs, y) ≤ 0.1, then (15.160)
results in

λ+ ≡ λ(Fs, y
+) ≤ 2.5λ2. (15.162)

Although the indicated remarks deal with the path-following scheme only, the conclusions related to
the number of “elementary steps” required to solve a semidefinite program to a given accuracy and to
the complexity of a step (dominated by the computational cost of the Newton direction, see (15.160))
are valid for other interior point methods for Semidefinite Programming. The “integrated” complexity
characteristic of an interior point method for (SP) is the quantity

C =
√
µCNwt,

where CNwt is the arithmetic cost of computing the Newton direction. Indeed, according to the above
remarks, it takes O(1)

√
µ Newton steps to increase the value of the penalty by an absolute constant

factor, or, which is the same, to reduce by the same factor the (natural upper bound for) inaccuracy of
the current approximate solution.

Now let us look at the complexity characteristic C for the semidefinite programs related to (TDrobust) .
In the table below we write down the principal terms of the corresponding quantities (omitting absolute
constant factors); it is assumed (as it is normally the case for Truss Topology Design) that

m = O(n2); q << n.
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The expression for CNwt corresponds to the “explicit” policy when we first assemble, in the natural
manner, the Hessian matrix ∇2

ξFs(·) and then solve the resulting Newton system by traditional direct
Linear Algebra routines like Choleski decomposition. It turns out that the specific structure of matrix
inequalities in our problems4) allows to assemble the Hessians at relatively low cost, so that the cost of
a single Newton step is dominated by the complexity of Choleski factorization of the Hessian, i.e., by
cube of the design dimension of the corresponding problem. With this remark, we come to the results as
follows:

Model µ CNwt C
(TDsd) m m3 m3.5 ≈ n7

(TDdl) m m3 m3.5 ≈ n7

(TDfn) qm q3n3 q3.5n4

(TD∗fn) qm q6m3 q6.5m3.5 ≈ q6.5n7

The reader should be aware that there are “implicit” schemes of computing the Newton direction in in
(TD∗fn) with arithmetic cost O(q3n3) (the same as in (TDfn) ). Thus, in fact the primal and dual prob-
lems in primal-dual pairs ((TDsd) ,(TDdl) ), ((TDfn) ,(TD∗fn) ) are theoretically equivalent in complexity;
moreover, there are “symmetric” primal-dual methods which solve simultaneously the primal-dual pair of
the problems at the complexity, respectively, O(n7) and O(q3.5n4). Nevertheless, we believe that at the
moment practical considerations still are in favour of “purely primal” methods as applied to (TDsd) in
the first primal-dual pair and to (TDfn) in the second pair. The reason is that the feasible planes L in
the “unfavourable” problems of the above pairs are given by linear equalities, while in the “favourable”
components of the pairs they are parameterized (from the very beginning they are represented as images
of affine mappings). Now, the theoretically efficient way to compute the Newton direction for an “un-
favourable” problem represents the direction as the difference of certain “exactly known” vector and its
projection on the orthogonal complement to L. Such a computation is relatively unstable: rounding er-
rors make the actually computed Newton directions non-parallel to L, and the iterates eventually become
far from the feasible plane. In order to overcome this instability, in the existing software for Semidefinite
problems “expensive” Linear Algebra routines, like QR factorization, are used, at least at the final phase
of computations. In contrast to this, in the “favourable” problems the Newton direction is computed
in the space of parameters identifying a point on the feasible plane, so that there is no danger of being
kicked off this plane.

With the above remarks, it is clear that among the semidefinite programs we introduced, the most
convenient for numerical processing by interior point methods is (TDfn) , as it was claimed in I. There is,
however, an a priori drawback of this approach: what we need, are the bar volumes, and they “are not
seen” at all in (TDfn) . We are about to demonstrate that in order to overcome this difficulty it suffices
to solve (TDfn) not by an arbitrary interior point method, but with a path-following one.

Assume that we are applying a path-following method to (TDfn) and have computed a point ξ =
(Λ, X, ρ) close (in the aforementioned sense) to the point ξ∗(s). From (15.162) it follows that a small
number of steps of the recurrence (15.160) started at ξ allows to come “very close” to ξ∗(s) (6 steps of the
recurrence restore ξ∗(s) within machine accuracy). We may, therefore, assume for the sake of simplicity
that we can “stand at the path”, i.e., operate with ξ∗(s) itself rather than with a tight approximation
of the point5. It turns out that given ξ∗(s), one can explicitly generate a feasible solution to (TD∗fn) of
inaccuracy ≤ O(1/s). The exact statement is as follows:

Proposition 15.6.1 Let s > 0, and let ξ∗(s) = (Λs, Xs, ρs) be the minimizer of the function

Fs(Λ, X, ρ) = s
[
2 Tr(QXT ) + V ρ

]
+ Φ(A(Λ, X, ρ)) (15.163)

over the set of strictly feasible solutions to (TDfn) . Here

Φ(S) = − ln Det S : int S+ → R, (15.164)

4)in particular, the fact that in TTD design each of the vectors bi has O(1) nonzero entries – at most 4 in the case of
2D and at most 6 in the case of 3D trusses

5This is an idealization, of course, but it is as well-motivated as the standard model of precise real arithmetic. We could
replace in the forthcoming considerations ξ∗(s) by its tight approximation, with minor modification of the construction,
but we do not think it makes sense
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S is the space of block-diagonal symmetric matrices with m diagonal blocks of the size (q + 1) × (q + 1)
each, and

A(Λ, X, ρ) = Diag

{(
Λ XT bi
bTi X ρ

)
, i = 1, ...,m

}
, (15.165)

Then the matrix

R(s) ≡ Diag

{(
Li di
dTi ti

)
i = 1, ...,m

}
= s−1A−1(Λs, Xs, ρs)

[
= −s−1∇S |S=A(Λs,Xs,ρs)Φ(S)

]
(15.166)

is such that
∑m
i=1 Li = λsIq for some real λs, and (R(s), λs) is a feasible solution to (TD∗fn) with the value

of the objective

λs ≤ c∗ +
µ

s
, (15.167)

where c∗ is the optimal value in (TD∗fn) and µ = m(q + 1) is the total row size of the matrices from S.

The proposition is an immediate consequence of general results of [10]; to make the paper self-contained,
below we present a direct proof.

Let us set Y = A(Λs, Xs, ρs), Z = Y −1, so that

R(s) = s−1Z; ∇Φ(Y ) = −Z.

The set G of strictly feasible solutions to (TDfn) is comprised of all triples ξ = (Λ, X, ρ) which correspond
to positive definite A(ξ) and are such that Tr Λ = 1; this is an open convex subset in the hyperplane
given by the equation Tr Λ = 1. Since ξ∗(s) = (Λs, Xs, ρs) is the minimizer of Fs over G, we have, for
certain real p,

∇ΛFs(ξ
∗(s)) = pIq; ∇XFs(ξ∗(s)) = 0; ∇ρFs(ξ∗(s)) = 0.

Substituting the expression for Fs and A, we obtain∑m
i=1 Li ≡ [A∗R(s)]Λ ≡ −s−1 [A∗∇Φ(Y )]Λ = −s−1pIq,

2
∑m
i=1 bid

T
i ≡ [A∗R(s)]X ≡ −s−1 [A∗∇Φ(Y )]X = 2Q,∑m

i=1 ti ≡ [A∗R(s)]ρ ≡ −s−1 [A∗∇Φ(Y )]ρ = V

(here [·]Λ, [·]X and [·]ρ denote, respectively, the Λ-, the X- and the ρ-component of the design vector of
(TDfn) ). Note also that Y (and therefore Z) is positive definite. We see that (R(s), λ ≡ −s−1p) indeed
is a feasible solution of (TD∗fn) .

Now, if (Λ, X, ρ) is a feasible solution to (TDfn) , and(
R ≡ Diag

{(
Mi ci
cTi ri

)
, i = 1, ...,m

}
, λ

)
is a feasible solution to (TD∗fn) , then

2 Tr(QXT ) + V ρ =

[since [A∗R]Λ = λIq, [A∗R]X = 2Q, [A∗R]ρ = V by the constraints of (TD∗fn) and Tr Λ = 1 by the
constraints of (TDfn) ]

=
[
Tr([A∗R]XX

T ) + [A∗R]ρρ+ Tr([A∗R]ΛΛ)
]
− λ =

= Tr(RA(Λ, X, ρ))− λ,
whence

[2 Tr(QXT ) + V ρ] + λ = Tr(RA(Λ, X, ρ)).

Since the optimal values in (TDfn) and (TD∗fn) are, as we know from Fenchel-Rockafellar Duality Theorem,
negations of each other, we come to

ε[Λ, X, ρ] + ε∗[R, λ] = Tr(RA(Λ, X, ρ)); (15.168)

here ε[Λ, X, ρ] is the accuracy of the feasible solution (Λ, X, ρ) of (TDfn) (i.e. the value of the objective
of (TDfn) at (Λ, X, ρ) minus the optimal value of the problem), and ε∗[·] is similar accuracy in (TD∗fn) .

Specifying (Λ, X, ρ) as (Λs, Xs, ρs) and (R, λ) as (R(s), λs), we make the right hand side of (15.168)
equal to

Tr(R(s)Y ) = s−1 Tr(ZY ) = s−1 Tr(Y −1Y ) = s−1µ,

and with this equality (15.168) implies (15.167).
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15.7 Numerical Examples

Let us illustrate the developed approach by few examples.

Example 1. Our first example deals with the toy problem presented on Fig. 1; as it was explained in
Section 15.2.2, here the single-load optimal design results in unstable truss capable to carry only very
specific loads; the compliance of the truss with respect to the given load is 16.000. Now let us apply
approach B from Section 15.2.3, where the robustness constraint is imposed before solving the problem
and corresponds to “active” nodes – those where the given load is applied. When imposing robustness
requirement, we choose Q as explained in Section 15.2.3. Namely, in our case we have 2 fixed and 4 free
nodes, so that the dimension n of the space of virtual nodal displacements is 2 × 4 = 8. Since all free
nodes are active, the ellipsoid of loads in robust setting is full-dimensional (q = n = 8); this ellipsoid is
chosen as explained in Section 15.2.3 – one of the half-axis is the given load, and the remaining 7 half-axes
are 10 times smaller. The corresponding matrix (rounded to 3 decimal places after the dot) is

Q =



2.000 0.014 −0.026 0.117 −0.063 0.170 −0.264 −0.054
0 0.235 0.216 0.125 −0.032 −0.161 −0.070 0.104
0 −0.040 −0.107 0.099 0.311 −0.158 −0.117 −0.035

2.000 0.045 0.137 −0.263 0.162 0.039 0.002 0.043
0 −0.202 0.148 −0.081 −0.111 −0.190 −0.124 −0.164

−2.000 0.149 −0.108 −0.203 −0.030 0.006 −0.210 −0.009
−2.000 −0.089 0.219 0.057 0.129 0.203 −0.052 −0.003

0 0.173 0.028 0.020 0.042 0.035 0.098 −0.341


(to relate Q to the nodal structure presented on Fig. 1, note that the coordinates of virtual displacements
are ordered as 2X,2Y,3X,3Y,5X,5Y,6X,6Y, where, say, 3X corresponds to the displacement of node #3
along the X-axis).

The result of “robust” design is presented on Fig. 3.
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Fig. 3: Optimal design without (left) and with (right) robustness constraints

Problem setting Compliance Bars, node : node Bar volumes, %
without robustness constraints 16.000 1 : 2 25.00

4 : 5 25.00
3 : 5 25.00
5 : 6 12.50
2 : 3 12.50

with robustness constraints 17.400 4 : 5 24.48
1 : 2 24.48
3 : 5 23.68
2 : 3 11.95
5 : 6 11.95
2 : 4 1.27
1 : 5 1.27
2 : 6 0.92

Now the maximum over the 8-dimensional loading ellipsoid compliance becomes 17.400 (8.75% growth).
But the compliance of the truss with respect to the load f is 16.148, i.e., it is only by 0.9% larger than
for the truss given by single-load setting.
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Example 2: “Console”. The second example deals with approach A from Section 15.2.3, where the robust-
ness constraint is used for postoptimality analysis. The left part of Fig. 4 represents optimal single-load
design for 9× 9 nodal grid on 2D plane; nodes from the very left column are fixed, the remaining nodes
are free, and the load is the unit force acting down and applied at the mid-node of the very right column
(long arrow). The compliance of the resulting truss w.r.t. f∗, in appropriate scale, is 1.00. Now note
that the compliance of t with respect to very small (of magnitude 0.005 ‖ f∗ ‖) “occasional” load (short
arrow) applied at properly chosen node is > 8.4 ! Thus, in fact t is highly unstable.

The right part of Fig. 4 represents the truss obtained via postoptimality design with robustness
constraint. We marked the nodes incident to the bars of t (there were only 12 of them) and formed a new
design problem with the nodal set comprised of these marked nodes, and the tentative bars given by all 66
possible pair connections in this nodal set (in the original problem, there were 2040 tentative bars). The
truss represented in the right part corresponds to optimal design with robustness constraint imposed at
all 10 free nodes of this ground structure in the same way as in the previous example (i.e., the first column
in the 20× 20 matrix Q is the given load f∗, and the remaining 19 columns formed orthogonal basis in
the orthogonal complement to f∗ in of 20-dimensional space of virtual displacements of the construction;
the Euclidean lengths of these additional columns were set to 0.1 (10% of the magnitude of f∗).

The maximal compliance, over the resulting ellipsoid of loads, of the “robust” truss is now 1.03, and
its compliance with respect to f is 1.0024 – i.e., it is only by 0.24% larger than the optimal compliance
c∗ given by the single-load design; at the same time, the compliance of the new truss with respect to all
“occasional” loads of magnitude 0.1 is at most by 3% greater than c∗.
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Fig. 4: Single-load optimal design (left) and its postoptimal “robust correction” (right)
Example 3: “N × 2- truncated pyramids”. The examples below deal with simple 3D trusses. The nodal

set is comprised of 2N points. N “ground” nodes are the vertices of equilateral N -polygon in the plane
z = 0:

xi = cos(2πi/N), yi = sin(2πi/N), zi = 0, i = 1, ..., N,

and N “top” nodes are the vertices of twice smaller concentric polygon in the plane z = 2:

xi = cos(2πi/N), yi = sin(2πi/N), zi = 2, i = N + 1, ..., 2N.

The ground nodes are fixed, the top ones are free. The ground structure is comprised of all pair connec-
tions of the nodes, except connections between the ground – fixed – ones.

We dealt with two kinds of loading scenarios, referred to, respectively, as “N × 2s-” and “N × 2m”
– design data. N × 2s-data corresponds to a singleton scenario set, where the load is comprised of N
nearly horizontal forces acting at the top nodes and “rotating” the construction: the force acting at i-th
node, i = N + 1, ..., 2N , is

fi = α(sin(2πi/N),− cos(2πi/N),−ρ), i = N + 1, ..., 2N (15.169)
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where ρ is small parameter and α is normalizing coefficient which makes the Euclidean length of the load
equal to 1 (i.e., α = 1/

√
N(1 + ρ2)). N × 2m-data correspond to N -scenario design where the forces

(15.169) act nonsimultaneously (and are renormalized to be of unit length, i.e., α = 1/
√

1 + ρ2).
Along with the traditional “scenario design” (single-load in the case of s-data and multi-load in the

case of m-data), we carried out “robust design” where we minimized the maximum compliance with
respect to a full-dimensional ellipsoid of loads Mθ – the “ellipsoidal envelope” of the unit ball in the
linear span L(F ) of the scenario loads and the ball of radius θ in the orthogonal complement of L(F )
in the 3N -dimensional space of virtual displacements of the nodal set. In other words, dim L(F ) of the
principal half-axes of Mθ are of unit length and span L(F ), and the remaining principal half-axes are of
length θ. In our experiments, we used θ = 0.3.

The resulting structures Fig. 5 (data N × 2s) and Fig. 6 (data N × 2m), and the corresponding
compliances – in Table 1.

Table 1. Compliances
Topo-file Scenario design Robust design

Compl(Scen) Compl(0.1) Compl(0.3) Compl(Scen) Compl(0.3)
3x2s 1.0000 7.5355 67.820 1.0029 1.0029
4x2s 1.0000 12.209 109.88 1.00280 1.0028
5x2s 1.0000 2.7311 24.580 1.0022 1.0022
3x2m 1.0000 1.2679 1.2679 1.0942 1.0943
4x2m 1.0000 4.1914 37.722 1.2903 1.2903
5x2m 1.0000 1.5603 1.6882 1.5604 1.5604

In Table 1, Compl(Scen) means the maximum compliance of the designed structure w.r.t. the set of load-
ing scenarios given by the corresponding data, while Compl(θ), θ = 0.1, 0.3 is the maximum compliance
with respect to the ellipsoid Mθ. In order to make the comparison more clear, we normalize the data in
each row to make the compliance of the truss given by Scenario design with respect to the underlying set
of scenarios equal to 1.

The summary of the numerical results in question is as follows.

• N × 2s design data. Although the trusses given by the scenario and the robust designs have the
same topology and differ only in bar sizes, this difference is quite significant. The scenario design
results in highly unstable constructions: appropriately chosen “occasional” load 10 times less than
the scenario may result in 2.6 - 13.0 times larger compliance than the one with respect to the scenario
load; when the occasional load is allowed to be 30% of the scenario one, the ratio in question may
become 15 - 100. Note that bad robustness of the trusses given by the scenario design has very
simple origin: in the limiting case of ρ = 0 (purely horizontal rotating load) the top horizontal bars
(see Fig. 5) disappear at all, and the optimal truss given by the usual single-load design becomes
completely unstable.

The robust design associated with the ellipsoid M0.3 (”occasional” loads may be as large as 30% of
the scenario one) results in trusses nearly optimal with respect to the scenario load (“nonoptimality”
is at most 0.3%). Surprisingly enough, for the trusses given by the robust design the maximum
compliance with respect to the ellipsoid of loads is the same as their compliance with respect to the
scenario load. Thus, in the case in question the robustness is “almost costless”.

• N × 2m design data. Here the trusses given by the scenario design are of course much more stable
than in the case of N × 2s data, and both kinds of design possess their own advantages and
drawbacks. On one hand, the maximum, over the ellipsoid M0.3 of loads, compliance of the truss
given by the scenario design is considerably larger than the optimal value of this quantity (by 27%
for N = 3, by factor 37.7 for N = 4, and by 56% for N = 5). On the other hand, the maximum,
over the scenario set, compliance of the truss given by robust design also is considerably larger
than the optimal value of this quantity (by 9% for N = 3, by 29% for N = 4, and by 56% for
N = 5). Thus, it is difficult to say which design – the scenario or the robust one – results in better
construction.

The example in question suggests a seemingly better approach to ensuring robustness than those
mentioned in Section 15.2.3, namely, as follows. Given a finite scenario set F , we, as in Section
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15.2.3, embed it into an ellipsoid M = {Qu | u ∈ Rq, uTu ≤ 1} and solve the resulting problem
(TDrobust) ; let c∗robust be the corresponding optimal value. After this value is found, we increase it
in certain fixed proportion 1 + χ, say, by 10%, and solve the problem

find t ∈ T which minimizes the compliance cF (t) = maxf∈F cf (t)
subject to cM (t) ≡ maxf∈M cf (t) ≤ (1 + χ)c∗robust.

Note that the latter problem can be posed as a semidefinite program which only slightly differs
from (TDsd) :

The corresponding primal semidefinite program is

min
t∈Rm,τ∈R

τ

s.t. (
τ fT

f
∑m
i=1 tiAi

)
≥ 0, ∀f ∈ F

(
a QT

Q
∑m
i=1 tiAi

)
≥ 0

where

a = (1 + χ)c∗robust.

The dual to the latter problem is the computationally more convenient program

min
{
aTr(Λ) + 2 Tr(QXT ) + 2

∑
f∈F f

Txf + V ρ
}

s.t. (
Λ XT bi
bTi X σi

)
≥ 0, i = 1, ...,m

σi +
∑
f∈F

(bTi xf )2

λf
≤ ρ, i = 1, ...,m

λf ≥ 0, f ∈ F∑k
f∈F λf = 1

the design variables being Λ ∈ Sk, X ∈ Rn×q, σ ∈ Rn, {(λf , xf ) ∈ R×Rn}f∈F , and ρ ∈ R.
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3x2s, Scenario design 3x2s, Robust design

4x2s, Scenario design 4x2s, Robust design

5x2s, Scenario design 5x2s, Robust design

Fig. 5. Scenario design vs. Robust design, single “rotating” load
(ρ = 0.001 for 3× 2s and 4× 2s, ρ = 0.01 for 5× 2s)
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3x2m, Scenario design 3x2m, Robust design

4x2m, Scenario design 4x2m, Robust design

5x2m, Scenario design 5x2m, Robust design

Fig. 6. Scenario design vs. Robust design, multiple “extending” loads
(ρ = 0.001 for 3× 2m and 4× 2m, ρ = 0.01 for 5× 2m)

The reported numerical experiments were carried out with the LMI Control toolbox [7], the only
software for Semidefinite Programming available for us for the moment. The Projective interior point
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method ([10], Chapter 5) implemented in the Toolbox is of the potential reduction rather than of the
path-following type, and we were enforced to add to the Toolbox solver a “centering” interior point
routine which transforms a good approximate solution to (TDfn) into another solution of the same quality
belonging to the central path, which enabled us to recover the optimal truss, as it is explained in Section
15.6. The complexity of solving (TDfn) by the toolbox solver was moderate, as it is seen from the following
table:

Table 2. Computational complexity

Problem Scenario design Robust design
(Ndsg, NLMI, Nimg) Nwt CPU (Ndsg, NLMI, Nimg) Nwt CPU

Example 2 (146,2041,6121) 75 3′58′′ (611,67,15247) 95 24′42′′

3x2s (11,13,37) 14 0.2′′ (127,13,661) 62 14.5′′

4x2s (14,23,67) 16 0.4′′ (223,23,2003) 77 1′18′′

5x2s (17,36,106) 17 0.6′′ (346,36,4761) 59 3′13′′

3x2m (31,13,121) 16 0.4′′ (127,13,661) 101 24′′

4x2m (53,23,331) 23 1.5′′ (223,23,2003) 65 1′6′′

5x2m (81,36,736) 23 3′′ (346,36,4761) 65 3′32′′

In the table:
Ndsg – number of design variables in (TDfn)
NLMI – number of Linear Matrix Inequalities in (TDfn)
Ning – total image dimension of (TDfn) , i.e., the dimension

of the corresponding semidefinite cone
Nwt – number of Newton steps performed by the interior point solver

when solving (TDfn)
CPU – solution time (workstation RS 6000)

15.8 Concluding remarks

Uncertainty of the data is a generic property of optimization models of the real world origin; consequently,
“robust reformulation” of an optimization model as a way to improve applicability of the resulting solution
is a very traditional idea in Mathematical Programming, and different approaches to implement this idea
were proposed. One of the best known approaches is Stochastic Programming, where uncertainty is
assumed to be of stochastic nature. Another approach is robust optimization (see [9] and references
therein); here, roughly speaking, the “robust solution” should not necessarily be feasible for all “allowed”
data, and the “optimal robust solution” minimizes the sum of the original objective and a penalty for
infeasibilities, the infeasibilities being taken over a finite set of scenarios. The approach used in our paper
is somewhat different: a solution to the “stabilized” problem should be feasible for all allowed data. This
approach is exactly the one used in Robust Control. The goal of this concluding section is to demonstrate
that the approach developed in the paper can be naturally extended to other Mathematical Programming
problems. To this end let us look what in fact was done in Section 15.2.

I. We start with an optimization program in the “conic” form

(P ) cTu→ min | Au ∈ K, u ∈ E,

where u is the design vector, A is M ×N matrix, K is closed convex cone in RM and E is an affine plane
in RN .

This is exactly the form of a single-load TTD problem min{σ | σ ≥ cf (t), t ∈ T} (see Section 15.2.1):
to cast TTD as (P ) it suffices to specify (P ) as follows:

• u = (t, τ, σ) ∈ Rm ×R×R;

• E = {(t, τ, σ) | τ = 1,
∑m
i=1 ti = V };

• K is the direct product of the cone of positive semidefinite symmetric (n + 1) × (n + 1) matrices
(“matrix part”) and Rm

+ (“vector part”)

• the “vector” part of the linear mapping (t, τ, σ) 7→ A(t, τ, σ) is t, and the “matrix” part is

(
σ τfT

τf A(t)

)
,

f being the load in question.
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II. We say that the data in (P ) (entries in the data matrix A) are inexact (in TTD, these are entries
associated with the load vector f). We model the corresponding uncertainty by the assumption hat
A ∈ U , where U is certain ellipsoid in the space of M × N matrices6). Accordingly, we impose on the
decision u the requirement to be robust feasible, i.e., to satisfy the inclusions u ∈ A and Au ∈ K for all
possible data matrices A ∈ U . This leads to our robust reformulation

(Pst) cTu→ min | u ∈ E, Au ∈ K ∀A ∈ U

of (P ).
Note that this is a general form of the approach we have used in Section 15.2;and the goal of the

remaining sections was to realize, for the case when (P ) is the single load TTD problem, what is (Pst) as
a Mathematical Programming problem and how to solve it efficiently.

Now note that (P ) is a quite general form of a Convex Programming problem; the advantage of this
conic form is that it allows to separate the “structure” of the problem (c,K,E) and the “data” (A)7).
The data now become a quite tractable entity – simply a matrix. Whenever program in question can be
naturally posed in the conic form, we can apply the above approach to get a “robust reformulation” of
(P ). Let us look at a couple of examples.

Robust Linear Programming. Let K in (P ) be the nonnegative orthant; this is exactly the case
when (P ) is a Linear Programming problem in the canonical form8). It is shown in [6] that (Pst) is a
conic quadratic program (i.e., a conic program with K being a direct product of the second order cones).

Robust Quadratic Programming. Let K be a direct product of the second order cones, so that
(P ) is a conic quadratic program (a natural extension of the usual quadratically constrained convex
quadratic program). It can be verified (see [6]) that in this case, under mild restrictions on the structure
of the uncertainty ellipsoid U , the problem (Pst) can be equivalently rewritten as a semidefinite program
(a conic program with K being the cone of positive semidefinite symmetric matrices).

Note that in these examples (Pst) is quite tractable computationally, in particular, it can be efficiently
solved by interior point methods.

A somewhat “arbitrary” element in the outlined general approach is that we model uncertainty as an
ellipsoid. Note, anyhow, that in principle the above scheme can be applied any other uncertainty set U ,
and the actual “bottleneck” is our ability to solve efficiently the resulting problem (Pst). Note that the
robust problem (Pst) always is convex, so that there is a sufficient condition for its “efficient solvability”.
The condition, roughly speaking (for the details, see [8]), is that we should be able to equip the feasible
domain

G = {u | u ∈ E,Au ∈ K ∀A ∈ U}

of (Pst) with a Separation oracle – a “computationally efficient” routine which, given on input u, reports
on output whether u ∈ G, and if it is not the case, returns a linear form which separates G and u.
Whether this sufficient condition is satisfied or not depends on the geometry of U and K, and the “more
complicated” is U , the “simpler” should K be. When U is very simple (a polytope given as a convex hull
of a finite set), K could be an arbitrary “tractable” cone (one which can be equipped with a Separation
oracle); when U is an ellipsoid, K for sure could be the nonnegative orthant or a direct product of
the second order cones. On the other hand, if K is simple (the nonnegative orthant, as in the Linear
Programming case), U could be more complicated than an ellipsoid – e.g., it could be an intersection of
finitely many ellipsoids. Under mild regularity assumptions, in the latter case (Pst) turns out to be a conic
quadratic program [6]. In other words, there is a “tradeoff” between the flexibility and the tractability,
i.e., between the ability to express uncertainties, on one hand, and the ability to produce computationally
tractable problems (Pst), on the other hand.

6)here, as in the main body of the paper, a k-dimensional ellipsoid in RM is, by definition, the image of the unit
Euclidean ball in Rk under an affine embedding of Rk into RM .

7)in some applications the objective c should be treated as a part of the data rather than the structure. One can easily
reduce this case to the one in question by evident equivalent reformulation of (P ).

8)up to the fact that the mapping u 7→ Au is assumed to be linear rather than affine. This assumption doe not restrict
generality, since we incorporate into the model the affine constraint u ∈ E; at the same time, the homogeneous form Au ∈ K
of the nonnegativity constraints allows to handle both uncertainties in the matrix of the linear inequality constraints and
those in the right hand side vector.
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We strongly believe that the approach advocated here is promising and worths investigation, and we
intend to devote to it a separate paper.
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Appendix III: Minicourse on
Polynomial Time Optimization
Algorithms

Polynomial time methods in Convex Programming
What follows is a mini-course aimed to give some impression on polynomial time methods

in Convex Programming. We start with discussing the notion of a polynomial time method,
then present basic results on the methods of this type for general oracle-represented convex
programs and mainly focus on interior point polynomial time methods for well-structured
convex programs.

255
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16.1 Polynomial methods in Convex Programming: what is it?

16.1.1 The concept

The notion of a polynomial time method – a method solving a computational problem in polynomial in
the size of the problem number of elementary steps – was introduced explicitly in 1965 by Cobham and
Edmonds [2, 3], in the context of Discrete Mathematics. The essence of the definition is as follows. A
generic problem in question is formalized as a set P of pairs (x, y) of finite words in certain finite alphabet,
say, the 0-1 one. Problem instances are identified by the inputs – finite words x, and an algorithm A
solving the problem must, given such an input x, convert it into a solution to the input – a word y such
that (x, y) ∈ P – or to detect that no such y exists. Here the word “algorithm” can be specified in any
way known from Mathematical Logic. The algorithm A solving the problem P is called polynomial, if
its running time T A(x) – number of elementary steps on input x – is bounded by a polynomial of the
length of the input:

(∀x) : T A(x) ≤ π(l(x)),

where π(·) is a polynomial and l(x) is the size of the input – number of letters in the word x. Problem
P is called polynomially solvable, if it admits a polynomial time solution algorithm; this property of the
problem is independent of what is the particular model of an algorithm we use.

E.g., The Linear Algebra problem

(EqSys) given a m×n matrix A and m-dimensional vector b with rational entries, find a rational solution
to the system of linear equations Ax = b or detect that no such solution exists

can be easily included in the outlined framework and turns out to be polynomially solvable. Indeed,
there is no difficulty to encode the rational data of the problem by a single finite binary word, same as
encode in this manner candidate solutions. And it turns out that the Gauss elimination algorithm admits
polynomial time implementation, so that the problem in question is polynomially solvable.

The idea behind the partitioning of problems and algorithms into polynomial and non-polynomial
is to distinguish between “efficiently solvable” problems and “efficient” algorithms, on one side, and
“intractable” problems and “inefficient” algorithms, on another, and the notion of polynomiality proved
itself to be quite satisfactory for this purpose, at least from the theoretical viewpoint. At the same time,
this notion can be used directly only in the context of Discrete Mathematics, where we have no difficulties
with finite encoding of problem instances and their solutions. In “continuous” computational problems,
however, this notion as it is hardly can be used: how could we speak about finite encoding of continuous
data and continuous candidate solutions; besides this, in most of the cases we have no hope to get an
exact solution in finitely many elementary steps, at least with a reasonable notion of a step.

There are, of course, continuous problems for which the above machinery works. For example, the
already indicated Linear Algebra problem is, in fact, continuous, but its rational version, as it was
explained, can be captured by the approach in question; after Khachiyan’s paper of 1979, we know that
the same is true for systems of linear inequalities with rational data – for Linear Programming; this
problem also is covered by the indicated approach and also is polynomially solvable. Note, however, that
already in these examples we were enforced to restrict somehow the problem – to pass from its natural
setting as a problem with real data to the one with rational data – and heavily exploited the very specific
fact that a solvable instance here admits a rational solution; this latter property is lost when we pass,
e.g., to “evidently efficiently solvable” quadratic equations with one unknown.

In order to speak about efficient methods for “continuous” computational problems, we need therefore
to extend the notion of “polynomial time” method in order to capture at least the following two features
of continuous problems

• real, and thus not admitting natural finite encoding, data and candidate solutions;

• impossibility, in general, to find an exact solution in finitely many steps.

The corresponding formalization of the notions of a polynomial time algorithm and efficiently solvable
problem within the framework of real arithmetic model of computations was proposed and developed
during last years, starting with the seminal paper of L. Blum, M. Shub and S. Smale [1]. It makes
no sense to present here general definitions of this type; what we are about to do is to give a version
of these definitions for the situation we are interested in – nonlinear convex optimization. In order to
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distinguish between the “real arithmetic based” polynomial time algorithms we are going to define and
the usual polynomial time algorithms of Discrete Mathematics, we shall call the latter algorithms “fully
polynomial”.

16.1.1.1. Convex optimization problems

Problem instances we are interested in are convex optimization programs of the following canonical form

P : f0(x)→ min | fi(x) ≤ 0, i = 1, ...,m; x ∈ B ≡ {x ∈ Rn | ‖ x ‖2≤ 1}.

From now on we assume that

• the functions f1,...,fm are convex and continuous on B;

• P is feasible (and consequently, due to compactness reasons, is solvable).

Note that the feasibility assumption is made mainly for simplicity reasons; we could avoid it without
conceptual difficulties. Note also that we could replace the unit Euclidean ball B in our canonical form
of a convex program by any other “simple” solid, like a box, or a simplex; we are speaking about the ball
just for the sake of definiteness. What indeed is crucial is that the variables are from the very beginning
restricted to belong to certain known solid for which we can easily solve the separation problem – to
check, given a point, whether it belongs to the solid, and if not, to point out a hyperplane separating the
point and the solid.

Let ε > 0. We say that a point x ∈ Rn is an ε-solution to P , if x ∈ B, and the difference between
the value of the objective at x and the optimal value of the objective f∗0 , same as the violations of the
constraints at the point, do not exceed ε:

x ∈ G; f0(x)− f∗0 ≤ ε; fi(x) ≤ ε, i = 1, ...,m.

Perhaps it makes not that many sense to measure all function values in the same units; note, anyhow,
that we can come to this case by rescaling properly the objective and the constraints.

In what follows we consider two models of representation of a problem instance on input to a solution
method and, consequently, two notions of polynomial time methods for solving P .

16.1.1.2. Oracle-represented programs and polynomiality modulo oracle

We start with the black box represented instances. In this model, a particular problem P is represented
by an oracle O – a subroutine which is capable, given on input a vector x ∈ int B, to return on output
the values

f(x) = (f0(x), ..., fm(x))

of the objective and the constraints at x along with certain subgradients

f ′(x) = (f ′0(x), ..., f ′m(x))

of the functions at the point x.
A solution algorithm is a code for idealized computer capable to perform operations of exact real

arithmetic (for the sake of simplicity, we treat computation of elementary functions like square roots,
exponents, etc., as arithmetic ones). The code gets on input the sizes n and m of the problem instance
to be solved, the required accuracy ε > 0 and is given access to the oracle. When running, the code calls
the oracle at finitely many sequentially generated inputs x1, x2, ..., xN , the inputs being formed in finitely
many arithmetic operations on the basis of the previous answers of the oracle. At certain moment N the
method must terminate, and the N -th point xN generated by the method must be an ε-solution to the
problem instance P .

An algorithm A of the indicated type (an oracle-based one) is called polynomial modulo oracle, if, for
each ε > 0, the total number of arithmetic operations T A(P, ε) in course of solving any problem instance
P to an accuracy ε > 0 is bounded from above by a polynomial of the dimensions n, m of the instance
and the minus logarithm of the relative accuracy

ν(P, ε) = max

[
ε

V(f0)
,

ε

V(f1)
, ...,

ε

V(fm)

]
,
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where

V(f) = max
B

f −min
B

f

is the variation of a function f over the domain B of our program P . Thus, for a polynomial modulo
oracle algorithm we should have

∀(P, ε > 0) : T A(P, ε) ≤ π
(
m,n, ln

(
2 +

1

ν(P, ε)

))
,

π being a polynomial.
Note that we count in T only the computational effort of the algorithm itself, not the one spent by the

oracle to process requests of the algorithm. A nontrivial (and unclear in advance) fact is that polynomial
modulo oracle algorithms do exist.

16.1.1.3. Data-represented programs and polynomiality over reals

The notions of oracle-based algorithm and polynomiality modulo oracle are well-suited when we are
interested in the most general convex optimization problems which do not possess any tractable and
known in advance structure. Typically this is not the case: the problems arising in applications normally
are well-structured, so that a problem instance can be identified with a finite set of coefficients of certain
generic and known in advance analytical expressions, as it is the case in Linear Programming, Quadratic
Programming, etc. The coefficients specifying the instance normally form the input to the algorithm, so
that the algorithm from the very beginning possesses complete information on the instance. Normally
we can use this information to build the oracle representing the problem and thus reduce the case in
question to the previous one, but it is hardly the most efficient way to use the complete information
on the problem instance we have in our disposal. The most natural way to formalize the situation in
question seems to be as follows.

We consider a generic optimization problem P = {P} of “a given analytical structure”; by definition,
this means that a problem instance P ∈ P can be specified by a finite-dimensional data vector Data(P )
with real entries. A solution algorithmA is a code for an idealized computer capable to perform operations
of exact real arithmetic. As applied to a problem instance P ∈ P, the algorithm takes on input the data
vector of the instance along with the desired accuracy ε and after finitely many operations T A(P, ε)
reports on output n-dimensional vector which must be an ε-solution to the instance. The algorithm is
called polynomial, if

∀(P ∈ P, ε > 0) : T A(P, ε) ≤ π
(

dim Data(P ), ln

(
2 +

V (P )

ε

))
,

where

• π(·, ·) is certain polynomial;

• V (P ) is certain scale factor which may depend on the data.

This is not an actual definition, since we have not specified the scale factor. In applications a generic
problem of a particular analytical structure is equipped with certain specific scale factors, most convenient
in the context; after this is done, the notion of a “polynomial time” algorithm becomes indeed well-defined.
Of course, uncertainty with the scale factor is, theoretically, a severe drawback of the indicated approach;
at the same time, this uncertainty is not that crucial from the practical viewpoint, since the scale factor is
under log and therefore its exact value is not that important, provided, of course, that it is in a reasonable
range. In what follows we refer to just defined algorithms as to algorithms polynomial over reals.

To get a natural interpretation of the introduced notion, note that for the majority of known poly-
nomial time algorithms the polynomial π in the complexity bound is linear with respect to the second
argument, so that the bound becomes

T A(P, ε) ≤ p(dim Data(P )) ln

(
2 +

V (P )

ε

)
,

p being a polynomial. The quantity ln(V (P )/ε) is nothing but the number of accuracy digits in an ε-
solution, the accuracy being measured in an appropriate (given by the scale factor) relative scale. With
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this interpretation of the log-factor, our complexity bound simply means that the “arithmetic cost per
accuracy digit” for the algorithm in question is bounded from above by polynomial of the dimension
of the data instance, i.e., the dimension of the corresponding data vector; in particular, twice larger
computational effort results in twice larger number of accuracy digits.

We believe that the introduced notion of a polynomial time algorithm for continuous optimization
problems is a good analogy to the basic notion of a fully polynomial algorithm – the usual polynomial
time algorithm of Discrete Mathematics. The main differences are that now we are speaking about more
powerful elementary operations – those of exact real arithmetic rather than the “bitwise operations”
of the basic definition – and our goals are more restricted – we are looking for approximate solutions
rather than for the precise ones, and the complexity bound is allowed to depend, in certain prescribed
fashion, on the accuracy. As a compensation, the number of elementary steps in our new definition
should be polynomial in the dimension of the data vector, while in the original definition it should be
bounded by a polynomial of a much larger quantity – the bit size of the (rational) data vector. Because
of these differences, the two notions of polynomial time algorithms are not equivalent even in simple
cases when both are applicable, as it is, e.g., for systems of linear equations with rational data. The
Gauss elimination algorithm is polynomial both over reals (as it is called, strongly polynomial) and in
the bitwise sense, but these statements are in “general position” – they say different things and require
different proofs. Polynomiality of Gauss elimination over reals means that the algorithm is capable to
find exact solution in number of exact real arithmetic operations bounded by a polynomial of the number
of equations and unknowns, while “full polynomiality” of the algorithm means that the number of bitwise
operations sufficient to solve a system with rational data is bounded by a polynomial of the total bit
length of the data; no one of these statements automatically implies the other one.

What we intend to overview in this mini-course are polynomial modulo oracle algorithms for general-
type convex programs and polynomial over reals algorithms for convex programs of “good” analytical
structure.

16.1.2 Algorithms polynomial modulo oracle

As it was already mentioned, an important, although simple, fact is that algorithms polynomial modulo
oracle do exist. All known for the moment algorithms of this type belong to the so called cutting plane
scheme which is multi-dimensional extension of the usual bisection.

16.1.2.1. Generic cutting plane scheme

A generic cutting plane algorithm is as follows:

Algorithm 16.1.1 [Generic Cutting Plane algorithm]
Initialization: Choose as G0 an arbitrary compact containing B and set ν0 = +∞
Step t: Given Gt−1, choose somehow xt ∈ Rn.

• A [choosing cutting plane]:

A.1. If xt 6∈ int B, call step t non-productive, set

et = xt,

so that et separates xt and int B:

(∀x ∈ int B) : (x− xt)T et < 0,

set
νt = νt−1

and go to B;

A.2. If xt ∈ int B, call the oracle, xt being the input, and get from the oracle the values fi(xt) and
certain subgradients f ′i(xt) of the objective and the constraints at the point xt, i = 0, ...,m.

If there exists i, 1 ≤ i ≤ m, such that
fi(x) > ε, (16.170)
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call step t non-productive, set
et = f ′i(xt),

where i ∈ {1, ...,m} satisfies (16.170), set

Vt = max
y∈B

(y − xt)T et =‖ et ‖2 −xTt et; νt = min

[
νt−1,

ε

Vt

]
and go to B;

A.3. If xt ∈ int B and fi(xt) ≤ ε, 1 ≤ i ≤ m, call step t productive, set

et = f ′0(xt),

set

Vt = max
y∈B

(y − xt)T et =‖ et ‖2 −xTt et; νt = min

[
νt−1,

ε

Vt

]
and go to B.

• B [performing a cut] Choose, as Gt, an arbitrary compact set containing the set

G+
t = {x ∈ Gt | (x− xt)T et < 0},

and compute an upper bound κt for the quantity(
mesnGt
mesnB

)1/n

.

If

κt ≥
νt

1 + νt
,

[
+∞

1 +∞
= 1

]
loop, otherwise terminate, reporting as the result the best (with the smallest value of the objective)
of the points xτ , τ ≤ t, associated with productive steps τ .

The main property of the indicated generic method is given by the following simple statement.

Proposition 16.1.1 If a cutting plane algorithm terminates at a convex program P , then the result
formed by the algorithm is an ε-solution to P .

Besides this, in course of running the method one always have

νt ≥ ν(P, ε),

so that the method for sure terminates at a step t with

κt <
ν(P, ε)

1 + ν(P, ε)
.

Proof. The second statement of the proposition is evident, since for every t with well-defined Vt one
clearly has

Vt ≤ max
i=0,...,m

V(fi).

Let us prove the first statement. Thus, assume that the method terminates at certain step N ; we should
prove that the result, let it be called z, is well-defined and that it is an ε-solution to P .

10. According to our termination rule, we have(
mesnGN
mesnB

)1/n

<
νN

1 + νN
;

the right hand side in this inequality is ≤ 1, and therefore we can find λ ∈ (0, 1) such that

θ ≡
(

mesnGn
mesnB

)1/n

< λ <
νN

1 + νN
.



16.1. POLYNOMIAL METHODS IN CONVEX PROGRAMMING: WHAT IS IT? 261

Let x∗ be an optimal solution to P , and let

B′ = (1− λ)x∗ + λ int B.

Note that

mes
n
B′ = λn mes

n
B > θn mes

n
B = mes

n
GN ,

so that the set B′\GN is nonempty. Let u ∈ B′\GN , so that

u = (1− λ)x∗ + λz [z ∈ int B]. (16.171)

20. Since u ∈ B ⊂ G0 and u 6∈ GN , there exists t ≤ N such that u ∈ Gt−1 and u 6∈ Gt. According to
B, this is possible only when

(u− xt)T et ≥ 0. (16.172)

30. Let us verify that the step t is productive. Indeed, at this step for sure xt ∈ int B, since otherwise,
according to A.1, (x − xt)T et < 0 for all x ∈ int B, and we know that at x = u ∈ int B the opposite
is true. Now let us lead to a contradiction the assumption that xt ∈ int B and fi(xt) > ε for certain i,
1 ≤ i ≤ m. Under this assumption et = f ′i(xt) for (one of) the indicated i, so that (16.172) and (16.171)
imply that

fi(xt) ≤ fi(xt) + (u− xt)T et
= (1− λ)(fi(xt) + (x∗ − xt)T et) + λ(fi(xt) + (z − xt)T ei)

[since fi(xt) + (x∗ − xt)T et ≤ fi(x∗) ≤ 0]
≤ λ(fi(xt) + (z − xt)T et) ≤ λ(fi(xt) + Vt),

whence

fi(xt) ≤
λ

1− λ
Vt.

On the other hand, fi(xt) > ε, and we come to

ε

Vt
≤ λ

1− λ
.

this is a contradiction: according to our rules for νt, the left hand side in this inequality is ≥ νN , while
the right hand side one, due to λ < νN/(1 + νN ), is < νN .

40. Thus, t is a productive step and, consequently, the result w returned by the algorithm is well-
defined. By construction of the result, w is the best of the points xτ associated with productive steps
τ ≤ N ; since we already know that the step t is productive, we conclude that

f0(w) ≤ f0(xt);

besides this, by the definition of a productive step,

w ∈ int B; fi(z) ≤ ε, i = 1, ...,m.

Thus, in order to prove that w is an ε-solution to P it suffices to verify that f0(xt) ≤ f0(x∗) + ε. This is
immediate: the same computation as in 20 applied to f0 results in

f0(xt) ≤ (1− λ)(f0(xt) + (x∗ − xt)T et) + λ(f0(xt) + Vt),

and since et = f ′0(xt) (t is productive!) and f0 is convex, this inequality implies that

f0(xt) ≤ (1− λ)f(x∗) + λ(f0(xt) + Vt),

whence

f0(xt)− f0(x∗) ≤ λ

1− λ
Vt ≤ νNVt ≤ νtVt ≤ ε.
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16.1.2.2. Polynomial implementations

According to Proposition 16.1.1, all we need in order to get a polynomial modulo oracle cutting plane
algorithm is to find policies for choosing

• (1) sequential points xt

• (2) transformations (Gt−1, xt, et) 7→ Gt ⊃ {x ∈ Gt | (x− xt)T et < 0}

ensuring that

(A) κt ≤ Q(m,n) exp{− t
R(n,m)}, t = 0, 1, ...

for certain polynomials Q and R

(B) the number of arithmetic operations required to perform (1) and (2) at a single step
is bounded by polynomial C(m,n) of m and n.

Proposition 16.1.1 says that if a cutting plane method fits (A) and (B), then both the number of
oracle calls N (P, ε) in course of solving a convex program P and the arithmetic effort of the method

T (P, ε) admit polynomial upper bounds:

N (P, ε) ≤ 1 +R(m,n) ln
(
Q(m,n) 1+ν(P,ε)

ν(P,ε)

)
,

T (P, ε) ≤ C(m,n)N (P, ε).

To the moment we know several cutting plane methods fitting (A) and (B); let us look what are these
methods.

The Center of Gravity method. The first cutting plane algorithm satisfying (A) – the Center of
Gravity method – was proposed independently by A.Yu. Levin and J. Newman as early as in 1965. In
this algorithm, G0 = B, xt is the center of gravity of Gt−1:

xt =
1

mesnGt−1

∫
Gt−1

xdx

and

Gt = clG+
t = cl{x ∈ Gt−1 | (x− xt)T et < 0}.

For this method,

Q(m,n) = 1; R(m,n) = 2.2n;

these are the best, up to absolute constant factors, polynomials Q and R one could hope for. A bad
news about the Center of Gravity method is that this scheme does not fit (B), since we do not know
how to compute in polynomial time the center of gravity of a given solid, say, of a general-type polytope;
this latter problem seems to be NP-hard. Note, anyhow, that several years ago Cannam, Dyer and
Freeze developed a randomized algorithm which, in particular, is capable to approximate in polynomial
time the center of gravity of a polytope with accuracy sufficient for the needs of the Center of Gravity
method, so that this algorithm admits randomized polynomial modulo oracle implementation. The order
of polynomial C(·, ·) arising in this implementation, however, is too high to be of any practical interest.

The Ellipsoid method. The first implementation of the cutting plane algorithm which fits both the
requirements (A) and (B) was the Ellipsoid method (Nemirovski and Yudin, 1976; Shor, 1977). In this
implementation, G0 = B and all Gt are ellipsoids represented as the images of the unit ball B under
affine mapping:

Gt = ct +AtB,

At being a nonsingular n× n matrix, xt = ct−1 is the center of previous ellipsoid and Gt is the ellipsoid
of the smallest volume containing the “half-ellipsoid” G+

t . For this method,

Q(m,n) = 1; R(m,n) = 2n2,
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so that the method fits the requirement (A), although with R O(n) times worse than the one for the
Center of Gravity method. At the same time, there are explicit formulae for the transformation

(At−1, xt−1, et) 7→ (At, xt)

of arithmetic cost C(m,n) = O(mn+ n2), so that the method fits (B) as well.

The Outer Simplex method. This method is very similar to the Ellipsoid one; it was proposed in 1982
independently by Levin & Yamnistki and Bulatov & Shepot’ko. In this method, all Gt are simplices, G0

is the smallest volume simplex containing B and xt is the barycenter of the simplex Gt−1. With certain
explicit policy for (2), the method has the same arithmetic cost per oracle call as the Ellipsoid method
and fits (A) with

Q(m,n) = n; R(m,n) = O(n3)

(R is O(n) times worse than for the Ellipsoid method).

The Inscribed Ellipsoid method. This method was developed by Khachiyan, Tarasov and Erlikh in
1988. Here G0 is the unit cube, Gt = clG+

t and xt is the center of the maximum volume ellipsoid
contained in the polytope Gt−1, or, more exactly, a tight enough approximation of the latter point. For
this method, similarly to the Center of Gravity one,

Q(m,n) = n; R(m,n) = O(1)n.

Now, to find xt, given Gt−1, this is a specific convex program which can be solved to the required
accuracy in polynomial time. The best known so far upper bound for arithmetic cost of solving this
auxiliary problem is, up to logarithmic in n factors,

C(m,n) = O(n3.5).

The Method of Volumetric Centers. This is the cutting plane algorithm due to Vaidya (1990); it
possesses the best known so far complexity characteristics:

Q(m,n) = n; R(m,n) = O(n)

(basically the same as for the Center of Gravity and the Inscribed Ellipsoid methods) and

C(m,n) = O(n3)

(compare with O(n3.5) in the Inscribed Ellipsoid method).

16.1.2.3. Polynomial Solvability of Convex Programming

The fact that Convex Programming admits polynomial modulo oracle solution algorithms has important
theoretical consequences. The most important and an immediate one is the existence of polynomial over
reals solution algorithms for all “normal” families of well-structured convex programs:

Theorem 16.1.1 Let P be a family of well-structured convex programs, so that every instance P ∈ P is
specified by a finite-dimensional data vector Data(P ). Assume that problem instances from P are “poly-
nomially computable”, i.e., there exists an algorithm O which, given on input the data vector Data(P )
and an n(P )-dimensional vector x, ‖ x ‖2< 1 (n(P ) is the design dimension of program P ), computes
in polynomial in dim Data(P ) number of arithmetic operations the values fi(x) and some subgradients
f ′i(x), i = 0, ...,m, of the objective and the constraints of the instance at the point x.

Then P equipped with the scale factors

V (P ) = max
0≤i≤m(P )

[max
BP

fi −min
BP

fi]

(f0, ..., fm(P ) are the objective and the constraints of the instance P , BP is the domain of the instance)
admits a polynomial over reals solution algorithm.
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Proof is immediate: to get the desired algorithm, solve the input instance by, say, the Ellipsoid method,
using the algorithm O as an oracle. Due to the already known properties of the Ellipsoid method and the
assumptions on polynomial computability of the instances from P, the overall arithmetic effort required
to find an ε-solution to (any) problem instance P ∈ P will be bounded from above by a polynomial
of n(P ), m(P ) and ζ ≡ ln(2 + ν−1(P, ε)). Since, on one hand, the arithmetic effort of O is bounded
by a polynomial in dim Data(P ), and, on the other hand, this effort cannot be less than m(P ) + n(P )
(O should at least read n(P ) input entries of x and write down m(P ) + 1 output values of fi(x)), we
conclude that m(P ) and n(P ) are bounded by polynomials of dim Data(P ), so that the overall arithmetic
complexity of our method is in fact bounded by a polynomial of dim Data(P ) and ζ.

In some cases polynomial over reals algorithms can further be converted into “fully polynomial”
algorithms of Discrete Mathematics. The most widely known example of this type is the result on
polynomial solvability (in the “completely finite” setting) of a general Linear Programming problem with
rational data (Khachiyan, 1979). The main points of the construction are as follows:

• it is not difficult to demonstrate that the problem of solving an LP program with n variables and
m inequality constraints of total bit length L can be reduced to a series of m feasiblility problems
of the form:

given a system of m linear inequalities with n unknowns of total bit length O(1)L,
check whether the system is solvable,

so that it suffices to establish polynomial solvability of the feasibility problem.

• Due to particular analytical structure of the feasibility problem, it is not difficult to demonstrate
that to solve this problem is the same as to decide whether the optimal value in certain associated
convex program P without functional constraints is nonpositive or is greater than 2−O(1)L; to make
the correct decision, it, of course, suffices to find an ε-solution to P with ε = 2−O(1)L. Now, it is
immediately seen that

– program P belongs to certain “well-structured” family P and is specified in this family by the
data vector of polynomial in m and n dimension (namely, m(n+ 1));

– the family P is comprised of polynomially computable convex programs;

– the scale factor V (P ) from Theorem 16.1.1 is at most 2O(1)L.

• According to the above remarks and Theorem 16.1.1, we can solve P to the desired accuracy in
polynomial in n,m,L (and, consequently, in L > max[m,n]) number of operations of exact real
arithmetic, and all we need to get a “fully polynomial” solution algorithm for feasibility problem
is to pass from exact real arithmetic operations to “bitwise” ones. A straightforward, although
involving, analysis demonstrates that replacing in the algorithm exact operations by inexact ones
keeping in the result O(1)mL digits before and after the decimal dot, we still get an approximate
solution of the desired quality, and with this substitution of operations we do get a fully polynomial
solution algorithm for the feasibility problem.

To the moment there are several fully polynomial algorithms for LP, and the structure of all these
algorithms is similar to the just outlined: we start with a polynomial over reals algorithm for Convex or
Linear Programming programs and subject it to (now quite standard) modifications to make the method
“completely finite” on rational instances.

The existence of polynomial modulo oracle cutting plane algorithms has further theoretical conse-
quences. The underlying feature of the scheme is that to run a cutting plane algorithm, we in fact do
not need explicit access to all functional constraints. What is sufficient for us, is a subroutine S which
checks, given on input a point x, whether all the constraints are satisfied at x within accuracy ε; if
it is the case, the routine returns the value and a subgradient of the objective at x, otherwise – the
value and a subgradient of (any) “essentially violated” constraint. Whenever we have a “well-structured”
generic convex problem P which can be equipped by subroutine S of the indicated type with polynomial
in dim Data(P ) running time, we still are able to point out a polynomial over reals solution algorithm
for P. As it was shown by the authors of this approach Grötshel, Lovasz and Shrijver (1984; see [5]),
this scheme allows to get in a unified manner fully polynomial algorithms for all combinatorial problems
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known to be polynomially solvable (in several cases, the algorithms developed on the basis of the scheme
were the first polynomial algorithms for the corresponding problems).

In spite of their theoretical universality, or, better to say, because of this universality, cutting plane
polynomial time algorithms are not that attractive for practical computations: their arithmetic complex-
ity grows quickly with the design dimension of the problem. In a sense, this phenomenon is unavoidable
for general-purpose convex optimization algorithms using only local information on problem instances:
one can point out families Pn, n = 1, 2, ... of simple convex programs

P : f(x)→ min | ‖ x ‖2≤ 1 [x ∈ Rn]

with V (P ) ≤ 1 for all instances P ∈ Pn such that the worst-case, over P ∈ Pn, number of calls to a
local oracle for any method solving the instances within accuracy n−1 is at least O(1)n. It follows that
the efficiency estimate (in terms of number of oracle calls) of any polynomial modulo oracle algorithm
is at least proportional to the design dimension of the problem; the number of arithmetic operations
(modulo oracle) “per accuracy digit” for the most efficient known algorithms of this type grows at least
as the fourth degree of the design dimension. Therefore the outlined methods are well-suited only for
problems with moderate (not more then several tens) number of variables and are basically useless in
the large scale case. As some people say, the role of these algorithms is to provide us with the proof
of polynomial solvability of Convex Programming; to get an actually efficient method for a large scale
problem, we need specific algorithms which are adjusted to the particular analytical structure of the
problem in question, and large scale convex problems arising in applications normally do possess such a
structure. The most promising approach to utilizing structure of a convex program seems to be the one
based on recent progress in the theory of polynomial time interior point methods; this approach is the
subject of the forthcoming sections.
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16.2 Interior point polynomial methods: introduction

The most powerful general approach to the design of polynomial time convex methods capable to utilize
information on the structure of the convex programs to be solved is offered by the recent advances in the
theory of polynomial time interior point methods. The first method of this type was developed in the
seminal paper of N. Karmarkar (1984) for Linear Programming; this paper initiated outstanding activity,
during the last decade mainly focused on LP and now being extended on well-structured nonlinear convex
problems as well. It is impossible to mention even the most important contributions of many researchers
to the area (the incomplete bibliography of the subject due to Dr. Kranich contains over 1,500 entries),
but there is one contribution which cannot be avoided – the papers of J. Renegar (1986) and C. Gonzaga
(1988), where the first path-following interior point methods for LP were proposed. These papers not
only improved the complexity results for LP obtained by Karmarkar, but also linked the new-born area
with a quite traditional optimization scheme; this contributed a lot to better understanding of the nature
of new methods and brought the area into a good position for further extensions.

As it was already mentioned, the activity in the area of polynomial time interior point methods was
initially focused on Linear Programming. The extensions onto more general nonlinear convex optimization
problems at this stage were restricted mainly to linearly constrained convex quadratic programming,
where one could use without significant difficulties basically the same constructions and proofs as in
Linear Programming. The “most nonlinear” convex problems which were successfully studied at this
stage were convex quadratically constrained quadratic programs (Jarre, 1987; Mizuno & Sun, 1988); here
one also can use the tools already known from LP. Further extensions required better understanding of
the intrinsic nature of interior point methods in LP. In 1988, two close, although not completely identical,
ideas on this intrinsic nature and, consequently, on how to extend the interior point methods from LP
onto more general convex problems, were proposed. One of them is the “relative Lipschitz condition”
of F. Jarre, another – the self-concordance-based approach originating from Yu. Nesterov. In the mean
time it turned out that the second approach is more convenient and general, and now it became a kind of
standard; it underlies a general theory of interior point polynomial time methods in Convex Programming
we possess now, and this theory allows to explain all polynomial time constructions and results known
in Linear Programming and to extend these constructions and results on the nonlinear case.

16.2.1 Self-concordance-based approach

To get a very brief overview of the general theory as it is developed in [3] , let us start with a problem

P : cTx→ min | x ∈ G ⊂ Rn, (16.173)

of minimizing a linear objective over a convex solid (closed and bounded convex set with a nonempty
interior) in the particular case when the solid is a polytope:

G = {x ∈ Rn | aTi x ≤ bi, i = 1, ...,m} (16.174)

(we assume that all ai are nonzero). In the LP interior point methods for the Linear Programming
program P , (16.174) the key role is played by the logarithmic barrier

F (x) = −
m∑
i=1

ln(bi − aTi x)

for the feasible polytope G of the problem. The crucial observation of Nesterov today can be expressed
as follows: among all numerous features of this logarithmic barrier, in fact only the following three are
responsible for the polynomiality of the associated interior point methods for LP:

• A [barrier property]: F is a barrier for G: F (xi)→∞ along every sequence {xi} of interior points
of G converging to a boundary point of G;

• B [self-concordance]: F is self-concordant, i.e., is a C3 smooth convex function on int G satisfying
the differential inequality

∀(x ∈ int G, h ∈ Rn) : |D3F (x)[h, h, h]| ≤ 2
(
D2F (x)[h, h]

)3/2
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[from now on DkF (x)[h1, ..., hk] denotes k-th differential of a function F taken at a point x along
the directions h1, ..., hk]; in other words, the second-order derivative of F is Lipschitz continuous
with respect to the local Euclidean metric defined by this derivative itself;

• C [boundedness of the Newton decrement]: F satisfies the differential inequality

∀(x ∈ int G, h ∈ Rn) : |DF (x)[h]| ≤ ϑ1/2(F )
(
D2F (x)[h, h]

)1/2
;

in other words, F itself is Lipschitz continuous with respect to the local Euclidean metric given by
the second order derivative of F .

Now, properties A – C do not address explicitly polyhedral structure of G; given an arbitrary closed
convex domain with a nonempty interior, we may try to equip it with a barrier F satisfying these
properties; such a barrier will be called self-concordant, the quantity ϑ(F ) being called the parameter of
the barrier. And it turns out that

Theorem 16.2.1 Given a self-concordant barrier F for an arbitrary solid G ⊂ Rn and a starting point
x̂ ∈ int G, one can associate with these entities an interior point method IPF for solving problem P of
minimizing a linear objective on G. This method solves P to a prescribed accuracy ε > 0 – i.e., generates
a point xε ∈ int G such that

cTxε −min
x∈G

cTx ≤ ε

at the cost of assembling and solving no more than

N ≡ NF,x̂
(ε) = O(1)

√
ϑ(F ) ln

(
2ϑ(F )[G : x̂]

1 + ν(P, ε)

ν(P, ε)

)
Newton systems of the form

Si : ∇2F (xi)u = ∇F (xi) + tic.

Here

• O(1) is absolute constant;

• [G : x̂] is the asymmetry coefficient of G with respect to the starting point:

[G : x̂] = sup{t | ∃y 6∈ G : x− t(y − x) ∈ G};

• ν(P, ε) = ε/(maxx∈G c
Tx−minx∈G c

Tx) is the relative accuracy of ε-solution (cf. Section 1);

• xi, ti, i = 1, ...,N , are generated by the method interior points of G and scalar parameters, respec-
tively.

To update (xi, ti) into (xi+1, ti+1) is, computationally, exactly the same as

• to assemble the system Si and to solve it with respect to the unknown u (the system for sure is
solvable);

• to perform O(n) arithmetic operations more to update xi, ti, u into xi+1, ti+1.

Note that in the Linear Programming case, when G is given by (16.174) and F is the logarithmic barrier
for the polytope, F turns out to be self-concordant with parameter ϑ(F ) equal to m – the number of
linear inequalities defining G. In this case the above statement yields the standard Renegar-type efficiency
estimate for the LP interior point methods.

How to associate with a self-concordant barrier for the feasible domain of a problem (16.173) interior
point methods fitting efficiency estimate of the above (or similar) type – this is one piece of the theory in
question; here it turns out that basically all constructions and results related to interior point methods
in Linear Programming can be naturally extended onto the general nonpolyhedral case.

Now, problem (16.173) of linear minimization over a solid is a universal, in the natural sense, Convex
Programming program. Indeed, a convex program in the canonical form we dealt with in the previous
Section:

P : f0(u)→ min | fi(u) ≤ 0, i = 1, ...,m; u ∈ B = {u ∈ Rk | ‖ u ‖2≤ 1}
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(fi, i = 0, ...,m, are convex and continuous on B) can be in many ways converted to (16.173). E.g., if we

know in advance that P satisfies the Slater condition and are able to form an upper bound f̂0 on absolute
values of f0 in B, we can pass from the initial design vector u to the extended vector x = (t, u) ∈ Rk+1

and to rewrite P equivalently in the form of (16.173) as

cTx ≡ t→ min | x ∈ GP = {(t, u) | u ∈ B, f0(u) ≤ t ≤ 2f̂0,
fi(u) ≤ 0, i = 1, ...,m}.

After this reformulation, we could try to equip GP with a self-concordant barrier F and to solve the
problem with the associated interior point method. The complexity characteristics of this method mainly
depend on the magnitude of ϑ(F ) and on the “computational complexity” of the barrier – the arithmetic
cost at which one can compute the gradient and the Hessian of F at a given point; there are also
“secondary” effects caused by the necessity to start the method in an interior point of GP not too close
to the boundary of GP . When P comes from a well-structured family P of convex programs and both
these problems – the one of finding an “efficiently computable” self-concordant barrier with reasonable
value of the parameter for GP and the one of finding a “reasonably centered” starting point x̂ ∈ int GP –
can be properly solved, we end up with a polynomial over reals algorithm for the family. Now, the second
of the indicated issues – initialization policy – can be easily resolved in a universal and a quite satisfactory
manner, so that in fact our possibilities to exploit the outlined approach as a source of polynomial over
reals algorithms for generic well-structured convex programs are limited only by our abilities to point
out “computable” self-concordant barriers for the corresponding feasible domains. In principle, every n-
dimensional convex domain can be equipped with a self-concordant barrier with parameter O(1)n (from
now on, all O(1)’s are absolute constants); this universal barrier is given by the formula

FG(x) = O(1) ln mes
n

Polar(G, x),

where

Polar(G, x) = {y ∈ Rn | yT (x′ − x) ≤ 1 ∀x′ ∈ G}

is the polar of G with respect to x. Thus, in principle the outlined approach can be applied to any convex
optimization problem. Unfortunately, the universal barrier usually is “computationally intractable” –
it cannot be computed at a reasonable arithmetic cost. There exists, however, a kind of calculus of
“efficiently computable” barriers, which yields barriers of this type for a wide family of convex domains
arising in applications; this “barrier calculus” is the second large piece of the theory. And the third piece
is formed by applications, where we put things together, namely, take a particular well-structured convex
problem P and work out a policy for converting problem instances into the standard form required by
the general interior point schemes and for equipping the corresponding feasible domains with computable
self-concordant barriers, thus coming to the associated with our generic problem interior point methods.

This was a very brief overview of the theory; its detailed representation is far beyond the scope of this
mini-course. What we are about to do is to present just two general interior point schemes, skipping all
technical considerations, and to outline several generic applications of the second, more efficient of the
schemes.

16.2.2 Preliminaries: Newton method and self-concordance

16.2.2.1. Self-concordant functions

As it was already explained, the main hero of the story to be told is self-concordant barrier for a closed
convex domain G ⊂ Rn. As we remember, this is a function satisfying simple barrier property and two
differential inequalities linking the first, the second and the third directional derivatives of the function.
The role of the second of these inequalities is relatively restricted, although finally crucial, and it makes
sense not to impose it as long as possible. Thus, we start with self-concordant functions – those possessing
only properties A and B:

Definition 16.2.1 [Self-concordant function] Let G ⊂ Rn be a closed convex domain with a nonempty
interior. We say that a function F is self-concordant on G, if
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• F is three times continuously differentiable convex function on the interior of G with the barrier
property:

F (xi)→∞ whenever xi ∈ int G converge to x ∈ ∂G;

• F satisfies the differential inequality

∀(x ∈ int G, h ∈ Rn) : |D3F (x)[h, h, h]| ≤ 2
(
D2F (x)[h, h]

)3/2
(16.175)

There is nothing too specific about constant 2 in (16.175): both sides of inequality (16.175) are of
the same homogeneity degree with respect to h, as it should be for an affine invariant relation, but
are of different homogeneity degrees with respect to F . It follows that if F satisfies (16.175) with
constant factor 2 replaced by any other constant factor, we could rescale F – multiply it by a positive
constant – to enforce the rescaled function to satisfy similar inequality with a desired constant factor. The
particular normalization we choose is the most convenient: with this normalization of inequality (16.175)
the function − ln t turns out to be self-concordant on the nonnegative axis, the logarithmic barrier for a
polytope turns out to be self-concordant on the polytope, etc.

For the sake of simplicity, in what follows we deal only with nondegenerate self-concordant functions
F – those with nonsingular at any point of the domain Hessians F ′′.

Proposition 16.2.1 The necessary and sufficient condition of nondegeneracy of a self-concordant func-
tion is to have a nonsingular Hessian at at least one point.

A sufficient condition for nondegeneracy is that the domain of the function does not contain straight
lines (which for sure is the case when the domain of the function is bounded).

Note that if F is a nondegenerate self-concordant function on G ⊂ Rn and x ∈ int G, then the second
order differential of F at x, being a positive definite quadratic form, defines a Euclidean norm on Rn:

‖ h ‖F ′′(x)=
(
D2F (x)[h, h]

)1/2
[= (hTF ′′(x)h)1/2],

same as the conjugate norm:

‖ η ‖[F ′′(x)]−1= max{ηTh | ‖ h ‖F ′′(x)≤ 1} [= (ηT [F ′′(x)]−1η)1/2].

Basic properties of self-concordant functions. The central role in all interior point schemes is played
by the Newton minimization method, and the role of self-concordance in our coming considerations is
based upon the very nice behaviour of this method as applied to a self-concordant function. This nice
behaviour, in turn, comes from the fact that a self-concordant function is fairly well approximated locally
by its second order Taylor expansion. The corresponding result is as follows:

Proposition 16.2.2 Let F be self-concordant on G, and let x ∈ int G. Then the unit Dikin ellipsoid of
F at x – the set

DF,x = {y | ‖ y − x ‖F ′′(x)≤ 1}

is contained in G. For all y ∈ Rn we have

Ω(− ‖ y − x ‖F ′′(x)) ≤ F (y)
−
[
F (x) + (y − x)TF ′(x) + 1

2 (y − x)TF ′′(x)(y − x)
]
≤

≤ Ω(‖ y − x ‖F ′′(x)),
(16.176)

where

Ω(s) = − ln(1− s)− s− s2

2

[
=
s3

3
+
s4

4
+ ..., |s| < 1

]
(F is extended outside int G by the value +∞, and by definition Ω(s) = +∞ for s ≥ 1, so that (16.176)
makes sense for all y).
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To express the convergence properties of the Newton method as applied to a self-concordant function, we
need to measure somehow the “distance” from the current iterate to the minimizer of the function; since
we are interested in affine invariant description (note that both the notion of self-concordance and the
Newton method are affine invariant entities), this distance should be defined in terms of F itself. There
are two natural “distances” of this type:

• Residual in terms of F :

F (x)− inf
int G

F ;

• Newton decrement

λ(F, x) =‖ F ′(x) ‖[F ′′(x)]−1

[
=
√

(F ′(x))T [F ′′(x)]−1F ′(x)

]
.

Both these quantities, as it should be for distances, are zero if x is the minimizer of F and are positive
otherwise. The advantage of the Newton decrement is that this quantity is “observable” – given x, we
can explicitly compute λ(F, x). These two distances are closely related to each other:

Proposition 16.2.3 Let F be self-concordant and nondegenerate on G ⊂ Rn. Then the following rela-
tions are equivalent to each other:

• F attains its minimum on int G, the minimizer being unique;

• F is below bounded on int G;

• there exists x ∈ int G such that λ(F, x) < 1.

Moreover, for any x ∈ int G one has

λ(F, x)− ln(1 + λ(F, x)) ≤ F (x)− min
int G

F ≤ −λ(F, x)− ln(1− λ(F, x)),

the right hand side in the second inequality being +∞ when λ(F, x) ≥ 1.

The proposition, in particular, says that the “distances” d1(x) = F (x)−minint G F and d2(x) = 1
2λ

2(F, x)
from a point x ∈ int G to the minimizer of F are equivalent to each other when they are small; e.g.,

d1(x) < 1/3 ⇒ d2(x) ≤ d1(x)

1−1.2
√
d1(x)

,

d2(x) < 1/2 ⇒ d1(x) ≤ d2(x)

1−0.95
√
d2(x)

.

(16.177)

It is time now to look at the behaviour of the Newton minimization method as applied to a self-concordant
function. We shall deal with the following version of the method:

xt+1 = xt −
1

1 + λ(F, xt)
[F ′′(xt)]

−1F ′(xt); (16.178)

this is the usual Newton method with certain specific rule for stepsizes. The main result on this recurrence
is as follows:

Proposition 16.2.4 Let F be a nondegenerate self-concordant function on G ⊂ Rn, and let the recur-
rence (16.178) be started at a point x0 ∈ int G. Then the iterates xt are well-defined, belong to the
interior of G and for all t one has

λ(F, xt+1) ≤ 2λ2(F, xt); F (xt)− F (xt+1) ≥ λ(F, xt)− ln(1 + λ(F, xt)).

Proposition says that if we are minimizing a (nondegenerate) self-concordant function F by the damped
Newton method (16.178), then the method converges, and the “convergence pattern” admits problem-
independent description as follows:
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• I. Generally speaking, there is an initial stage – until the first moment t when it happens that
λ(F, xt) ≤ 1/4. At this stage, each Newton step decreases the function at least by the absolute
constant 1

4 − ln 5
4 = 0.0269....

• II. Starting with the moment when λ(F, xt) ≤ 1/4, we are in the region of quadratic convergence
of the method: each step basically squares the Newton decrement:

λ(F, xt) ≤ 1/4⇒ λ(F, xt+1) ≤ 2λ2(F, xt) [≤ λ(F, xt)/2].

According to (16.177), at this phase also

F (xt+1)− min
int G

F ≤ 8[F (xt)− min
int G

F ]2
[
≤ 0.4[F (xt)− min

int G
F ]
]
.

An immediate corollary of these results is as follows:

Corollary 16.2.1 Let a nondegenerate below bounded self-concordant on G function F be minimized by
the damped Newton method (16.178) started from a point x0 ∈ int G, and let κ ∈ (0, 1

8 ), Then the number
t of steps of the method until we for the first time get the inequality

λ(F, xt) ≤ κ

does not exceed the quantity

40(F (x0)− min
int G

F ) + 2 ln ln
1

κ
.

Indeed, the number of steps at the initial stage, due to I, does not exceed

(F (x0)−minF )/0.0269 ≤ 40(F (x0)−minF ),

and from II it takes no more than 2 ln ln(1/κ) steps of the final stage to reach the target value of the
Newton decrement.

16.2.2.2. Self-concordant barriers

Now let us look at self-concordant barriers. As we know from Section 16.2.1, a self-concordant barrier F
for a closed convex domain G ⊂ Rn is a self-concordant on G function which, in addition, satisfies the
inequality

∀(x ∈ int G, h ∈ Rn) : |DF (x)[h]| ≤ ϑ1/2(F )
(
D2F (x)[h, h]

)1/2
; (16.179)

here ϑ(F ) <∞ is the parameter of the barrier. It can be proved that the only barrier with the parameter
less than 1 is the constant barrier for the entire Rn; this “barrier” will be of no interest for us, so that
from now on we assume that the parameter of any barrier in question is ≥ 1.

Restricting ourselves for the sake of simplicity to nondegenerate self-concordant barriers, we can
rewrite (16.179) equivalently as

(∀x ∈ int G) : λ(F, x) ≤
√
ϑ(F ).

Thus, a self-concordant barrier for G is a self-concordant on G function with bounded Newton decrement.
Combination of self-concordance and inequality (16.179) implies a lot of nontrivial relations which are

satisfied by a self-concordant barrier. Among these relations let us stress the following two:

Proposition 16.2.5 Let F be a nondegenerate self-concordant barrier for a closed convex domain G ⊂
Rn. Then

• (i) [semiboundedness] One has

∀(y ∈ G, x ∈ int G) : (y − x)TF ′(x) ≤ ϑ(F );
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• (ii) [centering property] F is below bounded on G if and only if G is bounded; this is the case if and
only if λ(F, x) < 1 for certain x ∈ int G. If G is bounded, then the Dikin ellipsoid of F with center
at the minimizer x(F ) of F approximates G within factor ϑ(F ):

{y | ‖ y − x(F ) ‖F ′′(x(F ))≤ 1} ⊂ G ⊂ {y | ‖ y − x(F ) ‖F ′′(x(F ))≤ 3ϑ(F ) + 1}

(it was shown by F. Jarre that 3ϑ(F ) + 1 in (ii) can be replaced with ϑ(F ) + 2
√
ϑ(F )).

It is time now to present several basic examples of self-concordant barriers:

Example 16.2.1 The function − ln t is 1-self-concordant barrier for the nonnegative axis.

This is a particular case of the following

Example 16.2.2 The function

F (x) = − ln Det x

is m-self-concordant barrier for the cone Sm+ of positive definite symmetric m×m matrices.

Example 16.2.3 Let f be a convex quadratic form on Rn. Then the function

F (t, x) = − ln(t− f(x))

is 1-self-concordant barrier for the epigraph {(t, x) | t ≥ f(x)} of the form.
The function

F (t, x) = − ln(t− xTx

t
)− ln t = − ln(t2 − xTx) [x ∈ Rn]

is 2-self-concordant barrier for the epigraph of the Euclidean norm – for the second order cone

Kn = {(t, x) ∈ R×Rn | t ≥‖ x ‖2}.

The second part of the latter example is a particular case of the following

Example 16.2.4 The function

F (x) = − ln Det (tIm −
xTx

t
)− ln t [x is n×m matrix, Im is the unit m×m matrix]

is (m+ 1)-self-concordant barrier for the epigraph of the spectral norm of an n×m matrix – for the cone

{(t, x) ∈ R×Rn×m | ‖ xs ‖2≤ t ‖ s ‖2 ∀s ∈ Rm}.

In the mean time we shall extend the list of basic examples of self-concordant barriers. What should
be stressed is that the “barrier calculus” we possess now allows to justify self-concordance of these and
forthcoming barriers without any computations (in fact allows even to derive them rather than to guess)
on the basis of the only evident fact – that the function − ln t indeed is a 1-self-concordant barrier for
the nonnegative axis.

Given a set of basic examples of self-concordant barriers, we can construct more examples applying
the following combination rules

Proposition 16.2.6 [Elementary Barrier Calculus]
(i) [summation] Let Fi be self-concordant on Gi ⊂ Rn, i = 1, ...,m, and let G = ∩mi=1Gi be a set with

a nonempty interior. Then, for all αi ≥ 1, the function

F (x) =

m∑
i=1

αiFi(x)

is self-concordant on G; if all Fi are ϑi-self-concordant barriers for Gi, then F is (
∑m
i=1 αiϑi)-self-

concordant barrier for G.
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(ii) [direct summation] Let Fi be self-concordant on Gi ⊂ Rni , i = 1, ...,m, and let αi ≥ 1. Then the
function

F (x1, ..., xm) =

m∑
i=1

αiFi(xi)

is self-concordant on G = G1 × ... × Gm ⊂ Rn1+...+nm . If all Fi are ϑi-self-concordant barriers for Gi,
then F is (

∑m
i=1 αiϑi)-self-concordant barrier for G.

(iii) [superposition with affine mappings] Let F+ be self-concordant on G+ ⊂ Rn, and let x 7→ A(x) be
an affine mapping from Rk to Rn with the image intersecting int G+. Then the function F (·) = F+(A(·))
is self-concordant on the inverse image G = A−1(G+) of G+. If F+ is ϑ-self-concordant barrier for G+,
then so is F for G.

As an immediate application example of these combination rules (which are evident consequences of the
definitions of a self-concordant function/barrier), let us prove that the standard logarithmic barrier

F (x) = −
m∑
i=1

ln(bi − aTi x)

for polytope G = {x ∈ Rn | aTi x ≤ bi, i = 1, ...,m} (the system of linear equalities defining G satisfies
the Slater condition) is an m-self-concordant barrier for the polytope. Indeed,

− ln t is 1-s.-c.b. for R+ ⇒ [Prop. 16.2.6.(iii)]
− ln(bi − aTi x) is 1-s.c.b. for Gi = {x | aTi x ≤ bi} ⇒ [Prop. 16.2.6.(i)]
F (x) = −

∑m
i=1 ln(bi − aTi x) is m-s.-c.b. for G = ∩mi=1Gi.

16.2.3 First fruits: the method of Karmarkar

Now we have developed enough machinery to present interior point methods. We start with nonpolyhedral
extension of the very first LP interior point method – the method of Karmarkar [7].

Consider the problem

cTx→ min | x ∈ G ⊂ Rn,

where G is a solid (closed and bounded convex set with a nonempty interior). Same as in the original
method of Karmarkar, let us make the following assumptions:

K.1. We know in advance an interior point x̂ of G
[without loss of generality, we may assume that x̂ = 0];

K.2. We know in advance the optimal value c∗ of the problem
[note that c∗ ≤ cT x̂ = 0, the case of equality here being of no interest, so that we always can assume that
c∗ < 0; by further normalization, we can assume that c∗ = −1].

The geometry of the method is fairly simple. We should approximate from inside G the set where G
touches the hyperplane Π = {x | cTx+ 1 = 0}. Let us perform the projective transformation

x 7→ x

cTx+ 1
;

this transformation pushes Π to infinity and makes G an unbounded closed convex domain G+. To
approach Π from inside G is the same as to approach infinity from inside G+; thus, all we need is to point
out a procedure which allows to move quickly towards ∞, staying inside G+. To this end let us equip
G+ with a ϑ-self-concordant barrier F , and let us apply to this barrier the damped Newton minimization
(16.178), starting it at the point y0 = 0. It is immediately seen that G+ does not contain lines (since G
is bounded), and therefore F is nondegenerate (Proposition 16.2.1). Since G+ is unbounded, Proposition
16.2.5.(ii) says that λ(F, y) ≥ 1 for all y ∈ int G, so that by Proposition 16.2.4 each step of the method
decreases F at least by κ = 1 − ln 2. It follows that F diverges to −∞ along the trajectory {yt} of the
method. But F is convex and therefore below bounded on every bounded subset of G+, so that F (yt) can
diverge to −∞ only when yt ∈ G+ diverge to infinity, and this is exactly what we need. This qualitative
reasoning can easily be quantified to get the rate of convergence.
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Indeed, consider the ray Rt = [yt, 0). We claim that this ray intersects the boundary of G+ at certain
point zt. Indeed, from Proposition 16.2.5.(i) it follows that a self-concordant barrier never increases along
any ray contained in the domain of the barrier, so that assumption Rt ⊂ G would imply F (yt) ≥ F (0);
this is not the case, since, as it was already explained,

F (yt) ≤ F (0)− tκ [κ = 1− ln 2]. (16.180)

Introducing coordinate r along the ray Rt in such a way that r = 0 corresponds to the point 0 of the ray,
and r = 1 corresponds to the point zt, denoting by −T the coordinate of yt (clearly T > 0) and setting
f(r) = F (rzt), we get

−T ≤ r ≤ 0⇒ f ′(r) = zTt F
′(rzt) =

1

1− r
(zt − rzt)TF ′(rzt) ≤

1

1− r
ϑ,

the concluding inequality being given by Proposition 16.2.5.(i). Integrating the resulting inequality, we
get

F (0)− F (yt) = f(0)− f(−T ) =

∫ 0

−T
f ′(r)dr ≤ ϑ

∫ 0

−T

1

1− r
dr = ϑ ln(1 + T ),

which combined with (16.180) implies the lower bound

T + 1 ≥
(e

2

)t/ϑ
. (16.181)

Now let
xt =

yt
1− cT yt

; wt =
zt

1− cT zt
be the inverse images of yt and zt in G. Since 0 is an interior point of the segment [yt, zt], it is also an
interior point of the segment [xt, wt], and since zt is a boundary point of G+, wt is a boundary point of
G. Consequently,

‖ xt ‖2:‖ wt ‖2≤ [G :0]

(the right hand side is the asymmetry coefficient of G with respect to x̂ = 0, see Theorem 16.2.1), whence,
since xt and wt are collinear,

|cTxt| ≤ [G :0]|cTwt|. (16.182)

We have cT yt = −TcT zt, or, substituting yt =
xt

1 + cTxt
, zt =

wt
1 + cTwt

,

cTwt = − cTxt
T + (T + 1)cTxt

;

substituting this relation into (16.182), we come to

|cTxt| ≤ [G :0]
|cTxt|

|T + (T + 1)cTxt|
;

assuming for the time being that cTxt 6= 0, we conclude from the resulting inequality that T + (T +
1)cTxt ≤ [G :0], whence

cTxt + 1 ≤ 1 + [G :0]

T + 1
;

the same inequality in fact is valid also under the assumption that cTxt = 0 (to see it, it suffices to replace
in the above reasoning yt by a close to yt point y′t with cT y′t 6= 0 and then to pass to limit as y′t → yt).
The left hand side in the resulting inequality is nothing but the residual in terms of the objective at xt;
taking into account (16.181), we finally come to the following polynomial time convergence estimate:

cTxt −minx∈G c
Tx

cT x̂−minx∈G cTx
≤ (1 + [G : x̂])

(e
2

)−t/ϑ
, t = 1, 2, ...

(the estimate in this form is valid independently of our normalization assumptions x̂ = 0, c∗ = −1).
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In the Linear Programming case, when G is a polytope

G = {x ∈ Rn | aTi x ≤ bi, i = 1, ...,m}

and the situation is normalized by the relation x̂ = 0, we have

G+ = {y ∈ Rn | aTi y ≤ bi(1 + (c∗)−1cT y), i = 1, ...,m; 1 + (c∗)−1cT y ≥ 0},

and we can take, as F , the (m+ 1)-self-concordant barrier

F (y) = −
m∑
i=1

ln
(
(bi(1 + (c∗)−1cT y)− aTi y

)
− ln

(
1 + (c∗)−1cT y

)
;

this is, essentially, the potential function of the original algorithm of Karmarkar, and with this choice of
F the outlined method becomes this very algorithm (in its equivalent form found by Bayer and Lagarias).

Now we understand that the only “problem-dependent” element of the construction is the choice
of barrier F for the transformed domain G+. It can be shown that such a barrier can be obtained
straightforwardly from a self-concordant barrier for the original domain G, so that already known to us
self-concordant barriers allow to build the method of Karmarkar for quadratically constrained programs,
semidefinite programs, etc.
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16.3 Path-following interior point methods

The method of Karmarkar is of the potential reduction nature: as we remember from the analysis of the
method, the only thing we are interested in is to decrease the barrier F for the (transformed) domain of
the problem as fast as possible; the damped Newton method provides us with certain basic policy of this
type, but we are welcome to use all kinds of tricks to get better progress in the barrier, say, to minimize
the barrier along the Newton direction instead of performing a step of certain prescribed size. From the
computational viewpoint, this is an important advantage of the method – due to linesearch, the practical
behaviour of the algorithm is, typically, much better than the worst-case behaviour predicted by the
theory. At the same time, from theoretical viewpoint, the method of Karmarkar is not the most efficient
one; since the seminal papers of Renegar [9] and Gonzaga [1] we know that there are theoretically more
powerful path-following interior point schemes in Linear Programming. In early times of the interior
point science, the path-following methods, in spite of their nice theoretical properties, were thought to
be impractical as compared to the method of Karmarkar or to the more advanced potential reduction
methods. The reason was that the early theory of the path-following methods enforced them to work
exactly as the (typically very conservative) worst-case efficiency estimate says, not allowing the methods
to utilize favourable circumstances they can met. Now the situation is being changed: there are not only
extremely efficient practical implementations of the path-following scheme, but also theoretically valid
ways for on-line adjustment of the methods to the local geometry of the problem. What we are about to
do is to explain briefly the essence of the path-following scheme and to present in more details one of the
methods from this family; the choice of the method is mainly determined by the personal preferences of
the author.

16.3.1 The standard path-following scheme

The essence of the path-following approach is clearly seen from the following basic description.
In order to solve convex program in the standard form

cTx→ min | x ∈ G ⊂ Rn, [c 6= 0] (16.183)

G being a solid, we equip the feasible domain of the problem with a ϑ-self-concordant barrier F and
introduce the following single-parameter family of barriers:

Ft(x) = −ϑ ln(t− cTx) + F (x);

here the parameter t should be greater than the optimal value c∗ of the problem.
Since − ln(t − cTx) is 1-self-concordant barrier for the half-space {x | cTx ≤ t} (Example 16.2.1 +

Proposition 16.2.6.(iii)), the function Ft is (2ϑ)-self-concordant barrier for the domain

Gt = {x ∈ G | cTx ≤ t}

(Proposition 16.2.6.(i)). Since the domain is bounded along with G, the barrier Ft possesses a unique
minimizer x∗(t) on int Gt (Proposition 16.2.3). Thus, we come to the path of analytic centers

x∗(t) = argmin
int Gt

Ft(·) : (c∗,+∞)→ int G.

As t approaches from above the optimal value of the problem, the path of analytic centers clearly converges
to the optimal set. And in the method of analytic centers we trace the path – given an iterate (ti, xi)
with ti > c∗ and xi ∈ int Gti being “close enough” to x∗(ti), we set the parameter to a smaller value ti+1

and then update xi into a tight enough approximation xi+1 to x∗(ti+1).

More exactly, let us fix a tolerance κ ∈ (0, 0.125], and let us say that a pair (t, x) is close
to the path of analytic centers, if

(t > c∗)&(x ∈ int Gt) & (λ(Ft, x) ≤ κ).

At i-th step of the method we update pair (ti−1, xi−1) close to the path into a new pair (ti, xi)
with the same property; namely, we set

ti = ti−1 − dti, dti =
1

2

(
∂2

∂t2
Ft(x)

)−1/2
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and then apply to Fti(·) the damped Newton method (16.178), the method being started at
xi−1. The method is terminated when the current iterate, let it be called y, turns out to
satisfy the “closeness relation” λ(Fti , y) ≤ κ. When it happens, we choose y as xi and loop.

It can be proved that if we initialize the outlined procedure at (any) close to the path of analytic centers
pair (t0, x0), then

• the number of Newton steps (16.178) at any iteration of the method is bounded from above by
certain quantity depending on κ only; setting κ to a once for ever fixed value, say, 0.125, we enforce
the Newton complexity of an iteration – the number of Newton steps in updating xi−1 7→ xi – to
be above bounded by an absolute constant;

• the residual ti− c∗ – the upper bound for inaccuracy of xi in terms of the objective value – goes to
0 linearly with the rate depending on the parameter of the barrier only:

(ti − c∗) ≤
(

1− O(1)√
ϑ

)i
(t0 − c∗), i = 1, 2, ...

where, as always, O(1) is a positive absolute constant.

As a result, the Newton complexity of ε-solution to (16.183) (total # of Newton steps in course of forming
the solution) can be bounded from above as

N (ε) ≤ O(1)
√
ϑ ln

(
2 +

t0 − c∗

ε

)
,

basically as it is announced in Theorem 16.2.1.
The outlined constructions and results extend onto the nonpolyhedral case the results of the seminal

paper of J. Renegar [9] where the first path-following polynomial time method for LP was developed.

16.3.1.1. Difficulties and extensions

The standard path-following scheme as presented now possesses several drawbacks, same as asks for
several immediate improvements. As about improvements, the most obvious one is as follows: it is
clearly seen that the path of analytic centers is smooth. Why should we start approaching the new
“target point” x∗(ti) from the approximation xi−1 to the previous target x∗(ti−1) rather than to use a
natural forecast of x∗(ti)? Implementing this forecast, we come to what is called the predictor-corrector
scheme; we present a detailed description of the scheme a little bit later.

Now, the most severe drawbacks of the initial path-following scheme are as follows:

• The scheme is a short step one: the rate of updating the parameter t comes from the worst-case
analysis aimed to ensure fixed Newton complexity of an iteration. Since we hardly could meet with
“the worst case” at every iteration, our policy seems to be too conservative. We may hope that
typically a significantly larger step in the parameter also will not elaborate the iteration too much;
and what we need is a long-step tactics of tracing the path – one which gives us certain on-line
computationally cheap tools for approximating “the largest possible” stepsize in the parameter still
compatible with the desired Newton complexity of iteration.

• In order to start tracing the path of analytic centers, we should once come close to it, and in the
aforementioned description there was not a single word on how to start our process.

In fact there is a very simple way to get close to the path. Namely, it is immediately seen that the path
converges, as t → ∞, to the analytic center of the domain – to the (unique) minimizer x(F ) of F over
int G. This behaviour is shared by the paths of analytic centers associated with all possible objectives;
and it is clearly seen that the paths associated with these objectives cover the entire int G. Indeed, if
x̂ ∈ int G and

d = −ϑ−1F ′(x̂),

then the path
x∗d(t) = argmin

x∈int G
[−ϑ ln(t− dTx) + F (x)]
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passes through x̂ as the parameter is t̂ = 1 + dT x̂. Now assume that we know in advance a starting point
x̂ ∈ int G. Then we can form the corresponding auxiliary path x∗d(t) and trace it in the aforementioned
manner, but now pushing the parameter to +∞ rather than decreasing it. With this policy, we shall
eventually come close to x∗(F ) and thus – to the “path of interest”, which in our now notation is x∗c(t);
coming close to x∗c(·), we can switch to tracing this latter path.

The presented “two-phase path-following scheme” is fine but, in turn, possesses unpleasant drawbacks.
First of all, it requires a priori knowledge an interior point of int G. How to find such a point? This
new difficulty can be overcome with the same path-following technique, now applied to certain auxiliary
problem of the same structure as (16.183), but with known in advance interior initial solution. The overall
process, however, becomes not that attractive from the practical viewpoint: we end up with something
like four-phase method, with its own path to be traced at each of the phases. There were several proposals
to combine all these numerous phases. What we are about to do is to present certain unified framework
for these combined strategies – a long-step surface-following scheme capable to meet all our needs. The
below constructions and results originate from [8].

16.3.2 Surface-following scheme

We start with introducing our main subject – the one of the surface of analytic centers.

16.3.2.1. Surface of analytic centers

The path of analytic centers

x∗c(t) = argmin
int Gt

Ft(x) [Ft(x) = −ϑ ln(t− cTx) + F (x), Gt = {x ∈ G | cTx ≤ t}]

associated with a ϑ-self-concordant barrier for a convex solid G geometrically can be defined as a set of
points x ∈ int G where −F ′(x) is proportional, with positive coefficient, to the objective c. A natural
“multi-parameter” extension of this definition is as follows: let us fix k vectors c1, ..., ck and consider the
set of all points x ∈ int G where −F ′(x) can be represented as a combination of the vectors ci with positive
coefficients. We can easily parameterize this set in the same way as the path x∗c(t) is parameterized by
t. Namely, let us introduce k-dimensional parameter vector t, let

T = {t | ∃x ∈ G : cTi x < ti, i = 1, ..., k}, Gt = {x ∈ G | cTi x ≤ ti, i = 1, ..., k},

and let, finally,

Ft(x) = −ϑ
k∑
i=1

ln(ti − cTi x) + F (x) : int Gt → R [t ∈ T ].

For every t ∈ T the function F (t, ·) is ϑ∗-self-concordant barrier,

ϑ∗ = (k + 1)ϑ,

for the convex solid Gt (Proposition 16.2.6 (i) and (iii) + Example 16.2.1); consequently, F (t, x) possesses
a unique minimizer x∗(t) in int Gt (Proposition 16.2.3). At this minimizer, of course, −F ′ is a combination
of ci with positive coefficients. It is easily seen that the inverse also is true: each point x ∈ int G where
−F ′(x) is a combination of ci with positive coefficients is x∗(t) for some t ∈ T . Thus, we have defined
parameterization of the set in question and may speak about the k-parameter surface of analytic centers

§(c1, ..., ck) = {(t, x∗(t)) ∈ Rk ×Rn | t ∈ T, x∗(t) = argminx∈int Gt Ft(x)},
where

T = {t ∈ Rk | ∃x ∈ G : cTi x < ti, i = 1, ..., k},
Gt = {x ∈ G | cTi x ≤ ti, i = 1, ..., k},

Ft(x) = −ϑ
∑k
i=1 ln(ti − cTi x) + F (x).

Surface of analytic centers associated with convex problem. Consider a solvable convex optimization
program in the the same canonical form as in Section 1:

P : f0(u)→ min | fi(u) ≤ 0, i = 1, ...,m; ‖ u ‖2≤ 1 [u ∈ Rp],
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fi, i = 0, ...,m, being continuous convex functions on the Euclidean ball B = {u ∈ Rp | ‖ u ‖2≤ 1}.
Assume that we know in advance an upper bound W (P ) ∈ (0,∞) on the absolute values of all fi,
i = 0, ...,m, in B. Then we can rewrite P equivalently in the following form:

P̂ : cTx→ min | fTx ≤ 0, x ∈ G ⊂ Rn,

where

• n = p+ 2 and x = (u, v, w) is obtained form the design vector u of P by adding two scalar variables
v and w;

• G is defined as

G = {x = (u, v, w) ∈ Rn | f0(u) ≤ v ≤ 5W (P ); fi(x) ≤ w, i = 1, ...,m;
0 ≤ w ≤ 3W (P ); ‖ u ‖2≤ 1};

• c and f are given by
cTx = v; fTx = w [x = (u, v, w)].

Note that G clearly is a solid contained in the “cylinder”

Q+ = {(u, v, w) | ‖ u ‖2≤ 1; −W (P ) ≤ w ≤ 5W (P ); 0 ≤ w ≤ 3W (P )}

centrally symmetric with respect to the point

x̂ = (u = 0; v = 2W (P );w =
3

2
W (P ))

and containing three times smaller concentric cylinder

Q− = {(u, v, w) | ‖ u ‖2≤
1

3
; W (P ) ≤ v ≤ 3W (P ); W (P ) ≤ w ≤ 3

2
W (P )}.

In particular, G is “almost symmetric” with respect to x̂:

[G : x̂] ≤ 3.

Assumptions. In what follows we treat P̂ as our original problem, not necessarily coming from certain
P ; we assume only that

• The domain G of the problem is a solid with known in advance interior point x̂;

• minx∈G f
Tx = 0

(these assumptions are automatically satisfied when P̂ is obtained in the aforementioned manner from a
canonical convex program P ).

From now on we also assume – and this assumption is crucial – that

(A) we know a ϑ-self-concordant barrier for the domain G.

Under this assumption we can explicitly point out a 3-parameter surface of analytic centers

§(c1, c2, c3) = {(t, x∗(t))}

associated with the barrier F in such a way that

• I. The surface passes through x̂: x̂ = x∗(t̂) for some known in advance t̂;

• II. The surface “links” the starting point x̂ with the optimal set of problem P̂ : x∗(t) converges to

the optimal set of P̂ along a properly chosen sequence of values of t.



280 APPENDIX III: MINICOURSE ON POLYNOMIAL METHODS

Indeed, it suffices to specify the surface and t̂ as follows:

t̂1 = cT x̂+
√
cT [F ′′(x̂)]−1c;

t̂2 = fT x̂+
√
fT [F ′′(x̂)]−1f ;

c1 = c;
c2 = f ;

c3 = −ϑ−1F ′(x̂)− (t̂1 − cT x̂)−1c− (t̂2 − fTx)−1f ;

t̂3 = cT3 x̂+ 1.

It is immediately seen that if the parameter t ∈ T varies in such a way that t3 → ∞, t2 → 0 and
t1 → c∗, c∗ being the optimal value in P̂ , then x∗(t) converges to the optimal set of P̂ . Thus, we can
approximate the optimal set in question by tracing the surface (cf. the path-following scheme), enforcing
the parameters to vary in the just indicated way. The advantage of this surface-following approach is
that we have no problems with the starting point – the process is started at a “nearly central” explicitly
given interior point of G, and this point belongs to the surface we should trace.

In order to implement the presented idea of tracing multi-parameter surface, thus avoiding all diffi-
culties with initialization, we should develop

• tactics: rules for updating current “close to the surface” pair (ti−1, xi−1) into a new pair (ti, xi)
with the same property, provided that we already know where to move – what is the direction of
the vector ti − ti−1;

• strategy: rules governing the choice of sequential directions of movement in the 3D-space of param-
eters.

16.3.2.2. Tactics of tracing surface: the predictor-corrector scheme

Same as in the path-following situation, we are going to travel along the surface of analytic centers staying
close to it. Let us fix one for ever a tolerance κ ∈ (0, 0.125], and let us say that a pair (t, x) is close to
the surface S, if the following predicate is true:

Uκ : (t ∈ T ) & (x ∈ int Gt) & (λ(Ft, x) ≤ κ).

At a step i of our method we are given

• a close to the surface current iterate (t, x) ≡ (ti−1, xi−1);

[(t0, x0) = (t̂, x̂); this pair for sure is close to the surface]

• a direction dt = dti in the parameter space R3,

and our goal is to update this pair into a new, also close to the surface, pair (t+, x+) ≡ (ti, xi) with
ti − ti−1 being proportional, with positive coefficient ri, to dti. The generic scheme of the updating

(t, x, dt) 7→ (t+, x+)

is as follows:

Predictor-corrector scheme:

Predictor step:
1. “Lift” the direction dt in the space of parameters to a direction (dx, dt) in the (t, x)-

space by setting

dx = −
[
∂2

∂x2
Ft(x)

]−1 [
∂2

∂t∂x
Ft(x)

]
dt

and define the primal search line

R = {(t(r), x(r)) = (t+ rdt, x− dx(t, x) + rdx) | r ∈ R},

dx(t, x) =
[
∂2

∂x2Ft(x)
]−1

∂
∂xFt(x).
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Comment: R is comprised of “forecasts” of the points (t′, x∗(t′)) of the surface with t′−t = rdt.
Indeed, the surface is defined by the equation

∂

∂y
Fτ (y) = 0.

Linearizing this equation at (τ, y) = (t, x), we get equation in variations

∂

∂x
Ft(x) +

[
∂2

∂x2
Ft(x)

]
∆x+

[
∂2

∂t∂x
Ft(x)

]
∆t = 0;

solving the equation with respect to ∆x, ∆t being set to rdt, we get exactly x(r)− x.

2. Choose a stepsize r > 0 ensuring the predicate

R :
(
x(r) ∈ int Gt(r)

)
&
(
Ft(r)(x(r))−minFt(r) ≤ 2

)
and set

t+ = t(r) [= t+ rdt]; x̃ = x(r).

Corrector step:

3. Starting with y0 = x̃, minimize Ft+(·) with the damped Newton method

yl+1 = yl +
1

1 + λ(Ft+ , yl)

[
∂2

∂x2
Ft+(yl)

]−1
∂

∂x
Ft+(yl); (16.184)

terminate the recurrence when it for the first time happens that λ(Ft+ , y
l) ≤ κ and set

x+ = yl, thus ensuring that (t+, x+) satisfies Uκ. Updating (t, x, dt) 7→ (t+, x+) is complete.

Since the stepsize r in 2. is subject to the restrictionR which states that the residual Ft+(y0)−minFt+
of the starting point for (16.184) is ≤ 2 and Ft+ is self-concordant, we obtain from Corollary 16.2.1 the
following important fact:

Proposition 16.3.1 The Newton complexity (# of Newton steps (16.184)) of the Predictor-Corrector
Scheme is bounded from above by O(1) ln ln(1/κ).

The just indicated statement explains the origin of the restriction on the stepsize expressed by the
predicate R: this restriction is certain indirect way to control the Newton complexity of the corrector
step (and thus the overall complexity of the method). The point, of course, is how to ensure R with
“large enough” stepsizes. This is the issue we are coming to.

Acceptability test. First of all, it turns out that R can be satisfied by “short steps” similar to those
used in the worst-case oriented path-following methods:

Proposition 16.3.2 Let (t, x) be close to the surface. Then R for sure is satisfied by the stepsize

r = r∗(t, x) = 0.89

(
(dt)T

[
∂2

∂t2
Ft(x)

]
dt

)−1/2

. (16.185)

Already short steps are sufficient to get the standard overall complexity bound for the method; but of
course we would prefer to have tools for “long steps” – computationally cheap on-line routines for choosing
larger stepsizes still compatible with R. To this end we intend to use certain duality-based upper bounds
for the residual

V (τ, y) = Fτ (y)−minFτ (·).
To use these bounds, we need the following structural assumption on the self-concordant barrier F in
question:

(B) F is represented as
F (x) = Φ(πx+ p),

where
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• x 7→ Π(x) = πx+ p is a given affine mapping from Rn into certain RN ;

• Φ is a nondegenerate ϑ-self-concordant barrier for a closed convex domain H ⊂ Rn such
that the image of Π intersects int H and G = Π−1(H);

• we know the Legendre transformation

Φ∗(η) = sup
y

[
ηT y − Φ(y)

]
of the barrier Φ.

“We know” Φ∗ means that, given η ∈ RN , we are able to detect whether η ∈ Dom Φ∗ and if
it is the case are able to compute Φ∗(η).

In the mean time we shall see that (B) is satisfied in many important applications.
Note that under assumption (B) our aggregate Ft(x) can be represented as

Ft(x) = Ψ(σt+ πx+ p),

where

• Ψ(z) = Φ(y) − ϑ
∑k
i=1 ln(wi), z = (y, w1, ..., wk) ∈ RN+k is nondegenerate self-concordant barrier

for the domain
Q = H ×Rk

+,

the parameter of the barrier being ϑ∗ = (k + 1)ϑ;

• (t, x) 7→ Z(t, x) = σt+ πx+ p ≡


y = πx+ p

w1 = t1 − cT1 x
. . .

wk = tk − cTk x

 is affine mapping.

Note that we know the Legendre transformation Ψ∗ of Ψ:

Ψ∗(ζ) = Φ∗(η)− ϑ
k∑
i=1

ln(−ωi) + kϑ(lnϑ− 1) [ζ = (η, ω1, ..., ωk)].

Under assumption (B) we can equip our Predictor-corrector scheme with the following

Acceptability test:

Given a pair (t, x) close to the surface and a direction dt in the parameter space along
with the associated primal search line

R = {(t(r), x(r)) = (t+ rdt, x− dx(t, x) + rdx) | r ∈ R},

lift R to RN+k with the help of the affine mapping Z, thus getting the line

L = {z(r) ≡ z + rdz − dz | r ∈ R},
where

z = Z(t, x) = σt+ πx+ p,
dz = σdt+ πdx,
dz = πdx(t, x),

and form the dual search line

L∗ = {ζ(r) ≡ ζ + rdζ − dζ | r ∈ R}, ζ = Ψ′(z), dζ = Ψ′′(z)dz, dζ = Ψ′′(z)dz.

In order to check whether a candidate stepsize r fits R, verify the inequality

Φ(z(r)) + Ψ∗(ζ(r))− [σ(t+ rdt) + p]
T
ζ(r) ≤ 2 (16.186)

(the right hand side is +∞ if z(r) 6∈ Dom Ψ or if ζ(r) 6∈ Dom Ψ∗). If this inequality is satisfied,
accept the stepsize, otherwise reject it.
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Explanation. Basic facts underlying the Acceptability test are as follows:

10. The Legendre transformation of a nondegenerate self-concordant function also is nondegenerate
and self-concordant; twice taken Legendre transformation results in the original function

20. Let ξ ∈ Dom Ψ∗ satisfy the linear equation

π∗ξ = 0.

Then for all (τ, y) the quantity

Ψ(στ + πy + p) + Ψ∗(ξ)− [στ + p]T s (16.187)

is an upper bound for the residual V (τ, y) = Fτ (y)−minFτ (·) (all functions are extended outside their
domains by the value +∞).

[20 is given by the following computation:

minFτ (·) = minu Ψ(στ + πu+ p)
[since, by 10, Ψ is the Legendre transform of Ψ∗]

≥ minu
[
[στ + πu+ p]T ξ −Ψ∗(ξ)

]
[since πT ξ = 0]

= [στ + p]T ξ −Ψ∗(ξ),

and (16.187) follows.]

30. Let us fix a candidate stepsize r, and let

∆z = −dz + r[σdt+ πdx]; ∆ζ = Ψ′′∆z

(here and below derivatives of Ψ, Ψ∗ are taken at z, ζ, respectively), so that z(r) = z + ∆z and
ζ(r) = ζ + ∆ζ. Direct computation taking into account the origin of the involved quantities implies
that

a) π∗ζ(r) = 0, so that the left hand side of (16.186), by 20, is an upper bound for the
residual V (t+rdt, x(r)). It follows that the Acceptability test is valid: if it accepts a candidate
stepsize, the stepsize for sure satisfies R;

b) ζ ∈ Dom Ψ∗ and

‖ ∆z ‖2Ψ′′(z)=‖ ∆ζ ‖2Ψ′′∗ (ζ)= (∆ζ)T∆z;

the common value of all these quantities is

ρ2(r) ≡ λ2(Ft, x) + r2 min
h
‖ σdt+ πh ‖2Ψ′′(z);

in particular, we have

ρ2(r) ≤ κ2 + r2 ‖ σdt ‖2Ψ′′(z)≡ κ
2 + r2(dt)T

[
∂2

∂t2
Ft(x)

]
dt.

c) The left hand side v(r) of (16.186) is the remainder in the second-order Taylor expansion
of the function Ξ(w, ξ) = Ψ(w) + Ψ∗(ξ), the expansion being taken at the point (z, ζ) along
the displacement (∆z,∆ζ); according to (16.176) and b), we have

v(r) ≤ 2Ω(ρ(r)) ≤ 2Ω

(√
κ2 + r2(dt)T

[
∂2

∂t2
Ft(x)

]
dt

)
. (16.188)

Moreover, the third order derivative of Ξ taken at the point (z, ζ) along the direction (∆z,∆ζ)
is zero, so that v(r) is in fact the remainder in the third order Taylor expansion of Ξ.
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We see that a candidate stepsize r which passes the Acceptability test indeed implies R, and that r for
sure passes the test (and therefore satisfies R) if the right hand side in (16.188) is ≤ 2. By the way, this
conclusion justifies acceptability of “short steps” given by Proposition 16.3.2

The Acceptability test, when available (i.e. when (B) is satisfied), allows to equip the Predictor-
corrector scheme with on-line tools for choosing “large” stepsizes; to this end we can use line search to
identify the largest stepsize still accepted by the test.

How long are “long steps”. A natural question is: whether the outlined “long step” tactics indeed
results in something “significantly better” than the default short steps (16.185). For the sake of simplicity,
let us answer this question for the ideal case when the pair (t, x) under consideration belongs to the surface
of analytic centers (λ(Ft, x) = 0) rather than is close to it. In this situation the question we are interested
in can be reformulated as follows.

Let L = L× L∗ be the “primal-dual search line” in the primal-dual space E ≡ RN+k
z ×RN+k

ζ , let G
be the domain of the “primal-dual potential”

Ξ(X ) = Ψ(u) + Ψ∗(ξ) [X = (u, ξ)]

and let X̂ = (z, ζ) (we use the notation from the description of the Acceptability test). The point X̂
belongs to G (see b)), and since (t, x) is on the surface, the line L passes through X̂ :

L = {X = X̂ + rdX | r ∈ R}.

It is convenient to equip the primal-dual space E with the Euclidean norm

‖ X ‖≡‖ X ‖Ξ′′(X̂ )
.

Let T be the distance from X̂ to the boundary of G along the line L, so that the line interval
{X ∈ L | ‖ X − X̂ ‖< T} is contained in G and at least one of its endpoints is outside G. Note that Ξ is
self-concordant, so that the open unit Dikin ellipsoid of the function centered at X̂ – i.e., the centered at

X̂ open unit ‖ · ‖-ball – is contained in G (Proposition 16.2.2), whence T ≥ 1 (in fact T ≥
√

2 due to the
“direct sum” nature of Ξ and the special orientation of L).

Now, when using our Predictor-corrector scheme equipped with the Acceptability test, we in fact
perform a step along the primal-dual search line L staying within G (this gives us the forecast along with
justification that it fits R); and what we are interested in is the size of the step. It follows that T is a
“natural upper bound” for the step we can take – if the direction of movement is badly oriented, larger
step simply would push us out of G. With these preliminaries, the question “how long are long steps”
can be posed as follows:

Which fraction of the distance T to the boundary of the primal-dual feasible domain G
can we cover in one step?

E.g., it can be easily seen from b) and c) that we for sure can perform the “short step” |r| ‖ dX ‖=
0.89
√

2 = 1.285...; however, when T is large, this default step covers only a small fraction of T . Can we
do something better? The answer depends on the “degree of regularity” of the barrier Φ underlying the
entire construction and is as follows.

Regular self-concordant functions. Let Q be a closed convex domain in Rn, let x ∈ int Q, and let

Qx = (Q− x) ∩ (x−Q)

be the symmeterization of Q with respect to x (translated further to make x the origin). Qx is a convex
symmetric neighbourhood of the origin, and therefore it defines a seminorm:

|h|Q,x = [max{r : x± rh ∈ Q}]−1
.

Now let F be a self-concordant function on Q, and let α ≥ 1. We say that F is α-regular, if it is four
times continuously differentiable on int Q and satisfies the differential inequality

∀(x ∈ int Q, h ∈ Rn) : |D4F (x)[h, h, h, h]| ≤ α(α+ 1)D2F (x)[h, h]|h|2Q,x.
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Example 16.3.1 The standard self-concordant barrier (cf. Example 16.2.2)

F (x) = − ln Det x (16.189)

for the cone Sm+ of m×m positive semidefinite symmetric matrices is 2-regular.

In the situation of Example 16.3.1 |h|Sm
+
,x is just the spectral norm | · | of the symmetric

matrix x−1/2hx−1/2, and the statement of the Example is equivalent to the standard inequality

Tr(x4) ≤ |x|2 Tr(x2),

x being a symmetric matrix.

The property of α-regularity with reasonable value of α is shared by many standard self-concordant
functions; e.g., all self-concordant barriers indicated in Section 2, same as their Legendre transformations
are (at most) 6-regular. Note also that α-regularity is stable with respect to the elementary composition
rules mentioned in Proposition 16.2.6.

The role of regularity in our current considerations is seen from the following

Proposition 16.3.3 Let both ϑ-self-concordant barrier Φ involved into (B) and its Legendre transfor-
mation Φ∗ be α-regular. Then all stepsizes r satisfying the inequality

|r| ‖ dX ‖≤ γα
√
T ,

same as all stepsizes r satisfying the inequality

|r| ‖ dX ‖≤ γαTϑ−1/4

for sure pass the Acceptability test; here γα > 0 depends on α only.

In many important “regular” cases (e.g., in Linear and Semidefinite Programming; both these examples
belong to the situation when Φ is given by (16.189)), the “typical” value of T is essentially larger than
1 (e.g., for the barrier (16.189) this typical value is O(

√
m)), and whenever it is the case, we may hope

that our long-step policy results in stepsizes much larger than the default “short” ones.

16.3.2.3. Strategy of tracing surface: where to move

Now it is time to resolve the “strategy issue” – how to choose sequential directions dti in the parameter
space. If we were tracing the path of analytic centers rather than the 3-parameter surface, this issue
would not bother us at all – there were the only parameter of interest, and we should decrease at the
highest rate compatible with our upper bound on the Newton complexity of the corrector steps (recall
that this bound is indirectly given by the predicate R which should be satisfied by the stepsizes). When
tracing surface of analytic centers, we do have to decide where to move; this is the price we pay for
avoiding all kinds of initialization difficulties. As we shall see, this price seems to be quite appropriate.

Recall that we have associated with the problem

P̂ : cTx→ min | fTx ≤ 0, x ∈ G ⊂ Rn

the 3-parameter surface of analytic centers

S = {(t, x∗(t)) | t ∈ T},

x∗(t) = argmin
x∈int Gt

[−ϑ
3∑
j=1

ln(tj − cTj x) + F (x)]

Gt = {x ∈ G | cT1 x ≡ cTx ≤ t1; cT2 x ≡ fTx ≤ t2;
cT3 x ≤ t3},

T = {t | ∃x ∈ G : cTj x < tj , j = 1, 2, 3}.

In order to approximate optimal solution to P̂ , we should enforce the parameter t2 responsible for violation
of the constraint fTx ≤ 0 to approach zero, while the parameter t1 should approach the optimal value
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c∗ of the problem. As about the “centering” parameter t3 (introduced, along with c3, in order to enforce
the surface to pass through a given starting point x̂ ∈ int G), the only thing we are interested in is to
vary it in a way which allows the “parameters of interest” t1 and t2 to approach their target values, and
a safe decision here is to push t3 to ∞, since with too small value of t3 the artificial constraint cT3 x ≤ t3
can change the optimal value in the problem.

We already know what are our abilities to move: if we currently are at a point ti−1 ∈ T , have computed
xi−1 such that (ti−1, xi−1) is close to the surface and have chosen direction dti of movement in the space
of parameters, then our new position in the parameter space will be

ti = ti−1 + ridt
i,

ri > 0 being the stepsize. We for sure can use as ri the “short step” r∗(t
i−1, xi−1) given by Proposition

16.3.2; direct computation results in

r∗,i ≡ r∗(ti−1, xi−1) =
0.89√

ϑ
∑3
j=1(dtij/∆j(ti−1, xi−1))2

, ∆j(t, x) = tj − cTj x (16.190)

(superscripts and subscripts denote the iteration and the coordinate indices, respectively). We see from
(16.190) that the natural measure of variation of tj is the relative variation δtij = dtij/∆j(t

i−1, xi−1), not

dtij itself.
An important fact (completely similar to the one established in the LP case by Renegar [9]) is as

follows:

Proposition 16.3.4 Let (t, x) be close to S. Then

∆j(t, x) ≤ tj − min
x∈Gt

cTj x ≤ 8∆j(t, x). (16.191)

Note that in fact the “weights” ϑ at the log-terms in our aggregate Ft(·) are aimed exactly to make true
a relation like (16.191).

Now we are able to present a “good”, both from theoretical and seemingly practical viewpoint, policy
of where to move.

given current close to the surface S iterate zi−1 = (ti−1, xi−1), choose the direction dti

according to the rule

dti =

{
(−∆1(zi−1), −∆2(zi−1), 16∆3(zi−1)), ti−1

2 ≤ 16∆2(zi−1)
( ∆1(zi−1), 0 , 16∆3(zi−1)), otherwise

. (16.192)

Motivation behind the indicated policy is as follows. First of all, we need to get rid of the
“centering parameter” t3 pushing it to ∞ as fast as possible; it turns out that to this end it
suffices to enforce δtj3 to be by absolute constant times greater than |δti1| and |δti2|, and this
is exactly what (16.192) does. With such a policy, ti3 grows exponentially with j, so that the
constraint cT3 x ≤ ti3, starting with certain not too large moment i, becomes redundant in the
description of Gti .

To explain the policy for updating the “parameters of interest” t1 and t2, it is worthy to
forget about the “centering inequality” cT3 x ≤ t3, as if we were traveling along 2-parameter
surface associated with c1 and c2; it was already explained that this is basically the situation
we eventually come to. We should enforce t2 → 0, so that it makes sense to decrease it; as
about t1, it should approach the optimal value c∗ which we do not know. A natural idea is
to decrease both t2 and t3 at the highest possible rate until it becomes evident that t1 is too
small – is less than c∗. When it happens, we should increase t1 in order “to release t2” –
to allow t2 to approach its target value 0. This is exactly what is done by the branching in
(16.192). Indeed, if we see that ti2 > 16∆2(ti−1, xi−1), we can conclude that ti−1

1 < c∗, since
then Proposition 16.3.4 implies that

min
Gti−1

fTx ≡ min[fTx | x ∈ G, cTx ≤ ti−1
1 ] > 0

(recall that we have agreed to ignore the constraint cT3 x ≤ ti−1
3 in the description of Gti−1),

and the resulting inequality is possible only if ti−1
2 < c∗.
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After the direction dti is chosen, we use the Predictor-corrector scheme to choose a stepsize ri in
this direction. Besides our crucial restriction to be compatible with R, we subject the stepsize to the
restrictions

r∗,i ≤ ri ≤
1

8
;

the lower bound on ri simply says that we do not allow to move slower than with short steps (16.190); the
upper bound is a kind of safeguard; it would be too time consuming to explain the origin of this bound.
Note that the upper bound on ri is by order of magnitudes larger than the lower one, since (16.192) and
(16.190) result in

r∗,i ≤ 0.0557ϑ−1/2;

thus, there is enough room for “long steps”.
Now the description of the method is complete, and it is time to evaluate its complexity.

16.3.2.4. Complexity

To describe the rate of convergence of the resulting method, let us denote by N (ε) the first i such that

all xj , j ≥ i, are ε-solutions to P̂ , so that

j ≥ i⇒ (cTxj − c∗ ≤ ε) & (fTxj ≤ ε).

Theorem 16.3.1 For all ε > 0 one has

N (ε) ≤ O(1)
√
ϑ ln

(
2ϑ[G : x̂]

1 + ν(P̂ , ε)

ν(P̂ , ε)

)
,

ν(P̂ , ε) = min

[
ε

maxx∈G cTx−minx∈G cTx
,

ε

maxx∈G fTx

]
.

(16.193)

The Newton complexity of any corrector step of the method does not exceed O(1) ln ln(1/κ).

Remark 16.3.1 In the above form, our surface-following method of analytic centers is a converging
infinite process. We can easily equip the method with on-line computationally cheap termination rules
capable to terminate the process and to output an ε-solution to the problem, ε > 0 being a given on input
value of the accuracy; the number of iterations in this “finite” routine still fits the complexity bound
(16.193).

To the moment we assume P̂ to be feasible; this assumption also can be eliminated: the method can
be equipped with an on-line computationally cheap test which correctly detects infeasibility; with this
test, infeasibility of (infeasible) P̂ is detected in no more than

N∗ = O(1)
√
ϑ ln

(
2ϑ[G : x̂]

minx∈G f
Tx+ maxx∈G f

Tx

minx∈G fTx

)
iterations.
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16.4 Applications

In this concluding Section we present interior point based complexity bounds for several “well-structured”
generic convex problems. We process the programs in question as explained in Section 16.3.2, in particular,
use the same notation. Speaking about a particular problem, we sequentially

• present the initial formulation of the problem,

• explain how a problem instance is converted to the standard form

P̂ : cTx→ min | fTx ≤ 0; x ∈ G,

• equip the arising domain G with self-concordant barrier (trying to fit the structural assumption
(B) underlying the long-step tactics from Section 16.3.2) and point out a “nearly centered” starting
point x̂ ∈ int G,

• indicate the Newton complexity of finding an ε-solution to P̂ by the surface-following method from
Section 16.3.2, same as the arithmetic cost of the solution; for the sake of definiteness, the tolerance
parameter κ of the method is set to 0.125. The estimates of the arithmetic cost correspond to the
case when matrices are multiplied and inverted by the traditional Linear Algebra routines.

In what follows all O(1)’s are absolute constants which do not depend on any parameter of situation.
Note that the arithmetic cost of an ε-solution corresponds to the case when problem instances have
no additional data structure; in large-scale applications, however, this typically is not the case, so that
normally the arithmetic cost of ε-solution is by order of magnitudes less than the upper bound we present.

16.4.1 Linear Programming

16.4.1.1. Family of problems:

Problem instance: solvable LP program

P : eTu→ min | aTi u ≤ bi, i = 1, ...,m; ‖ u ‖∞≤ 1 [u ∈ Rn];

Data:
Data(P ) = [m;n; e; a1, b1; ...; am, bm],
dim Data(P ) = (m+ 1)(n+ 1) + 1.

ε-solution: any u such that

‖ u ‖∞ ≤ 1,
aTi u ≤ bi + ε, i = 1, ...,m,
eTu ≤ e∗ + ε [e∗ is the optimal value in P ].

Scale factor: V(P ) = max[‖ e ‖1, |b1|+ ‖ a1 ‖1, ..., |bm|+ ‖ am ‖1];

16.4.1.2. Standard reformulation:

[x = (u,w) ∈ Rn+1]:

P̂ :
cTx ≡ eTu→ min

s.t.
fTx ≡ w ≤ 0;
x ∈ G = {(u,w) | ‖ u ‖∞≤ 1;

aTi u− w ≤ bi, i = 1, ...,m;
0 ≤ w ≤ 3V(P )}.
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16.4.1.3. Self-concordant barrier for G:

F (x) = Φ(πx+ p),

Φ(y) = −
∑N
i=1 ln yi,

y = (y1, ..., yN ) ∈ RN ,

dim y = N ≡ m+ 2n+ 2,

ϑ(Φ) = m+ 2n+ 2,

π

(
u
w

)
+ p =



b1 + w − aT1 u
. . .

bm + w − aTmu
w

3V(P )− w
u1 + 1
1− u1

. . .
un + 1
1− un


Φ∗(η) = −

∑N
i=1 ln(−ηi)−N,

η = (η1, ..., ηN ) ∈ RN .

F is the standard log-barrier for the polytope G. Note that both Φ and Φ∗ are 2-regular.

16.4.1.4. Starting point x̂:

x̂ = (û = 0, ŵ =
3

2
V(P )) [[G : x̂] ≤ 3] (16.194)

16.4.1.5. Newton complexity of ε-solution:

N (ε) = O(1)
√
m+ n ln

(
2(m+ n)

1 + ν(P, ε)

ν(P, ε)

)
, ν(P, ε) =

ε

V(P )
.

16.4.1.6. Arithmetic complexity of ε-solution:

C(ε) = O(1)(m+ n)3/2n2 ln

(
2(m+ n)

1 + ν(P, ε)

ν(P, ε)

)
. (16.195)

Remark 16.4.1 The arithmetic cost of ε-solution given by (16.195) corresponds to the case when the
Newton systems arising in course of running the method are assembled and solved “from scratch”. It
is known, anyhow, that one can ensure (16.194) replacing the exact solutions to the Newton systems by
their tight approximations, and that it can be done in a manner utilizing the results of Linear Algebra
computations at preceding steps. With this Karmarkar acceleration of Linear Algebra (originating from
[7] and incorporated for the first time in the Renegar path-following method by Vaidya) the arithmetic
cost of ε-solution becomes cubic in the dimension of the problem:

C(ε) = O(1)(m+ n)(n2 + n
√
m+ n) ln

(
2(m+ n)

1 + ν(P, ε)

ν(P, ε)

)
.
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16.4.2 Quadratically Constrained Convex Quadratic Programming

16.4.2.1. Family of problems:

Problem instance: solvable program

P : f0(u)→ min | fi(u), i = 1, ...,m; ‖ u ‖2≤ 1 [u ∈ Rn],

where

fi(u) =
1

2
uTATi Aiu+ bTi u+ ci, i = 0, ...,m,

are convex quadratic forms (Ai is ki × n matrix of rank ki, i = 0, ...,m).

Data:

Data(P ) = [m;n;A0, b0, c0; ...;Am, bm, cm],
dim Data(P ) = (

∑m
i=0 ki)n+ (m+ 1)(n+ 1) + 2.

ε-solution: any u such that

‖ u ‖2 ≤ 1,
fi(u) ≤ ε, i = 1, ...,m,
f0(u) ≤ f∗0 + ε [f∗0 is the optimal value in P ].

Scale factor: V(P ) = maxi=0,...,m

[
1
2 |Ai|

2+ ‖ bi ‖2 +|ci|
]
, |A| being the operator norm (the largest

singular value) of a matrix A.

16.4.2.2. Standard reformulation:

[x = (u, v, w) ∈ Rn+2]:

P̂ :
cTx ≡ v → min

s.t.
fTx ≡ w ≤ 0;
x ∈ G = {(u, v, w) | ‖ u ‖2≤ 1;

f0(u) ≤ v;
fi(u) ≤ w, i = 1, ...,m;
v ≤ 5V(P );
0 ≤ w ≤ 3V(P )}.
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16.4.2.3. Self-concordant barrier for G:

F (x) = Φ(πx+ p),

Φ(y) = −
m+1∑
i=0

ln

(
si −

1

2
rTi ri

)
−

3∑
κ=1

ln qκ

y = (s0, r0; ...; sm+1, rm+1; q1, q2, q3) :
si ∈ R, ri ∈ Rki [km+1 = n], qκ ∈ R,

dim y = 5 + n+m+
∑m
i=0 ki,

ϑ(Φ) = m+ 5,

π

 u
v
w

+ p =



s0 = v − bT0 u− c0
r0 = A0u
s1 = w − bT1 u− c1
r1 = A1u
. . . . . .
sm = w − bTmx− cm
rm = Amu
sm+1 = 1

2
rm+1 = u
q1 = 5V(P )− v
q2 = 3V(P )− w
q3 = w


Φ∗(η) = −

m+1∑
i=0

[
ln(−σi) +

ρTi ρi
2σi

]
−

3∑
κ=1

ln(−θκ)−m− 5,

η = (σ0, ρ0; ...;σm+1, ρm+1; θ1, θ2, θ3) : σi ∈ R, ρi ∈ Rki , θκ ∈ R.

F comes from log-barriers for linear and convex quadratic constraints (Examples 16.2.1, 16.2.3). Note
that both Φ and Φ∗ are 6-regular.

16.4.2.4. Starting point x̂:

x̂ = (û = 0, v̂ = 2V(P ), ŵ =
3

2
V(P )) [[G : x̂] ≤ 3]

16.4.2.5. Newton complexity of ε-solution:

N (ε) = O(1)
√
m+ 1 ln

(
2(m+ 1)

1 + ν(P, ε)

ν(P, ε)

)
, ν(P, ε) =

ε

V(P )
.

16.4.2.6. Arithmetic complexity of ε-solution:

C(ε) = O(1)(m+ 1)1/2n(n2 +m+

m∑
i=0

k2
i ) ln

(
2(m+ 1)

1 + ν(P, ε)

ν(P, ε)

)
.

16.4.3 Semidefinite Programming

16.4.3.1. Family of problems:
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Problem instance: solvable program

P : eTu→ min | Ai(u) ≥ 0, i = 1, ...,m; ‖ u ‖2≤ 1 [u ∈ Rn],

where

Ai(u) = Ai0 +

n∑
j=1

ujAij

with symmetric ki×ki matrices Aij ; A ≥ 0 for symmetric matrix A means that A is positive semidefinite.
Data:

Data(P ) = [m;n; e;Aij , i = 1, ...,m, j = 0, ..., n],

dim Data(P ) = 2 + n+ (n+ 1)
∑k
i=1

ki(ki+1)
2 .

ε-solution: any u such that

‖ u ‖2 ≤ 1,
Ai(u) + εIki ≥ 0, i = 1, ...,m [Ik is the k × k unit matrix],

eTu ≤ e∗ + ε [e∗ is the optimal value in P ].

Scale factor: V(P ) = max[‖ e ‖2; |Aij |, i = 1, ...,m, j = 0, ..., n], |A| being the operator norm of matrix
A.

16.4.3.2. Standard reformulation:

[x = (u,w) ∈ Rn+1]:

P̂ :
cTx ≡ eTu→ min

s.t.
fTx ≡ w ≤ 0;
x ∈ G = {(u,w) | ‖ u ‖2≤ 1;

Ai(u) + wIki ≥ 0, i = 1, ...,m;
0 ≤ w ≤ 3V(P )}.

16.4.3.3. Self-concordant barrier for G:

F (x) = Φ(πx+ p),

Φ(y) = −
∑m
i=1 ln Det yi − ln

(
s− 1

2r
T r
)
−
∑2
κ=1 ln qκ,

y = (y1, ..., ym; s, r; q1, q2) : yi ∈ Ski , s ∈ R, r ∈ Rn, qκ ∈ R,
[Sk is the space of symmetric k × k matrices],

dim y = 3 + n+
∑m
i=1

ki(ki+1)
2 ,

ϑ(Φ) = 3 +
∑m
i=1 ki,

π

(
u
w

)
+ p =



y1 = A1(u) + wIk1
. . . . . .
ym = Am(u) + wIkm
s = 1

2
r = u
q1 = w
q2 = 3V(P )− w


Φ∗(η) = −

∑m
i=1 ln Det (−ηi)−

[
ln(−σ) + ρT ρ

2σ

]
−
∑2
κ=1 ln(−θκ)

−3−
∑m
i=1 ki,

η = (η1, ..., ηm;σ, ρ; θ1, θ2) : ηi ∈ Ski , σ ∈ R, ρ ∈ Rn, θκ ∈ R.
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F comes from the logDet-barrier for the cone of positive semidefinite matrices (Example 16.2.2) and
log-barriers for linear constraints (Example 16.2.1) and the quadratic bound (Example 16.2.3). Note that
both Φ and Φ∗ are 6-regular.

16.4.3.4. Starting point x̂:

x̂ = (û = 0, ŵ =
3

2
V(P )) [[G : x̂] ≤ 3]

16.4.3.5. Newton complexity of ε-solution:

N (ε) = O(1)

√√√√1 +

m∑
i=1

ki ln

(
2

[
1 +

m∑
i=1

ki

]
1 + ν(P, ε)

ν(P, ε)

)
, ν(P, ε) =

ε

V(P )
.

16.4.3.6. Arithmetic complexity of ε-solution:

C(ε) = O(1)(1 +

m∑
i=1

ki)
1/2n(n2 + n

m∑
i=1

k2
i +

m∑
i=1

k3
i ) ln

(
2(m+ n)

1 + ν(P, ε)

ν(P, ε)

)
.

16.4.4 Geometric Programming

16.4.4.1. Family of problems:

Problem instance: solvable program

P : f0(u)→ min | fi(u) ≤ 0, i = 1, ...,m, ‖ u ‖2≤ 1 [u ∈ Rn],

where fi(x) are logarithms of exponential posynomials:

fi(x) = ln

 ki∑
j=1

exp{bij + aTiju}

 .

Data:
Data(P ) = [m;n; k0, {b0j , a0j}j=1,...,k1 ; ...; km, {bmj , amj}j=1,...,km ],
dim Data(P ) = 3 +m+ (n+ 1)K,
K =

∑m
i=0 ki.

ε-solution: any u such that

‖ u ‖2 ≤ 1,
fi(u) ≤ ε, i = 1, ...,m,
f0(u) ≤ f∗0 + ε, [f∗0 is the optimal value in P ].

Scale factor: V(P ) = maxi=0,...,m [ln(3ki) + maxj=1,...,ki [|bij |+ ‖ aij ‖2]] .

16.4.4.2. Standard reformulation:

x = (u, {uij |i = 0, ...,m, j = 1, ..., ki}, v, w) ∈ Rn+K+2;
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P̂ :
cTx ≡ v → min

s.t.
fTx ≡ w ≤ 0;
x ∈ G = {(u, {uij}, v, w) | ‖ u ‖2≤ 1;

(α) exp{b0j + aT0ju− v} ≤ u0j , j = 1, ..., k0;

(β) exp{bij + aTiju− w} ≤ uij ,
i = 1, ...,m
j = 1, ..., ki

;

(γ)
∑ki
j=1 uij ≤ 1, i = 0, ...,m;

0 ≤ w ≤ 3V(P );
v ≤ 5V(P )}.

Note that an ε-solution to P̂ immediately yields a similar solution for P . Indeed, if u is an ε-solution to
P , then setting

uij = exp{bij + aTiju− fi(u)}, v = f0(u), w = max
i=1,...,m

fi(u),

we clearly extend u to a solution x ∈ G to P̂ with fTx ≤ ε and cTx = v. Vice versa, if x = (u, {uij}, v, w) ∈
G, then from the inequalities (α), (β) and (γ) it follows that f0(u) ≤ v and fi(u) ≤ w, i = 1, ...,m. These
observations say that the optimal values in both the problems are equal to each other, and that the u-part
of an ε-solution x ∈ G to widehatP (solution with v ≤ f∗0 + ε and fTx ≤ ε) is an ε-solution to P , as
claimed.

16.4.4.3. Self-concordant barrier for G:

F (x) = Φ(πx+ p)

Φ(y) = −
m∑
i=0

ki∑
j=1

[ln(sij) + ln(ln(sij)− rij)]

−
m∑
i=0

ln ti −
3∑

κ=1

ln qκ − ln(s− 1

2
rT r),

y = ({sij , rij}i=0,...,m,j=1,...,ki ; t0, ..., tm; s, r; q1, q2, q3) :
sij , rij , ti, s, qκ ∈ R, r ∈ Rn,

dim y = m+ n+ 2K + 4
ϑ(Φ) = m+ 2K + 5

π


u
{uij}
v
w

+ p =



sij = uij , i = 0, ...,m, j = 1, ..., ki
r0j = b0j + aT0ju− v, j = 1, ..., k0

rij = bij + aTiju− w, i = 1, ...,m, j = 1, ..., ki
ti = 1−

∑ki
j=1 vij , i = 0, ...,m

q1 = 5V(P )− v
q2 = 3V(P )− w
q3 = w
s = 1

2
r = u


Φ∗(η) = −

∑m
i=0

∑ki
j=1

[
ρij + ln ρij − (ρij + 1) ln

(
ρij+1
−σij

)]
−
∑m
i=0 ln(−τi)−

∑3
κ=1 ln(−θκ)

−
[
ln(−σ) + ρT ρ

2σ

]
−m− 5− 2K

η = ({σij , ρij}i=0,...,m,j=1,...,ki , τ0, ..., τm, σ, θ1, θ2, θ3, ρ) :
σij , ρij , τi, σ, θκ ∈ R, ρ ∈ Rn
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The “main ingredient” in the barrier Φ is the 2-self-concordant barrier

− ln(ln t− s)− ln t

for the epigraph of the exponent. Both Φ and Φ∗ are 6-regular.

16.4.4.4. Starting point x̂:

x̂ = (û = 0, ûij =
1

2ki
∀(i, j), v̂ = 2V(P ), ŵ =

3

2
V(P )) [[G : x̂] ≤ 6K] .

16.4.4.5. Newton complexity of ε-solution:

N (ε) = O(1)
√
K ln

(
2K

1 + ν(P, ε)

ν(P, ε)

)
, ν(P, ε) ≡ ε

V(P )
.

16.4.4.6. Arithmetic complexity of ε-solution:

C(ε) = O(1)K1/2(K + n)(m+ n)2 ln

(
2K

1 + ν(P, ε)

ν(P, ε)

)
.

16.4.5 Approximation in ‖ · ‖γ
16.4.5.1. Family of problems:

Problem instance: solvable program

P : f(u) ≡‖ Ax− b ‖γ→ min | ‖ u ‖2≤ 1 [u ∈ Rn],

where γ ∈ (1,∞), A =

 aT1
. . .
aTm

 is an m× n matrix and b =

 b1
. . .
bm

 ∈ Rm.

Data:
Data(P ) = [m;n;A, b],
dim Data(P ) = m(n+ 1) + 2.

ε-solution: any u such that

‖ u ‖2 ≤ 1,
f(u) ≤ f∗ + ε, [f∗ is the optimal value in P ].

Scale factor: V(P ) = maxi=1,...,m ‖ ai ‖2 + ‖ b ‖∞.

16.4.5.2. Standard reformulation:

x = (u, v, w1, ..., wm) ∈ Rn+m+1;

P̂ :
cTx ≡ v → min

subject to [α = 1
γ , β = 1− α]

x ∈ G = {(u, v, w1, ..., wm) | ‖ u ‖2≤ 1;
v ≥ 0;
wi ≥ 0, i = 1, ...,m;
|bi − aTi u| ≤ wαi vβ ;∑m
i=1 wi ≤ v;

v ≤ 5mV(P )}.
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Problem P̂ indeed is equivalent to P . To see it, note that P clearly can be rewritten as

v → min |

(
m∑
i=1

|bi − aTi u|γ
)1/γ

≤ v ≤ 5mV(P ), ‖ u ‖2≤ 1 (16.196)

(the upper bound imposed on v is simply redundant). Now, if (u, v) is a feasible solution to (16.196),
then the vector

(u, v, wi = |bi − aTi u|γv1−γ , i = 1, ...,m) [here 0/0 = 0]

clearly is a feasible solution to P̂ . Vice versa, if (u, v, w1, ..., wm) is a feasible solution to P̂ , then

(
m∑
i=0

|bi − aTi x|γ
)1/γ

≤

(
m∑
i=1

wiv
γ−1

)1/γ

≤ v [≤ 5mV(P )],

so that (u, v) is a feasible solution to (16.196). It remains to note that the indicated correspondence

between feasible solutions to P̂ and to (16.196) preserves the value of the objective.

16.4.5.3. Self-concordant barrier for G:

F (x) = Φ(πx+ p),

Φ(y) =
∑m
i=1 [φ(w1,i, v1,i, z1,i) + φ(w2,i, v2,i, z2,i)]

−
∑2
i=1 ln(qi)− ln

(
s− 1

2r
T r
)

[
φ(w, v, z) = − ln(wαvβ − z)− lnw − ln v

]
,

y = ({wκ,i, vκ,i, zκ,i}κ=1,2,i=1,...,m; s, r; q1, q2) :

wκ,i, vκ,i, zκ,i, s, qj ∈ R, r ∈ Rn,

dim y = 3 + n+ 6m,

ϑ(Φ) = 3 + 6m,

π


u
v
w1

. . .
wm

+ p =



w1,i = w2,i = wi, i = 1, ...,m
v1,i = v2,i = v, i = 1, ...,m
z1,i = bi − aTi u, i = 1, ...,m
z2,i = aTi u− bi, i = 1, ...,m
q1 = v −

∑m
i=1 wi

q2 = 5mV(P )− v
s = 1

2
r = u
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Φ∗(η) =
∑m
i=1 [φ∗(ω1,i, ν1,i, ζ1,i) + φ∗((ω2,i, ν2,i, ζ2,i)]

−
∑2
i=1 ln(−θi)−

[
ln(−σ) + ρT ρ

2σ

]
− 3,

η = ({ωκ,i, νκ,i, ζκ,i}κ=1,2,i=1,...,m;σ, ρ; θ1, θ2) :

ωκ,i, νκ,i, ζκ,i, σ, θj ∈ R, ρ ∈ Rn,

φ∗(ω, ν, ζ) = − ln(ζ)− ln
(

−ω
1+αΛγ(ζ−1|ω|α|ν|β)

)
− ln

(
−ν

1+βΛγ(ζ−1|ω|α|ν|β)

)
,

Dom(φ∗) = {ω < 0, ν < 0, ζ > 0, ζ−1|ω|α|ν|β > ααββ},

Λγ(ξ), 0 < ξ < ααββ , is the positive root of the equation

(1 + αx)
α

(1 + βx)
β

= ξx.

The structure of the barrier Φ is as follows:

• the function
− ln(wαvβ − z)− lnw − ln v

can be proved to be a 3-self-concordant barrier for the set

{(w, v, z) ∈ R3 | w ≥ 0, v ≥ 0, wαvβ ≥ z}

so that the terms in F coming from φ(w1,i, v1,i, z1,i) + φ(w2,i, v2,i, z2,i) penalize the constraints

wαi v
β ≥ |bi − aTi u|, wi ≥ 0, v ≥ 0

in P̂ ;

• the remaining part of Φ penalizes in already known to us way the constraints

m∑
i=1

wi ≤ v, v ≤ 5mV(P ), ‖ u ‖2≤ 1.

16.4.5.4. Starting point x̂:

x̂ = (û = 0; v̂ =
5

2
mV(P ); ŵi = 2V(P ), i = 1, ...,m) [[G : x̂] ≤ 10m]

16.4.5.5. Newton complexity of ε-solution:

N (ε) = O(1)
√
m ln

(
2m

1 + ν(P, ε)

ν(P, ε)

)
, ν(P, ε) =

ε

V(P )
.

16.4.5.6. Arithmetic complexity of ε-solution:

C(ε) = O(1)m1/2(m+ n)n2 ln

(
2m

1 + ν(P, ε)

ν(P, ε)

)
.
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