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Interior Point Polynomial Methods in Convex Programming

Goals. During the last decade the area of interior point polynomial methods (started in 1984 when
N. Karmarkar invented his famous algorithm for Linear Programming) became one of the dominating
fields, or even the dominating field, of theoretical and computational activity in Convex Optimization.
The goal of the course is to present a general theory of interior point polynomial algorithms in Convex
Programming. The theory allows to explain all known methods of this type and to extend them from
the initial area of interior point technique - Linear and Quadratic Programming - onto a wide variety of
essentially nonlinear classes of convex programes.

We present in a self-contained manner the basic theory along with its applications to several important
classes of convex programs (LP, QP, Quadratically constrained Quadratic programming, Geometrical
programming, Eigenvalue problems, etc.)

The course follows the recent book
Yu. Nesterov, A. Nemirovski Interior-Point Polynomial Algorithms in Convex Programming SIAM Stud-
ies in Applied Mathematics, 1994

Prerequisites for the course are the standard Calculus and the most elementary parts of Convex
Analysis.

Duration: one semester, 2 hours weekly

Contents:
Introduction: what the course is about
Developing Tools, I: self-concordant functions, self-concordant barriers and the Newton method
Interior Point Polynomial methods, I: the path-following scheme
Developing Tools, II: Conic Duality
Interior Point Polynomial methods, II: the potential reduction scheme
Developing Tools, III: how to construct self-concordant barriers
Applications:

Linear and Quadratic Programming

Quadratically Constrained Quadratic Problems

Geometrical Programming

Semidefinite Programming

I decided to add to the course three Appendices:

Appendices I and II contain two recent papers on the subject; The first of them develops the approach
to the design of long-step interior point methods discussed, in its simplest form, in Lecture 8. The second
paper is devoted to the particular application — Truss Topology Design — discussed in the exercises to
Lecture 5 (Section 5.5). I think the ability to go through these papers is a good indication of mastering
the course.

Appendix IIT is a 4-lecture Minicourse on polynomial time methods in Convex Programming which
I wrote for the 19951 Summer AMS Seminar on Mathematics of Numerical Analysis (June-August 1995,
Park City, Utah, USA). It can be regarded as a “technicality-free” summary of the main body of the
Course a summary which contains also some new details. In fact I think it makes sense to start reading
with this summary. Appendix III (same as Appendices I and II) can be read independently of other parts
of the text.



About Exercises

The majority of Lectures are accompanied by the ”Exercise” sections. In several cases,
the exercises are devoted to the lecture where they are placed; sometimes they prepare the
reader to the next lecture.

The mark * at the word ”Exercise” or at an item of an exercise means that you may use
hints given in Appendix ”"Hints”. A hint, in turn, may refer you to the solution of the exercise
given in the Appendix ”Solutions”; this is denoted by the mark *. Some exercises are marked
by T rather than by *; this refers you directly to the solution of an exercise.

Exercises marked by # are closely related to the lecture where they are placed; it would
be a good thing to solve such an exercise or at least to become acquainted with its solution
(if any is given).

Exercises which I find difficult are marked with ~.

The exercises, usually, are not that simple. They in no sense are obligatory, and the reader
is not expected to solve all or even the majority of the exercises. Those who would like to
work on the solutions should take into account that the order of exercises is important: a
problem which could cause serious difficulties as it is becomes much simpler in the context
(at least I hope so).
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Chapter 1

Introduction to the Course

What we are about to study in this semester are the theory and the applications of interior point
polynomial time methods in Convex Programming. Today, in the introductory lecture, I am not going
to prove theorems and present algorithms. My goal is to explain what the course is about, what are the
interior point methods and why so many researchers and practitioners are now deeply involved in this
new area.

1.1 Some history

The modern theory of polynomial time interior point methods takes its origin in the seminal paper of
Narendra Karmarkar published in 1984. Now, after 10 years, there are hundreds of researchers working
in the area, and thousands of papers and preprints on the subject. The electronic bibliography on interior
point methods collected and maintained by Dr. Eberhard Kranich, although far from being complete,
contains now over 1,500 entries. For Optimization Community which covers not so many people, this
is a tremendous concentration of effort in a single area, for sure incomparable with all happened in the
previous years.

Although to the moment the majority of the papers on interior point methods deal with the theoretical
issues, the practical yield also is very remarkable. It suffices to say that the Karmarkar algorithm for
Linear Programming was used as the working horse for the US Army logistic planning (i.e., planning of
all kinds of supplies) in the Gulf War. Another interior point method for Linear Programming, the so
called primal-dual one, forms the nucleus of an extremely efficient and very popular now software package
OSL2. Let me present you a citation from G. Dantzig: ” At the present time (1990), interior algorithms
are in open competition with variants of the simplex methods”. It means something when new-borned
methods can be competitive against an extremely powerful and polished for almost 50 years by thousands
of people Simplex method.

Now let me switch from the style of advertisements to the normal one. What actually happened
in 1984, was the appearance of a new iterative polynomial-time algorithm for Linear Programming.
We already know what does it mean ”a polynomial time algorithm for LP” - recall the lecture about
the Ellipsoid method and the Khachiyan theorem on polynomial solvability of LP. As we remember,
Khachiyan proved in 1979 that Linear Programming is polynomially solvable, namely, that an LP problem
with rational coefficients, m inequality constraints and n variables can be solved exactly in O(n3(n+m)L)
arithmetic operations, L being the input length of the problem, i.e., the total binary length of the
numerical data specifying the problem instance. The new method of Karmarkar possessed the complexity
bound of O(m?/?n?L) operations. In the standard for the complexity analysis case of more or less
"square” problems m = O(n) the former estimate becomes O(n*L), the latter O(n®®L). Thus, there
was some progress in the complexity. And it can be said for sure that neither this moderate progress,
nor remarkable elegance of the new algorithm never could cause the revolution in Optimization. What
indeed was a sensation, what inspired extremely intensive activity in the new area and in a few years
resulted in significant theoretical and computational progress, was the claim that the new algorithm in

1 History of Mathematica Programming, J.K. Lenstra. A.H.G. Rinnooy Kan, A. Schrijver, Eds. CWI, North-Holland,
1991



10 CHAPTER 1. INTRODUCTION TO THE COURSE

real-world computations was by order of magnitudes more efficient than the Simplex method. Let me
explain you why this was a sensation. It is known that the Simplex method is not polynomial: there
exist bad problem instances where the number of pivotings grows exponentially with the dimension of
the instance. Thus, any polynomial time algorithm for LP, the Ellipsoid one, the method of Karmarkar
or whatever else, for sure is incomparably better in its worst-case behaviour than the Simplex. But this is
the theoretical worst-case behaviour which, as is demonstrated by almost 50-year practice, never occurs
in real-world applications; from the practical viewpoint, the Simplex method is an extremely efficient
algorithm with fairy low empirical complexity; this is why the method is able to solve very large-scale
real world LP problems in reasonable time. In contrast to this, the Ellipsoid method works more or
less in accordance with its theoretical worst-case complexity bound, so that in practical computations
this ”theoretically good” method is by far dominated by the Simplex even on very small problems with
tens of variables and constraints. If the method of Karmarkar would also behave itself according to its
theoretical complexity bound, it would be only slightly better then the Ellipsoid method and still would
be incomparably worse than the Simplex. The point, anyhow, is that actual behaviour of the method of
Karmarkar turned out to be much better than it is said by the worst-case theoretical complexity bound.
This phenomenon combined with the theoretical advantages of a polynomial time algorithm, not the
latter advantages alone, (same as, I believe, not the empirical behaviour of the method alone), inspired
an actual revolution in optimization which continues up today and hardly will terminate in the nearest
future.

I have said something about the birth of the ”interior point science”. As it often happens in our
field, later it turned out that this was the second birth; the first one was in 1967 in Russia, where Ilya
Dikin, then the Ph.D. student of Leonid Kantorovich, invented what is now called the affine scaling
algorithm for LP. This algorithm which hardly is theoretically polynomial, is certain simplification of the
method of Karmarkar which shares all practical advantages of the basic Karmarkar algorithm; thus, as a
computational tool, interior point methods exist at least since 1967. A good question is why this compu-
tational tool which is in extreme fashion now was completely overlooked in the West, same as in Russia.
I think that this happened due to two reasons: first, Dikin came too early, when there was no interest
to iterative procedures for LP - a new-borned iterative procedure, even of a great potential, hardly could
overcome as a practical tool perfectly polished Simplex method, and the theoretical complexity issues
in these years did not bother optimization people (even today we do not know whether the theoretical
complexity of the Dikin algorithm is better than that one of the Simplex; and in 1967 the question itself
hardly could occur). Second, the Dikin algorithm appeared in Russia, where there were neither hardware
base for Dikin to perform large-scale tests of his algorithm, nor ”social demand” for solving large-scale
LP problems, so it was almost impossible to realize the practical potential of the new algorithm and to
convince people in Russia, not speaking about the West, that this is something which worths attention.

Thus, although the prehistory of the interior point technique for LP started in 1967, the actual
history of this subject started only in 1984. It would be impossible to outline numerous significant
contributions to the field done since then; it would require mentioning tens, if not hundreds, of authors.
There is, anyhow, one contribution which must be indicated explicitly. I mean the second cornerstone of
the subject, the paper of James Renegar (1986) where the first path-following polynomial time interior
point method for LP was developed. The efficiency estimate of this method was better than that one
of the method of Karmarkar, namely, O(n3L) [} - cubic in the dimension, same as for classical methods
of solving systems of linear equations; up to now this is the best known theoretical complexity bound
for LP. Besides this remarkable theoretical advantage, the method of Renegar possesses an important
advantage in, let me say, the human dimension: the method belongs to a quite classical and well-known
in Optimization scheme, in contrast to rather unusual Ellipsoid and Karmarkar algorithms. The paper
of Renegar was extremely important for the understanding of the new methods and it, same as a little
bit later independent paper of Clovis Gonzaga with close result, brought the area in the position very
favourable for future developments.

To the moment I was speaking about interior point methods for Linear Programming, and this reflects
the actual history of the subject: not only the first interior point methods vere developed for this case, but
till the very last years the main activity, both theoretical and computational, in the field was focused on
Linear Programming and the very close to it Linearly constrained Quadratic Programming. To extend the

2recall that we are speaking about ”almost square” problems with the number of inequalities m being of order of the
number of variables n
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approach to more general classes of problems, it was actually a challenge: the original constructions and
proofs heavily exploited the polyhedral structure of the feasible domain of an LP problem, and in order
to pass to the nonlinear case, it required to realize what is the deep intrinsic nature of the methods. This
latter problem was solved in a series of papers of Yurii Nesterov in 1988; the ideas of these papers form
the basis of the theory the course is devoted to, the theory which now has became a kind of standard for
unified explanation and development of polynomial time interior point algorithms for convex problems,
both linear and nonlinear. To present this theory and its applications, this is the goal of my course. In
the remaining part of this introductory lecture I am going to explain what we are looking for and what
will be our general strategy.

1.2 The goal: poynomial time methods

I have declared that the purpose of the theory to be presented is developing of polynomial time algorithms
for convex problems. Let me start with explaining what a polynomial time method is. Consider a family
of convex problems

(p) : minimize f(z) s.t. g;(z) <0, i=1,..m, € G

of a given analytical structure, like the family of LP problems, or Linearly constrained Quadratic problems,
or Quadratically constrained Quadratic ones, etc. The only formal assumption on the family is that a
problem instance p from it is identified by a finite-dimensional data vector D(p); normally you can
understand this vector as the collection of the numeric coefficients in analytical expressions for the
objective and the constraints; these expressions themselves are fixed by the description of the family.
The dimension of the data vector is called the size l(p) of the problem instance. A numerical method
for solving problems from the family is a routine which, given on input the data vector, generates a
sequence of approximate solutions to the problem in such a way that every of these solutions is obtained
in finitely many operations of precise real arithmetic, like the four arithmetic operations, taking square
roots, exponents, logarithms and other elementary functions; each operand in an operation is either an
entry of the data vector, or the result of one of the preceding operations. We call a numerical method
convergent, if, for any positive € and for any problem instance p from the family, the approximate solutions
x; generated by the method, starting with certain i = i*(e, p), are e-solutions to the problem, i.e., they
belong to G and satisfy the relations

f(ml) _f* S g, g](xl) S g, .] = 1a"'ama

(f* is the optimal value in the problem). We call a method polynomial, if it is convergent and the
arithmetic cost C(e, p) of e-solution, i.e., the total number of arithmetic operations at the first i* (e, p)
steps of the method as applied to p, admits an upper bound as follows:

Clew) < nltip)n (V22).
where 7 is certain polynomial independent on the data and V(p) is certain data-dependent scale factor.
The ratio V(p)/e can be interpreted as the relative accuracy which corresponds to the absolute accuracy
€, and the quantity ln(@) can be thought of as the number of accuracy digits in e-solution. With
this interpretation, the polynomiality of a method means that for this method the arithmetic cost of an
accuracy digit is bounded from above by a polynomial of the problem size, and this polynomial can be
thought of as the characteristic of the complexity of the method.

It is reasonable to compare this approach with the information-based approach we dealt with in the
previous course. In the information-based complexity theory the problem was assumed to be represented
by an oracle, by a black box, so that a method, starting its work, had no information on the instance; this
information was accumulated via sequential calls to the oracle, and the number of these calls sufficient to
find an e-solution was thought of as the complexity of the method; we did not include in this complexity
neither the computational effort of the oracle, nor the arithmetic cost of processing the answers of the
oracle by the method. In contrast to this, in our now approach the data specifying the problem instance

form the input to the method, so that the method from the very beginning possesses complete global
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information on the problem instance. What the method should do is to transform this input information
into e-solution to the problem, and the complexity of the method (which now might be called algorithmic
or combinatorial complexity) is defined by the arithmetic cost of this transformation. It is clear that
our new approach is not as general as the information-based one, since now we can speak only on
families of problems of a reasonable analytic structure (otherwise the notion of the data vector becomes
senseless). As a compensation, the combinatorial complexity is much more adequate measure of the
actual computational effort than the information-based complexity.

After I have outlined what is our final goals, let me give you an idea of how this goal will be achieved. In
what follows we will develop methods of two different types: the path-following and the potential reduction
ones; the LP prototypes of these methods are, respectively, the methods of Renegar and Gonzaga, which
are path-following routines, and the method of Karmarkar, which is a potential reduction one. In contrast
to the actual historical order, we shall start with the quite traditional path-following scheme, since we
are unprepared to understand what in fact happens in the methods of the Karmarkar type.

1.3 The path-following scheme

The, let me say, ”classical” stage in developing the scheme is summarized in the seminal monograph of
Fiacco and McCormic (1967). Assume we intend to solve a convex program

(P): minimize f(x) s.t. g;(x) <0,i=1,....m
associated with smooth (at least twice continuously defferentiable) convex functions f, g; on R". Let
G ={zeR"|[ gi(x) <0}

be the feasible domain of the problem; assume for the sake of simplicity that this domain is bounded,
and let the constraints {g;} satisfy the Slater condition:

dx: gi(x) <0, i=1,..,m.

Under these assumptions the feasible domain G is a solid - a closed and bounded convex set in R™ with
a nonempty interior.

In 60’s people believed that it is not difficult to solve unconstrained smooth convex problems, and it
was very natural to try to reduce the constrained problem (P) to a series of unconstrained problems. To
this end it was suggested to associate with the feasible domain G of problem (P) a barrier - an interior
penalty function F(x), i.e., a smooth convex function F' defined on the interior of G and tending to oo
when we approach from inside the boundary of G:

lim F(z;) = oo for any sequence {x; € int G} with lim z; € 0G.
1—00 1—00

It is also reasonble to assume that F' is nondegenerate, i.e.,
F"(z) >0, z €int G

(here > 0 stands for ”"positive definite”).
Given such a barrier, one can associate with it and with the objective f of (P) the barrier-generated
family comprised of the problems

(Py) : minimize Fy(z) = tf(z) + F(x).

Here the penalty parameter t is positive. Of course, = in (P;) is subject to the ”induced” restriction
x € int G, since F; is outside the latter set.

From our assumptions on G it immediately follows that

a) every of the problems (P;) has a unique solution x*(¢); this solution is, of course, in the interior of
G;

b) the path z*(t) of solutions to (P;) is a continuous function of ¢ € [0,00), and all its limiting, as
t — oo, points belong to the set of optimal solutions to (P).
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It immediately follows that if we are able to follow the path x*(t) along certain sequence t; — oo of values
of the penalty parameter, i.e., know how to form ”good enough” approximations x; € int G to the points
x*(t;), say, such that

x; — " (t;) = 0,1 — oo, (1.1)

then we know how to solve (P): b) and imply that all limiting points of the sequance of our iterates
{z;} belong to the optimal set of (P).

Now, to be able to meet the requirement is, basically, the same as to be able to solve to a
prescribed accuracy each of the ”penalized” problems (P;). What are our abilities in this respect? (P;)
is a minimization problem with smooth and nondegenerate (i.e., with nonsingular Hessian) objective. Of
course, this objective is defined on the proper open convex subset of R™ rather than on the whole R",
so that the problem, rigorously speaking, is a constrained one, same as the initial problem (P). The
constrained nature of (P;) is, anyhow, nothing but an illusion: the solution to the problem is unique
and belongs to the interior of G, and any converging minimization method of a relaxation type (i.e.,
monotonically decreasing the value of the objective along the sequence of iterates) started in an interior
point of G would automatically keep the iterates away from the boundary of G (since F; — oo together
with F' as the argument approaches the boundary from inside); thus, qualitatively speaking, the behaviour
of the method as applied to (P;) would be the same as if the objective F; was defined everywhere. In
other words, we have basically the same possibilities to solve (P;) as if it was an unconstrained problem
with smooth and nondegenerate objective. Thus, the outlined path-following scheme indeed achieves our
goal - it reduces the constrained problem (P) to a series of in fact unconstrained problems (F;).

We have outlined what are our abilities to solve to a prescribed accuracy every particular problem
(P;) - to this end we can apply to the problem any relaxation iterative routine for smooth unconstrained
minimization, starting the routine from an interior point of G. What we need, anyhow, is to solve not
a single problem from the family, but a sequence of these problems associated with certain tending to
oo sequence of values of the penalty parameter. Of course, in principle we could choose an arbitrary
sequence {t;} and solve each of the problems (P;,) independently, but anybody understands that it is
senseless. What makes sense is to use the approximate solution z; to the ”previous” problem (F;,) as
the starting point when solving the "new” problem (P;,, ). Since 2*(t), as we just have mentioned, is a
continuous function of ¢, a good approximate solution to the previous problem will be a good initial point
for solving the new one, provided that ¢;;1 — ¢; is not too large; this latter asumption can be ensured by
a proper policy of updating the penalty parameter.

To implement the aforementioned scheme, one should specify its main blocks, namely, to choose
somehow:

1) the barrier F;

2) the ”"working horse” - the unconstrained minimization method for solving the problems (P;), along
with the stopping criterion for the method;

3) the policy for updating the penalty parameter.

The traditional recommendations here were rather diffuse. The qualitative theory insisted on at least
C2-smoothness and nondegeneracy of the barrier, and this was basically all; within this class of barriers,
there were no clear theoretical priorities. What people were adviced to do, was

for 1): to choose F' as certain ”preserving smoothness” aggregate of g;, e.g.,

F(x)—i( ! )a (1.2)

with some o > 0, or
F(z) ==Y In(—gi(x)), (1.3)
=1

or something else of this type; the idea was that the local information on this barrier required by the
”working horse” should be easily computed via similar information on the constraints g;;

for 2): to choose as the "working horse” the Newton method; this recommendation came from com-
putational experience and had no serious theoretical justification;

for 3): qualitatively, updating the penalty at a high rate, we reduce the number of auxiliary un-
constrained problems at the cost of elaborating each of the problems (since for large t;11 — t; a good



14 CHAPTER 1. INTRODUCTION TO THE COURSE

approximation of 2*(¢;) may be a bad starting point for solving the updated problem; a low rate of updat-
ing the penalty simplifies the auxiliary problems and increases the number of the problems to be solved
before a prescribed value of the penalty (which corresponds to the required accuracy of solving (P)) is
achieved. The traitional theory was unable to offer explicit recommendations on the ”balanced” rate re-
sulting in the optimal overall effort, and this question normally was solved on the basis of ”computational
experience” .

What was said looks very natural and is known for more than 30 years. Nevertheless, the classical
results on the path-following scheme have nothing in common with polynomial complexity bounds, and
not only because in 60’s nobody bothered about polynomiality: even after you pose this question, the
traditional results do not allow to answer this question affirmatively. The reason is as follows: to perform
the complexity analysis of the path-following scheme, one needs not only qualitative information like
”the Newton method, as applied to a smooth convex function with nondegenerate Hessian, converges
quadratically, provided that the starting point is close enough to the minimizer of the objective”, but
also quantitive information: what is this ”close enough”. The results of this latter type also existed and
everybody in Optimization knew them, but it did not help much. Indeed, the typical quantitive result
on the behaviour of the Newton optimization method was as follows:

let ¢ be a C2-continuous convex function defined in the Euclidean ball V of radius R centered at z* and
taking minimum at x* such that
@" (x*) is nondegenerate with the spectrum from certain segment segment [Lo, L1], 0 < Lo < L1;
@"(x) is Lipschitz continuous at x* with certain constant Ls:

6" () — ¢"(a")| < Law —2™|, z € V.

Then there exist
p= p<Ra L05L17L2) > 07 c= C(R7 LOaL15L2>

such that the Newton iterate
vt = [0 (@)) ¢ (@)

of a point x satisfies the relation
|t + —z*| < |z — z¥|?, (1.4)

provided that
|z — 2™ < p.

The functions p(-) and ¢(-) can be written down explicitly, the statement itself can be modified and a little
bit strengthen, but it does not matter for us: the point is the structure of traditional results on the Newton
method, not the results themselves. These results are local: the quantitive description of the convergence
properties of the method is given in terms of the parameters responsible for smoothness and nondegeneracy
of the objective, and the ”constant factor” ¢ in the rate-of-convergence expression 7 same as the size
p of the "domain of quadratic convergence” become worse and worse as the aforementioned parameters
of smoothness and nondegeneracy of the objective become worse. This is the structure of the traditional
rate-of-convergence results for the Newton method; the structure traditional results on any other standard
method for smooth unconstrained optimization is completely similar: these results always involve some
data-dependent parameters of smoothness and/or nondegeneracy of the objective, and the quantitive
description of the rate of convergence always becomes worse and worse as these parameters become
worse.

Now it is easy to realize why the traditional rate-of-convergence results for our candidate ”working
horses” - the Newton method or something else - do not allow to establish polynomiality of the path-
following scheme. As the method goes on, the parameters of smoothness and nondegeneracy of our
auxiliary objectives F} inevitably become worse and worse: if the solution to (P) is on the boundary of
G, and this is the only case of interest in constrained minimization, the minimizers x*(¢) of F; approach
the boundary of G as t grows, and the behaviour of F; in a neighbourhood of z*(t) becomes less and
less regular (indeed, for large ¢ the function F} goes to oo very close to x*(t). Since the parameters of
smoothness/nondegeneracy of F; become worse and worse as t grows, the auxiliary problems, from the
traditional viewpoint, become quantitively more and more complicated, and the progress in accuracy (#
of new digits of accuracy per unit computational effort) tends to 0 as the method goes on.
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The seminal contribution of Renegar and Gonzaga was in demonstration of the fact that the above
scheme applied to a Linear Programming problem

minimize f(z) = c'x s.t. gj(x) =al —b; <0,j=1,...m, x € R"

and to the concrete barrier for the feasible domain G of the problem - to the standard logarithmic barrier
m
F(zx)=— Zln(bj - a]Ta:)
j=1

for the polytope G - is polynomial.
More specifically, it was proved that the method

0.001
Vvm
(a single Newton step per each step in the penalty parameter) keeps the iterates in the interior of G,
maintains the ”closeness relation”

tivi =1+ Vi @i =5 — [VaFy, (2)] 7'V Fy, (75) (1.5)

F,(x;) — min F}, < 0.01

(provided that this relation was satisfied by the initial pair (¢g, o)) and ensures linear data-independent
rate of convergence
fla) = f <2mt; ' < 2mitgt exp{—O(1)im~/?}. (1.6)

Thus, in spite of the above discussion, it turned out that for the particular barrier in question the
path-following scheme is polynomial - the penalty can be increased at a constant rate (1 + 0.001m =Y/ 2)
depending only on the size of the problem instance, and each step in the penalty should be accompanied
by a single Newton step in x. According to , the absolute inaccuracy is inverse proportional to the
penalty parameter, so that to add an extra accuracy digit it suffices to increase the parameter by an
absolute constant factor, which, in view of the description of the method, takes O(y/m) steps. Thus, the
Newton complexity - the # of Newton steps - of finding an e-solution is

g

Ne) = Oy (K2 (17)

and since each Newton step costs, as it is easily seen, O(mn?) operations, the combinatorial complexity
of the method turns out to be polynomial, namely,

€

C(e,p) < O(m**n?)In (V(p)> )

1.4 What is inside: self-concordance

Needless to say that the proofs of the announced results given by Renegar and Gonzaga were completely
non-standard and heavily exploited the specific form of the logarithmic barrier for the polytope. The
same can be said about subsequent papers devoted to the Linear Programming case. The key to nonlinear
extensions found by Yurii Nesterov was in realizing that among all various properties of the logarithmic
barrier for a polytope, in fact only two are responsible for the polynomiality of the path-following meth-
ods associated with this polytope. These properties are expressed by the following pair of differential
inequalities:

[self-concordance]:

d d’t 5/
|7dt3 lt=oF(x +th)] <2 (dt2 lt=0F'(x + th)) , Vh Vx € int G,
[finiteness of the barrier parameter]:

d d*t 1/
I < o0 |£|t:0F(sc +th)| < 9'/? (dt2|t_0F(x +th)> , Vh Vz € int G.
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The inequality in the second relation in fact is satisfied with 6 = m.

I am not going to comment these properties now; this is the goal of the forthcoming lectures. What
should be said is that these properties do not refer explicitly to the polyhedral structure of G. Given
an arbitrary solid GG, not necessarily polyhedral, one can try to find for this solid a barrier F' with the
indicated properties. It turns out that such a self-concordant barrier always exists; moreover, in many
important cases it can be written down in explicit and ”computable” form. And the essense of the theory
is that

given a self-concordant barrier F' for a solid G, one can associate with this barrier interior-
point methods for minimizing linear objectives over G in completely the same manner as in
the case when G is a polytope and F' is the standard logarithmic barrier for G. E.g., to get
a path-following method, it suffices to replace in the relations the standard logarithmic
barrier for a polytope with the given self-concordant barrier for the solid G, and the quantity
m with the parameter 9 of the latter barrier, with similar substitution m < ¥ in the expression
for the Newton complexity of the method.

In particular, if F is ”polynomially computable”, so that its gradient and Hessian at a
given point can be computed at a polynomial arithmetic cost, then the associated with F
path-following method turns out to be polynomial.

Note that in the above claim I spoke about minimizing linear objectives only. This does not cause any
loss of generality, since, given a general convex problem

minimize f(u) s.t. gj(u) <0,j=1,...,m ue@ C R”,
you always can pass from it to an equivalent problem
minimize t s.t. = (t,u) € G = {(t,u) | f(u) —t<0,gj(u) <0,i=1,...,m,uec Q}

of minimizing a linear objective over convex set. Thus, the possibilities to solve convex problems by inte-
rior point polynomial time methods are restricted only by our abilities to point out ”explicit polynomially
computable” self-concordant barriers for the corresponding feasible domains, which normally is not so
difficult.

1.5 Structure of the course

I hope now you have certain preliminary impression of what we are going to do. More specifically, our
plans are as follows.

1) First of all, we should study the basic properties of self-concordant functions and barriers; these
properties underly all our future constructions and proofs. This preliminary part of the course is technical;
I hope we shall survive the technicalities which, I think, will take two lectures.

2) As an immediate consequence of our technical effort, we shall find ourselves in a fine position to
develop and study path-following interior point methods for convex problems, and this will be the first
application of our theory.

3) To extend onto the nonlinear case another group of interior point methods known for LP, the
potential reduction ones (like the method of Karmarkar), we start with a specific and very interesting in
its own right geometry - conic formulation of a Convex Programming Problem and Conic Duality. After
developing the corresponding geometrical tools, we would be in a position to develop potential reduction
methods for general convex problems.

4) The outlined ”general” part of the course is, in a sense, conditional: the typical statements here
claim that, given a ”good” - self-concordant - barrier for the feasible domain of the problem in question,
you should act in such and such way and will obtain such and such polynomial efficiency estimate. As far
as applications are concerned, these general schemes should, of course, be accompanied by technique for
constructing the required ”good” barriers. This technique is developed in the second part of the course.
Applying this technique and our general schemes, we shall come to concrete "ready-to-use” interior point
polynomial time algorithms for a series of important classes of Convex Programming problems, including,
besides Linear Programming, Linearly constrained Quadratic Programming, Quadratically constrained
Quadratic Programming, Geometrical Programming, Optimization over the cone of positive semidefinite
matrices, etc.



Chapter 2

Self-concordant functions

In this lecture I introduce the main concept of the theory in question - the notion of a self-concordant
function. The goal is to define a family of smooth convex functions convenient for minimization by the
Newton method. Recall that a step of the Newton method as applied to the problem of (unconstrained)
minimization of a smooth convex function f is based on the following rule:

in order to find the Newton iterate of a point x compute the second-order Taylor expansion of f at x,
find the minimizer T of this expansion and perform a step from x along the direction T — x.

What the step should be, it depends on the version of the method: in the pure Newton routine the iterate
is exactly Z; it the relaxation version of the method one minimizes f along the ray [z, Z), etc.

As it was mentioned in the introductory lecture, the traditional results on the Newton method state,
under reasonable smoothness and nondegeneracy assumptions, its local quadratic convergence. These
results, as it became clear recently, possess a generic conceptual drawback: the quantitive description of
the region of quadratic convergence, same as the convergence itself, is given in terms of the condition
number of the Hessian of f at the minimizer and the Lipschitz constant of this Hessian. These quantities,
anyhow, are ”frame-dependent”: they are defined not by f itself, but also by the Euclidean structure in
the space of variables. Indeed, we need this structure simply to define the Hessian matrix of f, same,
by the way, as to define the gradient of f. When we change the Euclidean structure, the gradient and
the Hessian are subject to certain transformation which does not remain invariant the quantities like
the condition number of the Hessian or its Lipschitz constant. As a result, the traditional description
of the behaviour of the method depends not only on the objective itself, but also on an arbitrary choice
of the Euclidean structure used in the description, which contradicts the affine-invariant nature of the
method (note that no ”metric notions” are involved into the formulation of the method). To overcome
this drawback, note that the objective itself at any point = induces certain Euclidean structure &; to
define this structure, let us regard the second order differential

2

D2 (&){h,g] = mos limamo f(x -+ 1h + 59)

of f taken at = along the pair of directions h and ¢ as the inner product of the vectors h and g. Since
f is convex, this inner product possesses all required properties (except, possibly, the nondegeneracy
requirement ”the square of a nonzero vector is strictly positive”; as we shall see, this is a minor difficulty).
Of course, this Euclidean structure is local - it depends on x. Note that the Hessian of f, taken at =
with respect to the Euclidean structure &, is fine - this is simply the unit matrix, the matrix with the
smallest possible condition number, namely, 1. The traditional results on the Newton method say that
what is important for besides this condition number is the Lipschitz constant of the Hessian, or, which
is basically the same, the magnitude of the third order derivatives of f. What happens if we relate
these latter quantities to the local Euclidean structure defined by f? This is the key to the notion of
self-concordance. And the definition is as follows:

Definition 2.0.1 Let Q be a nonempty open convex set in R™ and F be a C* smooth convex function
defined on Q. F' is called self-concordant on @Q, if it possesses the following two properties:

[Barrier property] F(z;) — oo along every sequence {x; € Q} converging, as i — o0, to a boundary
point of Q;

17
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[Differential inequality of self-concordance] F' satisfies the differential inequality

3/2

|D*F () b, h, )| < 2 (D2F(a)[h, h]) (2.1)

forallx € Q and all h € R™.
From now on

6k

l)k:}’—‘(x)[hl7 ceey hk] = m|t1:~-:tk:0F(

z+trhy + ...+ tphy)

denotes kth differential of F' taken at x along the directions hy, ..., hy.

(2.1) says exactly that if a vector h is of local Euclidean length 1, then the third order derivative of
F in the direction h is, in absolute value, at most 2; this is nothing but the aforementioned ” Lipschitz
continuity”, with certain once for ever fixed constant, namely, 2, of the second-order derivative of F' with
respect to the local Euclidean metric defined by this derivative itself.

You can ask what is so magic in the constant 2. The answer is as follows: both sides of should be
nad actually are of the same homogeneity degree with respect to h (this is the origin of the exponentual
3/2 in the right hand side). As a consequence, they are of different homogeneity degrees with respect to
F. Therefore, given a function F' satisfying the inequality

\D3F(2)[h, h, ]| < 20 (D2F(z)[h, h])"*,

with certain positive «, you always may scale F', namely, multiply it by y/«, and come to a function
satisfying . We see that the choice of the constant factor in is of no actual importance and is
nothing but a normalization condition. The indicated choice of this factor is motivated by the desire to
make the function — In¢, which plays important role in what follows, to satisfy 7as it is”, without
any scaling.

2.1 Examples and elementary combination rules
We start with a pair of examples of self-concordant functions.
Example 2.1.1 A convezr quadratic form
flx)=2TAz — 20Tz 4 ¢
on R™ (and, in particular, a linear form on R™) is self-concordant on R™.

This is immediate: the left hand side of ([2.1)) is identically zero. An single-line verification of the definition
justifies also the following example:

Example 2.1.2 The function —Int is self-concordant on the positive ray {t € R | t > 0}.

The number of examples can be easily increased, due to the following extremely simple (and very
useful) combination rules:

Proposition 2.1.1 (i) [stability with respect to affine substitutions of argument] Let F' be self-concordant
on Q C R™ and x = Ay + b be affine mapping from RF to R™ with the image intersecting Q. Then the
inverse image of @ under the mapping, i.e., the set

Qf={yeR"| Ay+beQ}
is an open convex subset of R¥, and the composite function
Fry)=F(Ay+b):Qt - R

is self-concordant on Q.
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(ii) [stability with respect to summation and multiplication by reals > 1] Let F; be self-concordant
functions on the open convexr domains Q; C R™ and a; > 1 be reals, i = 1,...,m. Assume that the set
Q = N2,Q; is nonempty. Then the function

Flx)=a1Fi(z)+ ...+ anFph(x):Q - R

is self-concordant on Q.
(iii) [stability with respect to direct summation] Let F; be self-concordant on open convex domains
Q; CR™,i=1,...,m. Then the function

Fz1, . hxm)=Fi(x)+ ...+ Fp(zm) :Q=Q1 X ... xQm = R
is self-concordant on Q.

Proof is given by immediate and absolutely trivial verification of the definition. E.g., let us prove (ii).
Since O; are open convex domains with nonempty intersection @), @ is an open convex domain, as it
should be. Further, F, is, of course, C3 smooth and convex on (). To prove the barrier property, note
that since F; are convex, they are below bounded on any bounded subset of Q. It follows that if {z; € Q}
is a sequence converging to a boundary point = of @, then all the sequences {a; Fi(z;)}, i = 1,...,m, are
below bounded, and at least one of them diverges to oo (since x belongs to the boundary of at least one
of the sets Q;); consequently, F'(x;) — oo, as required.
To verify , add the inequalities

;| D*Fy(2)[h, by h)| < 20 (D2F;(2)[h, b))

(r € Q, h € R™). The left hand side of the resulting inequality clearly will be > |D3F(z)[h, h, h]|, while
the right hand side will be < 2 (D?F()][h, h})g/ ? since for nonnegative b; and a; > 1 one has

Zazb?/2 S (Z Ozibi)g/Q.

Thus, F satisfies (2.1). m

An immediate consequence of our combination rules is the following

Corollary 2.1.1 Let
G={zecR"|ale—b;<0,i=1,..,m}

be a convex polyhedron defined by a set of linear inequalities satisfying the Slater condition:
JzreR": alz—b;<0,i=1,..,m.

Then the standard logarithmic barrier for G given by
F(x)=- Z In(b; — alz)
i=1

is self-concordant on the interior of G.

Proof. From the Slater condition it follows that
int G={zecR"|alz—0b;<0,i=1,...m}=0",Gi, Gi={zx €R"| al'z —b; <0}.

Since the function —Int is self-concordant on the positive half-axis, every of the functions F;(z) =
—In(b; — al'z) is self-concordant on G (item (i) of Proposition; note that Gj is the inverse image of the
positive half-axis under the affine mapping = — b; —a x), whence F(z) = Y, F;(z) is self-concordant on
G = N;G; (item (ii) of Proposition). m

In spite of its extreme simplicity, the fact stated in Corollary, as we shall see in the mean time, is
responsible for 50% of all polynomial time results in Linear Programming.

Now let us come to systematic investigation of properties of self-concordant functions, with the final
goal to analyze the behaviour of the Newton method as applied to a function of this type.



20 CHAPTER 2. SELF-CONCORDANT FUNCTIONS

2.2 Properties of self-concordant functions

Let @ be an open convex domain in £ = R" and F be self-concordant on Q. For x € @ and h,g € F let

us define
(9,h)e = D*F(x)[g,h], |hls = (h,h)L/>

so that | - |, is a Euclidean seminorm on F; it is a norm if and only if D?F(z) is nondegenerate.
Let us establish the basic properties of F.

0. Basic inequality. For any x € Q and any triple h; € F, i = 1,2,3, one has

3
|DPF (@) [y, oy hal| < 2] ] .
i=1

Comment. This is the result of applying to the symmetric 3-linear form D3F(x)[h1, ha, h3] and 2-linear
positive semidefinite form D?F(x)[hq, ho] the following general fact:

let Alhy, ..., hy] be a symmetric k-linear form on R™ and B[hy, hs] be a symmetrice positive semidefinite

bilinear form such that
|A[h, h, ..., h]| < aB*/?[h, )

for certain o and all h. Then
|A[R1, ..., ]| < aBY2[hy, hy|BY?[ha, ha)...BY?[hs, hy]

for all hy, ..., hy.
The proof of this statement is among the exercises to the lecture.

I. Behaviour in the Dikin ellipsoid For x € ) let us define the centered at x open Dikin ellipsoid of
radius r as the set
Wi(z)={y € E| ly—xl. <r},

and the closed Dikin ellipsoid as the set
We(x) = W, (a) ={y € E| [y—al, <r}.

The open unit Dikin ellipsoid W1y (z) is contained in ). Within this ellipsoid the Hessians of F' are ”almost
proportional” to F"(z),

(1 — |h|x)2F"(x) < F"(x + h) < (1 — |h|,)"2F" (z) whenever |h|, < 1, (2.2)
the gradients of I' satisfy the following Lipschitz-type condition:

o]

2T (F @+ b) = Fl@)| < 75

|z|z Vz whenever |h|, <1, (2.3)

and we have the following lower and upper bounds on F':

F(x) + DF(x)[h] + p(=|hls) < F(z + h) < F(z) + DF(@)[R] + p([P|2), |hle <1. (2.4)
where ) 5 .
p(s):—ln(l—s)—sz%—i—%—i—%—i—... (2.5)

Lower bound in (2.4)) is valid for all & such that  + h € @, not only for those h with |h|, < 1.

Proof. Let h be such that
r=|hls <1land x4+ h € Q.

Let us prove that relations (2.2)), (2.3) and (2.4) are satisfied at this particular h.
10, Let us set
6(t) = D*F(x + th)[h, b,
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so that ¢ is continuously differentiable on [0,1]. We have
0< (1), 12 =9(0) <1, |¢/(t)| = [D*F(x +th)[h, b, h]| < 26*%(2),
whence, for all small enough positive e,

0< @e(t) = e+ o(t), ¢(0) <1, [BL(t)] < 203/2(2),

so that

d , _
FTAEUIESY

It follows that
672(0) — £ < 6721 < 67V2(0) + 1, 0 < 1,

whence

¢(0) 60)
(1+ te’?(0))2 (1 — toe’?(0))2

The resulting inequalities hold true for all ¢ € [0, 1] and all € > 0; passing to limit as € — 40, we come to

< e(t) <

7“2 r2
< ¢(t) = D*F(x + th)[h,h] <

(e < =y "EIET 20

20, Two sequential integrations of (2.6]) result in

1 T 7"2

1 T 7,2
< F(x) 4+ DF(x)[h] +/0 {/0 mdt}dr,

which after straightforward computation leads to (recall that r = |h|,).

Looking at the presented reasoning, one can immediately see that the restriction r» < 1 was used only
in the derivation of the upper, not the lower bound in ; therefore this lower bound is valid for all A
such that x + h € @, as claimed.

3%, Now let us fix g € FE and set

W (t) = D*F(z +th)[g, gl,
so that ¢ a continuously differentiable nonnegative function on [0, 1]. We have
[ (8)] = |D*F(w + th)lg. g, h]| < 2D*F(x + th)|g, 9] [D*F(w + th)[h, ] (2.7)

(we have used 0.). Relation (2.7) means that 1) satisfies the linear differential inequality

W/ (1) < 20(8)$' 2 (t) < 20(t)

1—rt’ ~ —

(the second inequality follows from (2.6 combined with ¢ > 0). It follows that

d

i rt)? ()] = (1 —rt)* [ (t) —2r(1 —rt) '9()] <0, 0 <t < 1,

and

%[(1 S )2t = (1— )2 (1) + 2 (1 — rt)(t)] >0, 0 <t < 1,

whence, respectively,
(1= rt)%(t) < (0), (1—7rt)~2p(t) > (0),

or, recalling what v and r are,

(1= |hlot)2D?*F(z + th)lg, g] > D*F(x)lg, 9] > (1 = |hlot)*D*F(x + th)]g, gl;
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since g is arbitrary, we come to ([2.2)).

49, We have proved that d hold true for any h such that x + h is in the open unit Dikin
ellipsoid Wy (x) and =+ h € Q. To complete the proof, it remains to demonstrate that the latter ”and” is
redundant: x +h € @ whenever x + h belongs to the open unit Dikin ellipsoid Wi (x). To prove the latter
statement, assume, on contrary, that Wi (z) is not contained in (). Then there is a point y in Wi (z) such
that the half-segment [z, y) belongs to @ and y itself does not belong to @. The function F is well-defined
on this half-segment; moreover, as we already have seen, at any point x + h of this half-segment
holds. When z + h runs over the half-segment, the quantities |h|, are bounded from above by |y — x|,
and are therefore less than 1 and bounded away from 1. It follows from that F' is bounded on the
half-segment, which is the desired contradiction: since y is a boundary point of @), F' should tend to oo
as a point from [z, y) approaches to y.

59. It remains to prove . To this end let us fix an arbitrary vector z and let us set

g(t) = 2T (F'(x + th) — F'(z)).

Since the open unit Dikin ellipsoid W7 () is contained in @, the function g is well-defined on the segment
[0,1]. We have

9(0) = 0;
lg'(t)] = [:TF"(z + th)h]
< ETF"(x +th)z\/hTF"(x + th)h
[we have used Cauchy’s inequality]
< (1 —=th|y) 2/ 2T F"(x)2\/RTF" (x)h

[we have used (2.2))]
= |h|o(1 = t|hls) 22T F" (2)z,

1
g(1 §/ = __dt\/ZTF"(2)z = 2TF"(2)z,
oI | @ gape V= F e = g v )

whence

as claimed in (2.3)). =

II. Recessive subspace of a self-concordant function. For x € Q consider the subspace {h € E |
D?F(z)[h, h] = 0} - the kernel of the Hessian of F at x. This recessive subspace Ef of F is independent
of the choice of x and is such that

Q:Q+EF

In particular, the Hessian of F' is nonsingular everywhere if and only if there exists a point where the
Hessian of F' is nonsingular; this is for sure the case if ) is bounded.

Terminology: we call F' nondegenerate, if Er = {0}, or, which is the same, if the Hessian of F' is
nonsingular somewhere (and then everywhere) on Q.

Proof of II. To prove that the kernel of the Hessian of F' is independent of the point where the Hessian
is taken is the same as to prove that if D?F(x¢)[h, h] = 0, then D2F(y)[h,h] = 0 identically in y € Q.
To demonstrate this, let us fix y € @ and consider the function

U(t) = D*F(xo + t(y — x))[h, h],

which is consinuously differentiable on the segment [0,1]. Same as in the item 3° of the previous proof,
we have
[0 ()| = |D*F (2o + t(y — 2))[h, hyy — 2]| <

< 2D?F(wg + t{y — 2))[h, B] [D*F (w0 + Hy — 0))ly — 2,y — a]] % = (1) ()
with certain continuous on [0, 1] function &. It follows that
W (1) < My(t)

with certain constant M, whence 0 < 9(¢) < ¥(0)exp{Mt},0 < ¢ < 1 (look at the derivative of the
function v(t) exp{—Mt}). Since ¥(0) = 0, we come to ¥(1) = 0, i.e., D*F(y)[h, h] = 0, as claimed.
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Thus, the kernel of the Hessian of F' is independent of the point where the Hessian is taken. If h € Er
and x € @, then, of course, |h|, = 0, so that x + h € Wi (x); from I. we know that W (z) belongs to @,
so that x + h € Q; thus, x + Er C Q whenever x € @), as required. m

Now it is time to introduce a very important concept of Newton decrement of a self-concordant
function at a point. Let x € Q. The Newton decrement of F' at x is defined as

AF,z) = max{DF(z)[h] | h € E, |h|, <1}.

In other words, the Newton decrement is nothing but the conjugate to | - |, norm of the first-order
derivative of F' at . To be more exact, we should note that | - |, is not necessary a norm: it may be a
seminorm, i.e., may be zero at certain nonzero vectors; this happens if and only if the recessive subspace
Er of F is nontrivial, or, which is the same, if the Dikin ellipsoid of F' is not an actual ellipsoid, but
an unbounded set - elliptic cylinder. In this latter case the maximum in the definition of the Newton
decrement may (not necessarily should) be +00. We can immediately realize when this is the case.

ITI. Continuity of the Newton decrement. The Newton decrement of F' at x € @ is finite if and
only if DF(z)[h] = 0 for all h € Ep. If it is the case for certain x = xo € @, then it is also the case for
all x € @, and in this case the Newton decrement is continuous in x € ) and F' is constant along its
recessive subspace:

F(x+h)=F(z) Ve € Q Vh € Ep; (2.8)

otherwise the Newton decrement is identically +oco.

Proof. It is clear that if there is h € Er such that DF(z)[h] # 0, then \(F,z) = oo, since |th|, = 0
for all real ¢ and, consequently, DF(x)[u] is above unbounded on the set {|ul|, < 1}. Vice versa, assume
that DF(x)[h] = 0 for all h € Ep, and let us prove that then A\(F,x) < co. There is nothing to prove if
Er = E, so that let us assume that Er # E. Let E}% be certain subspace of £ complementary to Ep:
Er N Ef ={0}, Er + E = E, and let 7 be the projector of E onto E# parallel to Ep, i.e., if

h=hp+hg
is the (unique) representation of h € E as the sum of vectors from Er and Ef, then
7h = hf.

It is clear that
|Thle = |hle

(since the difference h — wh belongs to Er and therefore is of zero | - |,-seminorm), and since we have
assumed that DF(z)[u] is zero for u € Ep, we also have

DF(x)[h] = DF(z)[nh].

Combining these observations, we see that it is possible to replace E in the definition of the Newton
decrement by Ep:
MNF,z) = max{DF(z)[h] | h € Ef, |h|l. <1}. (2.9)

Since |- |, restricted onto E is a norm rather than a seminorm, the right hand side of the latter relation
is finite, as claimed.

Now let us demonstrate that if A(F,z) is finite at certain point zg € @, then it is also finite at
any other point x of @ and is continuous in z. To prove finiteness, as we just have seen, it suffices to
demonstrate that DF (x)[h] = 0 for any = and any h € Er. To this end let us fix z € Q and h € Er and
consider the function

Y(t) = DF(zo + t(x — x0))[h].

This function is continuously differentiable on [0, 1] and is zero at the point ¢ = 0 (since A(F,xzg) is
assumed finite); besides this,

V' (t) = D*F (20 + t(x — z0))[h,x — 0] = 0
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(since h belongs to the null space of the positive semidefinite symmetric bilinear form D?F(zg + t(z —
Zo))[h1, ha]), so that ¢ is constant, namely, 0, and (1) = 0, as required. As a byproduct of our reasonong,
we see that if A(F,-) is finite, then

F(z+h)=F(x), v €Q, he Ep,

since the derivative of F' at any point from () in any direction from Er is zero.

It remains to prove that if A(F, z) is finite at certain (and then, as we just have proved, at any) point,
then this is a continuous function of z. This is immediate: we already know that if A(F,z) is finite, it
can be defined by relation , and this relation, by the standard reasons, defines a continuous function
of z (since | - |, restricted onto E+ is a continuously depending on z norm, not a seminorm). =

The following simple observation clarifies the origin of the Newton decrement and its relation to the
Newton method.

IV. Newton Decrement and Newton Iterate. Given x € @, consider the second-order Newton
expansion of F' at x, i.e., the convex quadratic form

Np.(h) = F(z) + DF(z)[h] + %DQF(:C)W h] = F(x) + DF(z)[h] + %Ih\%

This form is below bounded if and only if it attains its minimum on E and if and only if \(F,z) < oo; if
it is the case, then for (any) Newton direction e of F' at x, i.e., any minimizer of this form, one has

D?F(x)[e,h] = —DF(z)[h], h € E, (2.10)
lele = MF, x) (2.11)

and 1
Ng . (0) — Npg(e) = 5AQ(F, ). (2.12)

Thus, the Newton decrement is closely related to the amount by which the Newton iteration
r—=rte

decreases F' in its second-order expansion.

Proof. This is an immediate consequence of the standard fact of Linear Algebra: a convex quadratic
form

fap(h) = %hTAh +0Th+ec
is below bounded if and only if it attains its minimum and if and only if the quantity
A =max{b"h | hTAh < 1}
is finite; if it is the case, then the minimizers y of the form are exactly the vectors such that
yT'Ah = —bTh, he E,

for every minimizer y one has
yT Ay = \°
and 1
fA’b(O) — min fA,b = 5)\2.

The observation given by I'V. allows to compute the Newton decrement in the nondegenerate case
Er = {0}.

IVa. Expressions for the Newton direction and the Newton decrement. If F' is nondegenerate
and x € @), then the Newton direction of F' at x is unique and is nothing but

e(F,x) = —[F" ()] F'(x),
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F’" and F" being the gradient and the Hessian of F with respect to certain Euclidean structure on E,
and the Newton decrement is given by

A(F,2) =\ (F(@)T[F" ()]~ F'(2) = \JeT (F,2) F"(2)e(F, x) = |/ T (F,2)F'(x).

Proof. This is an immediate consequence of IV. (pass from the ”coordinateless” differentials to
”coordinate” representation in terms of the gradient and the Hessian).

Now comes the main statement about the behaviour of the Newton method as applied to a self-
concordant function.

V. Damped Newton Method: relaxation property. Let A(F,-) be finite on Q). Given z € Q,
consider the damped Newton iterate of

+ — .+ F —
xm =2 (Fx) =z + 1+)\(F,x)e’
e being (any) Newton direction of F' at x. Then
rteq
and
F(z) — F(z) > MF,z) — In(1 + \(F, z)). (2.13)

Proof. As we know from IV., |e|, = A = A(F,z), and therefore |27 — 2|, = A\/(1 + A) < 1. Thus, 2™
belongs to the open unit Dikin ellipsoid of F' centered at x, and, consequently, to @ (see I.). In view of

we have .
F@®) < F(a) + 755 DF(@)le] + p((1+X)el.) =

e @T0) - @13

[see the definition of p in (2.4)]
A2 A A
= F(z) - G Y AN A
@) =1 n( 1+/\> T+

= F(z) — A+ 1In(1+ ),

so that
F(z) = F(zt) > A—In(1+\),

as claimed. m

VI. Existence of minimizer, A. F attains its minimum on @ if and only if it is below bounded on
Q; if it is the case, then \(F,-) is finite and, moreover, min,eq A(F,z) = 0.

Proof. Of course, if F' attains its minimum on @, it is below bounded on this set. To prove the inverse
statement, assume that F' is below bounded on @, and let us prove that it attains its minimum on Q.
First of all, A(F,-) is finite. Indeed, if there would be z € ) with infinite A(F,z), it would mean that
the derivative of F' taken at x in certain direction h € Er is nonzero. As we know from II., the affine
plane x + Er is contained in (), and the second order derivative of the restriction of F' onto this plane is
identically zero, so that the restriction is linear (and nonconstant, since the first order derivative of F at x
in certain direction from Fr is nonzero). And a nonconstant linear function F' |4 g, is, of course, below
unbounded. Now let Q= be the cross-section of @ by the plane z+ Fj, where x € @ is certain fixed point
and EI% is a subspace complementary to Er. Then Q' is an open convex set in certain R* and, in view
of I1., Q = Q+ + Ep; in view of ITL. F is constant along any translation of Er, and we see that it is the
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same to prove that F attains its minimum on @Q and to prove that the restriction of F' onto Q1 attains its

minimum on @Q*. This restriction is a self-concordant function on Q* (Proposition ; of course, it is

below bounded on Q1 and its recessive subspace is trivial. Passing from (Q, F') to (QL,F|QL), we see

that the statement in question can be reduced to a similar statement for a nondegenerate self-concordant

below bounded function; to avoid complicated notation, let us assume that F' itself is nondegenerate.
Since F' is below bounded, the quantity inf;eg A(F, z) is 0; indeed, if it were positive:

AMF,2) >A>0 VzeQ,

then, according to V., we would have a possibility to pass from any point z € @ to another point z+
with at least by the constant A — In(1 + A) less value of F', which, of course, is impossible, since F' is
assumed below bounded. Since inf,eq A(F,z) = 0, there exists a point x with A = A(F,z) < 1/6. From

(2.4) it follows that
F(z+h) > F(z) + DF(x)[h] + |hle — In(1 + |hl.), |hls < 1.

Further, in view of (2.10]),
DF(z)[h] = =D*F(x)e,h] > ~le[s|h]

(we have used the Cauchy inequality), which combined with results in
DF(x)[h] = =Alhlz,

and we come to

F(x+ h) > F(z) — M|y + |hle — In(1 + |h|L). (2.14)
When 0 <t < 1, we have
Lo 14 14
f(t)z—)\t+t—ln(1+t)2—/\t+t—t+§t —gt +Zt - >
1 1 1 1
S _ Ve R R PR R
> /\t+2t 3t t{2t 3t /\},

and we see that if
t(A) = 2(1+ 3N\,

then f(¢(A\)) > 0 and t(A\) < 1. From (2.14) we conclude that F'(z + h) > F(x) whenever x + h belongs

to the boundary of the closed Dikin ellipsoid W;(y)(x) which in the case in question is a compact subset
of @ (recall that F' is assumed to be nondegenerate). It follows that the minimizer of F' over the ellipsoid
(which for sure exists) is an interior point of the ellipsoid and therefore (due to convexity of F) is a
minimizer of F over @), so that F' attains its minimum over Q). m

To proceed, let me recall to you the concept of the Legendre transformation. Given a convex function
f defined on a convex subset Dom f of R", one can define the Legendre transformation f* of f as

f )= sup [y"z— f(x));
x€Dom f

the domain of f* is, by definition, comprised of those y for which the right hand side is finite. It is
immediately seen that Dom f* is convex and f* is convex on its domain.
Let Dom f be open and f be k& > 2 times continuously differentiable on its domain, the Hessian of f

being nondegenerate. It is celarly seen that
(L.1) if x € Dom f, then y = f'(x) € Dom f*, and

F (@) = (f @)z~ f(a); z € 0f*(f'(x)).

Since f” is nondegenerate, by the Implicit Function Theorem the set Dom™ f* of values of f’ is open;
since, in addition, f is convex, the mapping

z = f'(x)
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is (k — 1) times continuously differentiable one-to-one mapping from Dom f onto Dom™ f* with (k — 1)
times continuously differentiable inverse. From (L.1) it follows that this inverse mapping also is given by
gradient of some function, namely, f*. Thus,

(L.2) The mapping x — f'(x) is a one-to-one mapping of Dom f onto an open set Dom* f* C Dom f*,
and the inverse mapping is given by y — (f*)'(y).
As an immediate consequence of (L.2), we come to the following statement

(L.3) f* is k times continuously differentiable on Dom™ f*, and

(f*)"(f'(x)) = [f"(x)]"!, = € Dom f. (2.15)

VII. Self-concordance of the Legendre transformation. Let the Hessian of the self-concordant
function F be nondegenerate at some (and then, as we know from I1., at any) point. Then Dom F* =
Dom™ F'* is an open convex set, and the function F* is self-concordant on Dom F*.

Proof. 1°. Let us prove first that Dom F* = Dom™* F*. If y € Dom F™*, then, by definition, the function
yT'z— F(z) is bounded from above on Q, or, which is the same, the function F(z)—yT z is below bounded
on Q. This function is self-concordant (Proposition [2.1.1](ii) and Example [2.1.1)), and since it is below
bounded, it attains its minimum on @ (VI.). At the minimizer z* of the function we have F'(z*) = vy,
and we see that y € Dom™ F*. Thus, Dom F' = Dom™ F™*.

20, The set Dom F* is convex, and the set Dom™ F* is open ((L.2)); from 1° it follows therefore
that F* is a convex function with a convex open domain Dom F*. The function is 3 times continuously
differentiable on Dom F* = Dom® F* in view of (L.3). To prove self-concordance of F*, it suffices to
verify the barrier property and the differential inequality .

3%, The barrier property is immediate: if a sequence y; € Dom F* converges to a point y and the
sequence {F*(y;)} is bounded from above, then the functions y!z — F(z) are uniformly bounded from
above on @ and therefore their pointwise limit y”'x — F(z) also is bounded from above on Q; by definition
of Dom F* it means that y € Dom F*, and since we already know that Dom F* is open, we conclude that
any convergent sequence of points from Dom F'* along which F* is bounded from above converges to an
interior point of Dom F™*; this, of course, is an equivalent reformulation of the barrier property.

49, Tt remains to verify . From (L.3) for any fixed h we have

T (F*)"(F'(x))h = R [F"(2)] 7 h, z € Q.
Differentiating this identity in « in a direction g, we come t
DPF*(F'())[h, h, F"(x)g] = —D*F () [[F" ()]~ h, [F" ()] " h, gl;
substituting g = [F"'(x)]~'h, we come to

2

|DEF*(F'(2))[h, h, h]| = |D*F(x)[g, 9, ]| < 2 (D*F(x)[g,9))** = 2 (4" F"(2)g)""* =

[since g = [F"'(z)]~1h]
=2 (KT [F" ()] ).
The latter quantity, due to (L.3), is exactly 2 (hT (F*)"(F’(z))h) 3/2, and we come to
* . 3/2
[D*F*(y)[h, b, hl| < 2 (D*F*(y)[h, )

for all h and all y = F'(x) with € Q. When z runs over @, y, as we alerady know, runs through the
whole Dom F*, and we see that (2.1]) indeed holds true. m

1

we use the following rule for differentiating the mapping = + B(z) = A~!(x), A(z) being a square nonsingular matrix
smoothly depending on x:

DB(x)lg] = —B(z)DA(x)[g] B(x)
(to get it, differentiate the identity B(z)A(z) = I).
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VIII. Existence of minimizer, B. F' attains its minimum on @ if and only if there exists x € () with
A(F,z) < 1, and for every x with the latter property one has

F() —min F < p(\(F,2)); (2.16)
moreover, for an arbitrary minimizer x* of F' on (Q and the above x one has

2
D?F(z)[z* — z,2* —x] < (%) . (2.17)

Proof. The "only if” part is evident: A\(F,x) = 0 at any minimizer x of F. To prove the "if” part, we,
same as in the proof of V1., can reduce the situation to the case when F' is nondegenerate. Let x be such
that A = A(F,z) < 1, and let y = F'(x). In view of (L.3) we have

y ()" (y)y = (F'(2))T[F" ()] 7 F' () = 3? (2.18)

(the latter relation follows from VIa.). Since A < 1, we see that 0 belongs to the centered at y open Dikin
ellipsoid of the self-concordant (as we know from VII.) function F* and therefore (I.) to the domain
of this function. From VII. we know that this domain is comprised of values of the gradient of F' at
the points of @; thus, there exists z* € @ such that F'(z*) = 0, and F attains its minimum on Q.
Furthermore, from as applied to F* and from we have

F*(0) < F*(y) —y" (F*)'(y) + p(V);
since y = F'(z) and 0 = F'(z*), we have (see (L.1))
F*(y) =y x = F(x), (F*)'(y) =z, F*(0) = —F*(z*),
and we come to
—F(a*) <yl — F(z) —y"z + p(N),

which is nothing but (2.16]).
Finally, setting

|hly = /BT (F*)" (y)h
and noticing that, by (2.18), |y|, = A < 1, we get for an arbitrary vector z

[T [(F*)'(0) = (F*) ()]
VT (F) ()=
[we have applied (2.3) to F* at the point y with h = —y]

= VTP s

2T (@ — )|

IN I

substituting z = F”(z)(z* — x), we get

1" * )\
Ve = @) =) < 15

as required in (2.17)). m

Remark 2.2.1 Note how sharp is the condition of existence of minimizer given by VIIL.: for the self-
concordant on the positive ray and below unbounded function F(xz) = —Inz one has A(F, z) = 1!

IX. Damped Newton method: local quadratic convergence. Let A(F),-) be finite, let x € @, and
let z be the damped Newton iterate of x (see V.). Then

MF,xT) < 2X*(F,2). (2.19)
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Besides this, if \(F,z) < 1, then F attains its minimum on @, and for any minimizer z* of F' one has

MF, x)

B P G Sl 2.2
2=l < T E (2.20)
A(F, )
|, < o) 2.21
o=l = g “\F,2) (2.21)

Proof. 1°. To prove (2.19)), denote by e the Newton direction of F at z, set

A= \(F =—
("T)7T 1+)\7

and let h € E. The function
Y(t) = DF(x + te)[h]

is twice continuously differentiable on [0,7]; we have
Y/ (t) = D*F(z + te)[h,e], " (t) = D3F(x + te)[h, e, €],

whence, in view of O.,
[0 ()] < 2hlastelel;ire <

[in view of (2.2]) and since |e|, = A, see (2.11])]
< 21— ) lafel2 = 21 — ) A2 A,

It follows that

DF(xM)[h] = (r) < ¥(0) +7¢'(0) + |hls /O{/O 2(1 — 7A) 3 \%dr}dt =

, /\2,’,2
= (0) +r¢’(0) + m\hh =
[the definition of ]
)\27”2
= DF(x)[h] + rD*F(x)[h, €] + hle =
1—=Ar
[see (2.10))]
)\2,,,2
= (1= P)DF@)[A] + ], =
[the definition of r]
A DR+, <
T+ I+A %~
[since DF(z)[h] < Alh|, by definition of A = A(F, z)]
)\2
<2 <
<2 phl, <
[see and take into account that |z — x|, = rle|, = 7]
A2 1
|h‘x+ - 2)‘2|h|acJr

<o -
14+ A1l—7rA

Thus, for any h € E we have DF(x)[h] < 2A2|h|,+, as claimed in (2.19).
20, Let x € Q be such that A = \(F,z) < 1. We already know from VIIL. that in this case F attains
its minimum on (), and that

F(x)— HbinF <p(A)=—-In(1—-X)—A. (2.22)
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Let z* be a minimizer of F on ) and let r =
follows that

2+ From (2.4) applied to x = z*, h = x — z* it

F(z) > F(z*)+ p(—r) = F(2*) +r — In(1 + r).
Combining this observation with (2.22), we come to
r—ln(1+r) <=A-— ln(l—
and it immediately follows that r < 72 /\, as required in is identical to (2.17)). m
The main consequence of the indicated properties of se -concord ant functions is the following descrip-
tion of the behaviour of the Damped Newton method (for the sake of simplicity, we restrict ourselves
with the case of nondegenerate F'):

X. Summary on the Damped Newton method. Let F' be self-concordant nondegenerate function
of Q. Then

A. [existence of minimizer] F' attains its minimum on @ if and only if it is below bounded on @); this
is for sure the case if

A(F,2) =\ (F'(@)T[F" ()]~ F' () < 1

for some x.
B. Given =1 € Q, consider the Damped Newton minimization process given by the reccurence
1
i1 =1 — ————[F"(2;)] T F' (). 2.23
ven = - T F ) @) (223)

The recurrency keeps the iterates in () and possesses the following properties
B.1 [relaxation property]

F(wi) < F(z) — AF,21) — In(1+ A(F, 2,))]; (2.24)
in particular, if \(F, x;) is greater than an absolute constant, then the progress in the Value of F" at the step
i is at least another absolute constant; e.g., if \(F,x;) > 1/4, then F(x;)— F(a:H_l) —In 2 = 0.026856..

B.2 [local quadratic convergence] If at certain step i we have A(F, z;) < then we are in the region
of quadratic convergence of the method, namely, for every j > i we have
1
AP 2j) <20 (Fay)  [< GAF )], (2.25)
N2(F,z;)
F(x;) —min F < p(\(F, z; < P 2.26
(‘rj) Hgn —p( ( 7x])) [— 2(17A(F,SCJ))]7 ( )

and for the (unique) minimizer x* of F' we have

. < — 22 2.2
If, in addition, A(F,x) < 1/2, then also
AF, )
lz; — 2[s, < T onE o “oNF, 7)) (2.28)

C. If F is below bounded, then the Newton complexity (i.e., # of steps (2.23)) of finding a point x € Q
with A(F,z) < k <0.1) does not exceed the quantity

0o(1) ([F(xl) - mén F]+1Inln i) (2.29)

with an absolute constant O(1).

The statements collected in X. in fact are already proved: A is given by VIIL.; B.1 is V.; B.2 is IX.;
C is an immediate consequence of B.1 and B.2.

Note that the description of the convergence properties of the Newton method as applied to a self-
concordant function is completely objective-independent; it does not involve any specific numeric char-
acteristics of F'.
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2.3 Exercises: Around Symmetric Forms

The goal of the below exercises is to establish the statement underlying O.:

(P): let A[hq, ..., hg] be a k-linear symmetric form on R™ and Blhq, ha] be a symmetric positive semidefinite
2-linear form on R™. Assume that for some o one has

|A[h, ..., h]| < aB*?[h, ], h€R" (2.30)
Then
k
|Alh1, oo hi]| < @ [ BY? (R, Bl (2.31)
=1

for all hq, ..., hy.

Let me start with recalling the terminology. A k-linear form Al[hy,...,hx] on E = R" is a real-
valued function of k£ arguments A, ..., hy, each of them varying over F, which is linear and homogeneous
function with respect to every argument, the remaining arguments being set to arbitrary (fixed) values.
The examples are:

e a linear form A[h] = aTh (k= 1);

e a bilinear form A[hq, ha] = hTahs, a being n x n matrix (k = 2);
e 3-linear form of the type A[hy, ha, hs] = (aThy)(hEhs);

e the n-linear form Alhy, ..., h,] = Det (hy;...; hy).

A k-linear form is called symmetric, if it remains unchanged under every permutation of the collection
of arguments.

Exercise 2.3.1 Prove that any 2-linear form on R™ can be reprresented as A[hy, ha] = hT ahy via certain
n x n martic a. When the form is symmetric? Which of the forms in the above examples are symmetric?

The restriction of a symmetric k-linear form A[hq, ..., hg] onto the ”diagonal” hy = hg = ... = hy = h,
which is a function of h € R"™, is called homogeneous polynomial of full degree k on R™; the definition
coincides with the usual Calculus definition: ”a polynomial of n variables is a finite sum of monomials,
every monomial being constant times product of nonnegative integer powers of the variables. A polyno-
mial is called homogeneous of full degree k if the sum of the powers in every monomial is equal to k”.

Exercise 2.3.2 Prove the equivalence of the aforementioned two definitions of a homogeneous polyno-
mial. What is the 3-linear form on R? which produces the polynomial xy? ((x,y) are coordinates on
R?)?

Of course, you can restrict onto diagonal an arbitrary k-linear form, not necessarily symmetric, and get
certain function on E. You, anyhow, will not get something new: for any k-linear form A[hy, ..., hi] there
exists a symmetric k-linear form Agl[hq, ..., hi] with the same restriction on the diagonal:

Alh, ... h] = Ag[h, ... h], h € E:

to get Ag, it suffices to take average, over all permutations o of the k-element index set, of the forms
Aglh, ooy ] = Alhgys ooy Bo(i) -
From polylinearity of a k-linear form A[hy, ..., hg] it follows that the value of the form at the collection
of linear combinations
hi = Zamum-, 7= 1, ...J{I,
jed

J being a finite index set, can be expressed as

k
> (T i ) Alwrg, vz gy, oo un s

G1senin€J \i=1
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this is nothing but the usual rule for ”opening the parentheses”. In particular, A[-] is uniquely defined
by its values on the collections comprised of basis vectors ey, ..., ey,:

A[hl,...7hk] = Z h17j1h2,j2"'hk7jk A[ejl,ejz,...,ejk],

1<j1,- gk <

hi,; being j-th coordinate of the vector h; with respect to the basis. It follows that a polylinear form is
continuous (even C*) function of its arguments.

A symmetric bilinear form A[hq, hs] is called positive semidefinite, if the corresponding homogeneous
polynomial is nonnegative, i.e., if A[h, h] > 0 for all h. A symmetric positive semidefinite bilinear form
sastisfies all requirements imposed on an inner product, except, possibly, the nondegeneracy requirements
”square of nonzero vector is nonzero”. If this requirement also is satisfied, i.e., if A[h,h] > 0 whenever
h # 0, then Alhq, ho] defines an Euclidean structure on E. As we know from Exercise a bilinear
form on R™ always can be represented by a n x n matrix a as hl ahs; the form is symmetric if and only
if a = a”', and is symmetric positive (semi)definite if and only if a is symmetric positive (semi)definite
matrix.

A symmetric k-linear form produces, as we know, a uniquely defined homogeneous polynomial of
degree k. It turns out that the polynomial "remembers everything” about the related k-linear form:

Exercise 2.3.3 #1 Prove that for every k there exist:
e integer m,
e real "scale factors” r1 4,724,110, L =1,...,m,
e real weights w;, L =1,...,m,

with the following property: for any n and any k-linear symmetric form Alhq,...,hg] on R™ identically
in hq,...,hi one has

m k k k
A[hl, ceey hk] = ZwlA Z Ti,lhia Z ri,lhm ceey Zri,lhi .
=1 i=1 i=1 i=1

In other words, A can be restored, in a linear fashion, via its restriction on the diagonal.
Find a set of scale factors and weights for k =2 and k = 3.

Now let us come to the proof of (P). Of course, it suffices to consider the case when B is positive
definite rather than semidefinite (replace B[hy, ha] with B.[hy, ha] = B[hy, ha]+€h¥ ha, € > 0, thus making
B positive definite and preserving the assumption ; given that (P) is valid for positive definite B,
we would know that is valid for B replaced with B, and would be able to pass to limit as € — 0).
Thus, from now on we assume that B is symmetric positive definite. In this case B[hy, ha] can be taken
as an inner product on R"™, and in the associated ”"metric” terms (P) reads as follows:

(P’): let | - | be a Euclidean norm on R™, Alhq, ..., hi| be a k-linear symmetric form on R™ such that
|Alh, ..., h]| < afh|F, heR"

Then
|A[h1, ey th < Oz‘h1|...|h/19|7 hi,...,hy € R™.

Now, due to homogeneity of A with respect to every h;, to prove the conclusion in (P’) is the same as
to prove that |A[hq, ..., hg]| < o whenever |h;| < 1,4 =1,...;k. Thus, we come to the following equivalent
reformulation of (P’):

prove that for a k-linear symmetric form Alhq, ..., hi] one has

max |A[h, ..., h]| = max |A[hq, ..., h]|. (2.32)
|h|=1 [hil<1
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Note that from Exercise it immediately follows that the right hand side of is majorated by
a constant times the left hand side, with the constant depending on k only. For this latter statement it is
completely unimportant whether the norm |- | in question is or is not Euclidean. The point, anyhow, is
that in the case of Euclidean norm the aforementioned constant factor can be set to 1. This is something
which should be a ”common knowledge”; surprisingly, I was unable to find somewhere even the statement,
not speaking of the proof. I do not think that the proof presented in the remaining exercises is the simplest
one, and you are welcome to find something better. We shall prove by induction on k.

Exercise 2.3.4 Prove the base, i.e., that holds true for k = 2.
Now assume that (2.32)) is valid for k¥ =1 — 1 and any k-linear symmetric form A, and let is prove that

it is valid also for k = 1[.
Let us fix a symmetric [-linear form A, and let us call a collection T = {T}, ..., T;} of one-dimensional
subspaces of R™ an extremal, if for some (and then - for each) choice of unit vectors e; € T; one has

|Ale1,...,el]] =w = max |Alhq, ..., ]l
[h1]=...=|hi|=1

Clearly, extremals exist (we have seen that A[-] is continuous). Let T be the set of all extremals. To
prove (2.32)) is the same as to prove that T contains an extremal of the type {T),...,T}.

Exercise 2.3.5 #* Let {T1,....,Ti} € T and T\ # T». Let e; € T; be unit vectors, h = e +ea, q = e —es.
Prove that then both {Rh,Rh,Ts,...,T;} and {Rq,Rq,T3,...,T;} are extremals.

t times s times

—— —
Let T* be the subset of T formed by the extremals of the type {T,...,T,S,...,S} for some ¢t and s

(depending on the extremal). By virtue of the inductive assumption, T* is nonempty (in fact, T* contains
t times s times

——
an extremal of the type {T,...,T,S}). For T =A{T,....T,S,...,S} € T* let a(T) denote the angle (from
[0, 5]) between T" and S.

Exercise 2.3.6 #* Prove that if T = {T,...,T,S,...,S} is an extremal of the aforementioned ”2-line”
type, then there exists an extremal T’ of the same type with ¢(T") < $¢(T). Derive from this observation
that there exists a 2-line extremal with ¢(T) = 0, i.e., of the type {T,...,T}, and thus complete the
inductive step.

Exercise 2.3.7 * Let A[hy, ..., h], h1, ..., hy € R™ be a linear with respect to every argument and invari-
ant with respect to premutations of argumens mapping taking values in certain R!, and let Blhy, hs] be a
symmetric positive semidefinite bilinear scalar form on R™ such that

| A[h, ..., h] ||< aB*?[h,h], hcR",
| - || being certain norm on RE. Prove that then

k
| Alhy, oo i) 1< @ [ BY?[hi hil, hay oo b € R

i=1
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Chapter 3

Self-concordant barriers

We have introduced and studied the notion of a self-concordant function for an open convex domain.
To complete developing of technical tools, we should investigate a specific subfamily of this family -
self-concordant barriers.

3.1 Definition, examples and combination rules

Definition 3.1.1 Let G be a closed convexr domain in R™ ("domain” means “a set with a nonempty
interior”), and let 9 > 0. A function F : int G — R is called self-concordant barrier for G with the
parameter value ¢ (in short, ¥-self-concordant barrier for G), if

a) F is self-concordant on int G;

b) one has

1/2

IDF(@)[h]] < 9V/2 [D*F(x)[h, h]] (3.1)

for all x € int G and all h € R™.

Recall that self-concordance is, basically, Lipschitz continuity of the Hessian of F with respect to the
local Euclidean metric defined by the Hessian itself. Similarly, (3.1]) says that F' should be Lipschitz
continuous, with constant 9'/2, with respect to the same local metric.

Recall also that the quantity

MF,z) = max{DF(x)[h] | D*F(x)[h,h] < 1}

was called the Newton decrement of F' at x; this quantity played crucial role in our investigation of
self-concordant functions. Relation means exactly that the Newton decrement of F' should be
bounded from above, independently of x, by certain constant, and the square of this constant is called
the parameter of the barrier.

Let us point out preliminary examples of self-concordant barriers. To this end let us look at the basic
examples of self-concordant functions given in the previous lecture.

Example 3.1.1 A constant is self-concordant barrier for R™ with the parameter 0.

It can be proved that a constant is the only self-concordant barrier for the whole space, and the only
self-concordant barrier with the value of the parameter less than 1. In what follows we never deal with
the trivial - constant - barrier, so that you should remember that the parameters of barriers in question
will always be > 1.

In connection with the above trivial example, note that the known to us self-concordant on the whole
space functions - linear and convex quadratic ones - are not self-concordant barriers, provided that they
are nonconstant. This claim follows from the aforementioned general fact that the only self-concordant
barrier for the whole space is a constant and also can be easily verified directly.

Another basic example of a self-concordant function known to us is more productive:

Example 3.1.2 The function F(z) = —Inx is a self-concordant barrier with parameter 1 for the non-
negative ray.

35
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This is seen from an immediate computation.
The number of examples can be immediately increased, due to the following simple combination rules
(completely similar to those for self-concordant functions):

Proposition 3.1.1 (i) [stability with respect to affine substitutions of argument] Let F' be a -self-
concordant barrier for G C R™ and let x = Ay + b be affine mapping from RF to R™ with the image
intersecting int G. Then the inverse image of G under the mapping, i.e., the set

Gtr={yecRF| Ay+be G}
is a closed convexr domain in RF, and the composite function
Ff(y)=F(Ay +b) :int GT - R

is a V¥-self-concordant barrier for Gt.

(ii) [stability with respect to summation and multiplication by reals > 1] Let F; be ¥;-self-concordant
barriers for the closed convex domains G; C R™ and a; > 1 be reals, i = 1,...,m. Assume that the set
G = N2,G; has a nonempty interior. Then the function

Fz)=a1Fi(x)+ ...+ anFr(x) :int G = R

is (3, ai¥;)-self-concordant barrier for G.
(iii) [stability with respect to direct summation| Let F; be ¥;-self-concordant barriers for closed convex
domains G; C R™, i =1,....,m. Then the function

F(z1,.@m) = Fi(x1) + ...+ Fo(zp) :int G > R, G=G1 X ... X G,
is (3, 0;)-self-concordant barrier for G.

Proof is given by immediate and absolutely trivial verification of the definition. E.g., let us prove (ii).
From Proposition 2.1.1] (ii) we know that F' is self-concordant on int G = N7, int G;. The verification of

(3.1) is as follows:
IDF(z)[h]| = | > a; DFi(x)[h]| < ou| DF(z)[h]| <
=1 i=1

[since F; are ;-self-concordant barriers]

< iam;” [D2F,(x)[h, h)] " = i[aim]”z [ D2Fy(a)[h, b]] 7 <
i=1 1=1

[Cauchy’s inequality]

m /2 v
i=1 i=1

as required. m
An immediate consequence of our combination rules is as follows (cf. Corollary [2.1.1)):

1/2

m 1/2
_ [Z aim] [D2F (), h)]"?,
=1

Corollary 3.1.1 Let
G={zreR"|alz—b;<0,i=1,..,m}

be a convex polyhedron defined by a set of linear inequalities satisfying the Slater condition:
Jx e R™: a?m—bi <0,i=1,...,m.

Then the standard logarithmic barrier for G given by
F(x)=-— Zln(bi —al'x)
i=1

is m-self-concordant barrier for G.
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Proof. The function — Int is 1-self-concordant barrier for the positive half-axis (Example; therefore
every of the functions F;(x) = —In(b; — al'z) is 1-self-concordant barrier for the closed half-space {z €
R" | b;—alx > 0} (item (i) of Proposition; note that G; is the inverse image of the nonnegative half-axis
under the affine mapping x — b; — alz), whence F(x) = Y, F;(z) is m-self-concordant barrier for the
intersection G of these half-spaces (item (ii) of Proposition). m

The fact stated in Corollary is responsible for 100% of polynomial time results in Linear Programming.

Now let us come to systematic investigation of properties of self-concordant barriers. Please do not
be surprised by the forthcoming miscellania; everything will be heavily exploited in the mean time.

3.2 Properties of self-concordant barriers

Let G be a closed convex domain in E = R™, and let F be 9-self-concordant barrier for G.

Preliminaries: the Minkowsky function of a convex domain. Recall that, given an interior point
x of G, one can define the Minkowsky function of G with the pole at = as

me(y) =inf{t >0| 2 +t (y —x) € G}.

In other words, to find 7, (y), consider the ray [z,y) and look where this ray intersects the boundary
of G. If the intersection point gy’ exists, then m,(y) is the length of the segment [x,y’] divided by the
length of the segment [z, y]; if the ray [z,y) is contained in G, then 7, (y) = 0. Note that the Minkowsky
function is convex, continuous and positive homogeneous:

T (Ay) = Ama(y), A= 0;

besides this, it is zero at z and is < 1 in G, 1 on the boundary of G and > 1 outside GG. Note that this
function is in fact defined in purely affine terms (the lengths of segments are, of course, metric notions,
but the ratio of lengths of parallel segments is metric-independent).

Now let us switch to properties of self-concordant barriers.

0. Explosure property: Let z € int G and let y be such that DF(x)[y — x] > 0. Then

DF(z)[y — =]
9 ;

so that the point x +~~*(y — x) is not an interior point of G.

Proof. Let
oty =Flz+tly—z)): A =R,

where A = [0,T) is the largest half-interval of the ray ¢ > 0 such that x + ¢(y — z) € int G whenever
t € A. Note that the function ¢ is three times continuously differentiable on A and that

T=m;\(y) (3.3)

(the definition of the Minkowsky function; here 07! = +00).
From the fact that F is ¢-self-concordant barrier for G it immediately follows (see Proposition (i)

that
¢/ (1) < 9Y2\/¢" (1),

I (t) > 2(t),t € A, (3.4)

where ¥(t) = ¢/(t). Note that (0) = DF(z)[y — x] is positive by assumption and + is nondecreasing (as
the derivative of a convex function), so that ¢ is positive on A. From (3.4) and the relation ¢ (0) > 0 it
follows that ¥ > 0. In view of the latter relation and since 9(-) > 0, we can rewrite (3.4)) as

(' @) = (Y2 () =97,

or, which is the same,

whence

b(t) > 0 ye A (3.5)
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The left hand side of the latter relation is bounded on any segment [0,7"], 0 < 7" < T, and we conclude

that

T< U

$(0
Recalling that T'= 7,1 (y) and that 1(0) = DF(z)[y — z], we come to (3.2)). m
I. Semiboundedness. For any x € int G and y € G one has

~

8

DF(z)ly — x] < 9. (3.6)

Proof. The relation is evident in the case of DF(x)[y — ] < 0; for the case DF(z)[y — ] > 0 the relation
is an immediate consequence of (3.2)), since 7, (y) < 1 whenever y € G. n

II. Upper bound. Let x,y € int G. Then

Fly)y <Flx)+9In ——. 3.7
(1) < Pla) + 9o s (37)
Proof. For 0 <t <1 we clearly have
_ (1 7 t)’”m(y) .
7Ta;+t(y—:1;)(y) - 1 _ t7T$(y) )
from (3.6)) applied to the pair (z + t(y — z);y) it follows that
DF(x+t(y — )y — [z +t(y — 2)]]| < ITape(y—a)(¥),
whence ( _
1 —t)m:(y
1—-t)DF — —z < Y9—-"
(1= ODFG +tly =)y - a] <0 = B,
or »
T (Y
DF t(y — —r < Y9———.
(@ +t(y —2))ly —a] < I — 170 (3)
Integrating over ¢t € [0, 1], we come to
Fy)— F(x) <d91In ,
(1) = () < 9n s
as required. m
ITI. Lower bound. Let z,y € int G. Then
1
F(y) = F(z) + DF(z)[y — 2] + In ————— — m (y). (3.8)
1 -7 (y)

Proof. Let ¢(t) = F(x +tly — 1)), -T- < t < T = 7w, 1(t), where T_ is the largest ¢ such that
x —t(y — z) € G. By Proposition B.1.1](i) ¢ is a self-concordant barrier for A = [~T_, T}, and therefore
this function is self-concordant on A; the closed unit Dikin ellipsoid of ¢ centered at ¢ € int A should
therefore belong to the closure of A (Lecture 2, I.), which means that

t+ (") <T, 0<t<T
(here 07/2 = +00). We come to the inequality

') >(T—t)"2, 0<t<T.
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Two sequential integrations of this inequality result in

_ 7L

Fly) = Fla) = () = 0(0) = [ {[ (=) 2aryit = m 7

substituting T' = 7, 1 (y), we come to (3.8)). m
IV. Upper bound on local norm of the first derivative. Let z,y € int G. Then for any h € E one

has
v )

_ 2Py 1/2
e = Ty (PP A (3.9)

IDE(y)[h]| <

Comment: By definition, the first-order derivative of the ¥-self-concordant barrier F' at a point = in
any direction h is bounded from above by v/9 times the z-norm |h|, of the direction. The announced
statement says that this derivative is also bounded from above by another constant times the y-norm of
the direction.

Proof of IV. Since x € int G, the closed unit Dikin ellipsoid W of I’ centered at z is contained in G
(Lecture 2, I.; note that G is closed). Assume, first, that 7, (y) > 0. Then there exists w € G such that

y =+ 7y (w—1).
Consider the image V of the ellipsoid W under the dilation mapping z — z + 7, (y)(w — 2); then
V= {y +h | |h|9: <(1- Ww(y))}

is an | - |;-ball centered at y and at the same time V' C G (since W C G and the dilation maps G into
itself). From the semiboundedness property I. it follows that

DF(y)[h] <Y Yh:y+heq,
and since V' C G, we conclude that
DF(y)[h] <9 Vh:|hls <1 —ma(y),

which is nothing but .

It remains to consider the case when m,(y) = 0, so that the ray [r,y) is contained in G. From
convexity of G it follows that in the case in question y — x is a recessive direction of G: u+t(y —z) € G
whenever u € G and ¢t > 0. In particular, the translation V= W + (y — ) of W by the vector y — x
belongs to G; V is nothing but the | - |,-unit ball centered at y, and it remains to repeat word by word
the above reasoning. m

V. Uniqueness of minimizer and Centering property. F' is nondegenerate if and only if G does
not contain lines. If G does not contain lines, then F attains its minimum on int G if and only if G is
bounded, and if it is the case, the minimizer x}, - the F-center of G - is unique and possesses the following
Centering property:

The closed unit Dikin ellipsoid of F' centered at x7, is contained in G, and the ¥ + 240 times larger
concentric ellipsoid contains G:

[L‘EG:>|ZZ?—$>;;~9¢}§’L9+2\/T9. (3.10)

Proof. As we know from Lecture 2, II., the recessive subspace Er of any self-concordant function is
also the recessive subspace of its domain: int G + Er = int G. Therefore if G does not contain lines,
then Er = {0}, so that F is nondegenerate. Vice versa, if G contains a line with direction h, then
y=x+th €int G for all x € int G and all ¢t € R, from semiboundedness (see I.) it immediately follows
that DF(x)[y — 2] = DF(z)[th] < ¥ for all z € int G and all ¢t € R, which implies that DF(z)[h] = 0.
Thus, F is constant along the direction h at any point of int G, so that D2F(x)[h,h] = 0 and therefore
F' is degenerate.

From now on assume that G does not contain lines. If G is bounded, then F, of course, attains its
minumum on int G due to the standard compactness reasons. Now assume that F' attains its minimum
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on int G; due to nondegeneracy, the minimizer z% is unique. Let W be the closed unit Dikin ellipsoid
of F centered at z}; as we know from I., Lecture 2, it is contained in G (recall that G is closed). Let
us prove that the ¥ + 2v/9 times larger concentric ellipsoid W contains G; this will result both in the
boundedness of G and in the announced centering property and therefore will complete the proof.

Lemma 3.2.1 Let x € int G and let h be an arbitrary direction with |h|, = 1 such that DF(x)[h] > 0.
Then the point x + (9 + 23/0)h is outside the interior of G.

Note that Lemma immediately implies the desired inclusion G C W, since when = = z% is the
minimizer of F', so that DF (z)[h] = 0 for all h, the premise of the lemma is valid for any h with |h|, = 1.
Proof of Lemma. Let ¢(t) = D?F(x + th)[h,h] and T = sup{t | = + th € G}. From self-concordance
of F it follows that

¢'(t) > —20°2(t), 0<t < T,

whence

so that

1 1
- <t 0<t<T
o(t)  Vo(0)
In view of ¢”'(0) = |h|2 = 1 we come to
SH)> — 0<t<T
— (1 +t)27 )

which, after integration, results in

DF(x+rh)[h]E/OT¢(t)dt>/0T (1+1t)2dt: 1:—7‘

L 0<r<T. (3.11)

Now, let ¢ > 1 be such that y = z + th € G. Then, as we know from the semiboundedness relation (3.2]),
(t—r)DF(x +rh)[h] = DF(x +rh)[y — (x + rh)] < 9.
Combining the inequalities, we come to

1 9
t<pq LENY (3.12)
r
Taking here r = 1/2, we get certain upper bound on ¢; thus, T' = sup{t | x +th € G} < oo, and (3.12) is
valid for t = T. If T > /0, then (3.12) is valid for t = T, r = v/9, and we come to

T <9+ 2V, (3.13)

this latter inequality is, of course, valid in the case of T < /9 as well. Thus, T always satisfies 1D
By construction, & + Th is not an interior point of G, and, consequently, x + [} + 2\/1>9]h also is not an
interior point of G, as claimed. m

Corollary 3.2.1 Let h be a recessive direction of G, i.e., such that © + th € G whenever v € G and
t > 0. Then F 1is nonincreasing in the direction h, and the following inequality holds:

—DF(z)[h] > \/D?F(x)[h,h], Vz € int G. (3.14)

Proof. Let x € int G; since h is a recessive direction, y = = + th € G for all ¢ > 0, and I. implies
that DF(z)[y — ] = DF(x)[th] < 9 for all ¢ > 0, whence DF(x)[h] < 0; thus, F indeed is nonincreasing
in the direction h at any point x € int G. To prove (3.14]), consider the restriction f(¢) of F' onto the
intersection of the line x+Rh with G. Since h is a recessive direction for G, the domain of f is certain ray
A of the type (—a,c0), a > 0. According to Proposition (i)7 f is self-concordant barrier for the ray
A. Tt is possible that f is degenerate: Ey # {0}. Since f is a function of one variable, it is possible only
it A = E; =R (see IL., Lecture 2), so that f” = 0; in this case is an immediate consequence of
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already proved nonnegativity of the left hand side in the relation. Now assume that f is nondegenerate.
In view of V. f does not attain its minimum on A (since f is a nondegenerate self-concordant barrier for
an unbounded domain). From VIII., Lecture 2, we conclude that A(f,¢) > 1 for all ¢ € A. Thus,

_ (£(0)* _ (DF(x)[h])?
L<A(£,0) = £(0) B D2F(x)[h,h]’

which combined with already proved nonpositivity of DF(z)[h] results in (3.14]). =
VI. Geometry of Dikin’s ellipsoids. For x € int G and h € E let

pe(h) =inf{r>0| 2+r'he G}

this is nothing but the (semi)norm of h associated with the symmetrization of G with respect to z, i.e.,
the norm with the unit ball
G,={yeE| xztyeG}

One has
pa(h) < |hle < (0 + 2V0)ps(h). (3.15)

Proof. The first inequality in (3.15) is evident: we know that the closed unit Dikin ellipsoid of F'
centered at x is contained in G (since F' is self-concordant and G is closed, see I, Lecture 2). In other

words, G contains the unit | - |, ball W (x) centered at x; by definition, the unit p,(-)-ball centered at z

is the largest symmetric with respect to x subset of G and therefore it contains the set /Wl (z), which is
equivalent to the left inequality in . To prove the right inequality, this is the same as to demonstrate
that if ||, = 1, then p,(h) > (9 + 2v¥) 1, or, which is the same in view of the origin of p, that at least
one of the two vectors x = (9 4 2v/0)h does not belong to the interior of G. Without loss of generality, let
us assume that DF(z)[h] > 0 (if it is not the case, one should replace in what follows h with —h). The
pair z, h satisfies the premise of Lemma and this lemma says to us that the vector = + (¢ + 2\/5)h
indeed does not belong to the interior of G. m

VII. Compatibility of Hessians. Let x,y € int G. Then for any h € E one has

9+ 20

2
1—m(y)> D2F(z)[h, h). (3.16)

D*F(y)[h, h] < (

Proof. By definition of the Minkowski function, there exists w € G such that

y=z+ '/Tm(y)(w - :L’) = [1 - Wm(y)]x + Wx(y)w'

Now, if |h|, < 1, then 2 + h € G (since the closed unit Dikin ellipsoid of F' centered at x is contained in

@), so that the point
y+[1—m(y)lh=[1-m]@+h)+m(y)w

belongs to G. We conclude that the centered at y | - |,-ball of the radius 1 — m,(y) is contained in G and
therefore is contained in the largest symmetric with respect to x subset of G; in other words, we have
Ihle <1 —ma(y) = py(h) <1,
or, which is the same,
py(h) < [1 - Tra:(y)]_lm‘a:? Vh.
Combining this inequality with (3.15]), we come to (3.16[). m

We have established the main properties of self-concordant barriers; these properties, along with the
already known to us properties of general self-concordant functions, underly all our further developments.
Let me conclude with the statement of another type:
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VIII. Existence of a self-concordant barrier for a given domain. Let G be a closed convex
domain in R™. Then there exists a v-self-concordant barrier for GG, with

¥ < O(1)n,

O(1) being an appropriate absolute constant. If G does not contain lines, then the above barrier is given

by
F(z) = O(1) In Vol{P,(G)},

where O(1) is an appropriate absolute constant, Vol is the n-dimensional volume and
Po(G)={¢| £"(z—2) <1 V2 € G}

is the polar of G with respect to x.

I shall not prove this theorem, since we are not going to use it. Let me stress that to apply the theory
we are developing to a particular convex problem, it is necessary and more or less sufficient to point out
an explicit self-concordant barrier for the corresponding feasible domain. The aforementioned theorem
says that such a barrier always exists, and thus gives us certain encouragement. At the same time, the
“universal” barrier given by the theorem usually is too complicated numerically, since straightforward
computation of a multidimensional integral involved into the construction is, typically, an untractable
task. In the mean time we shall develop certain technique for constructing ”computable” self-concordant
barriers; although not that universal, this technique will equip us with good barriers for feasible domains
of a wide variety of interesting and important convex programs.
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3.3 Exercises: Self-concordant barriers

Let us start with a pair of simple exercises which will extend our list of examples of self-concordant
barriers.

Exercise 3.3.1 #* Let f(x) be a convex quadratic form on R™, and let the set Q = {x | f(x) < 0} be
nonempty. Prove that

F(z) = —In(—f(2))

is a 1-self-concordant barrier for G = cl Q.
Derive from this observation that if G C R™ is defined by a system

fl(.ﬁ) < 0, ¢ = 1, ceey M,
of convex quadratic inequalities which satisfies the Slater condition
Jz: fi(x) <0,i=1,...,m,

then the function

is an m-self-concordant barrier for G.
Note that the result in question is a natural extension of Corollary

Exercise 3.3.2 *
1) Let G be a bounded convex domain in R™ given by m linear or convex quadratic inequalities
fi(z) <0 satisfying the Slater condition:

G={zeR™]| fj(x) <0, j=1,...m}.

Prove that if m > 2n, then one can eliminate from the system at least one inequality in such a way, that
the remaining system still defines a bounded domain.

2) Derive from 1) that if {Ga}acr are closed convex domains in R™ with bounded and nonempty
intersection, then there exist an at most 2n-element subset I' of the index set I such that the intersection
of the sets G, over a € I' also is bounded.

Note that the requirement m > 2n in the latter exercise is sharp, as it is immediately demonstrated by
the n-dimensional cube.

Exercise 3.3.3 #1 Prove that the function

F(xz) = —InDet x
is m-self-concordant barrier for the cone S of symmetric positive semidefinite m X m matrices.
Those who are not afraid of computations, are kindly asked to solve the following

Exercise 3.3.4 Let
K=A{(t,x) e RxR"| t > |z|2}

be the ”ice cream” cone. Prove that the function
F(z) = —In(t* — |z[3)

is a 2-self-concordant barrier for K.
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My congratulations, if you have solved the latter exercise! In the mean time we shall develop technique
which will allow to demonstrate self-concordance of numerous barriers (including those given by the three
previous exercises) without any computations; those solved exercises - especially the latter
one, will, T believe, appreciate this technique.

Now let us switch to another topic. As it was announced in Lecture 1 and as we shall see in the
mean time, the value of the parameter of a self-concordant barrier is something extremely important:
this quantity is responsible for the Newton complexity (i.e., # of Newton steps) of finding an e-solution
by the interior point methods associated with the barrier. This is why it is interesting to realize what
the value of the parameter could be.

Let us come to the statement announced in the beginning of Lecture 3:

(P): Let F be v-self-concordant barrier for a closed convex domain G C R™. Then either G = R™ and
F = const, or G is a proper subset of R" and ¢ > 1.

Exercise 3.3.5 #* Prove that the only self-concordant barrier for R™ is constant.

Exercise 3.3.6 #* Prove that if A is a segment with a nonempty interior on the axis which differs from
the whole axis and f is a ¥-self-concordant barrier for A, then 9 > 1. Using this observation, complete

the proof of (P).

(P) says that the parameter of any self-concordant barrier for a nontrivial (differing from the whole space)
convex domain G is > 1. This lower bound can be extended as follows:

(Q) Let G be a closed convex domain in R™ and let uw be a boundary point of G. Assume that there is
a neighbourhood U of w where G is given by m independent inequalities, i.e., there exist m continuously
differentiable functions g1, ..., g, on U such that

GNU={xeU| gj(x) >0, j=1,...,m}, gj(u)=0,j=1,...,m,

and the gradients of g; at u are linearly independent. Then the parameter ¥ of any self-concordant barrier
F for G is at least m.

We are about to prove (Q). This is not that difficult, but to make the underlying construction clear, let
us start with the case of a simple polyhedral cone.

Exercise 3.3.7 #* Let
G={zeR"| z;>0,i=1,..,m},

where x; are the coordinates in R™ and m is certain positive integer < n, and let F be a 9-self-concordant
barrier for G. Prove that for any x € int G one has

0
—xi—F(x)>1,i=1,....m; 1
v (@) 2 1, i = L (3.17)

derive from this observation that the parameter ¥ of the barrier F is at least m.

Now let us look at (Q). Under the premise of this statement G locally is similar to the above polyhedral
cone; to make the similarity more explicit, let us translate G to make u the origin and let us choose
the coordinates in R™ in such a way that the gradients of g; at the origin, taken with respect to these
coordinates, will be simply the first m basic orths. Thus, we come to the situation when G contains the
origin and in certain neighbourhood U of the origin is given by

GNU={z €U | z; > hi(x),i=1,...,m},

where h; are continuously differentiable functions such that k;(0) = 0, h}(0) =0
Those who have solved the latter exercise understand that that what we need in order to prove (Q)
is certain version of (3.17), something like

0
6l‘i

where z(r) is the vector with the first m coordinates equal to > 0 and the remaining ones equal to 0
and «a(r) — 0 as r — +0.
Relation of the type (3.18)) does exist, as it is seen from the following exercise:

-r

Flz(r)>1—ar), i=1,...m, (3.18)
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Exercise 3.3.8 #* Let f(t) be a 9-self-concordant barrier for an interval A = [~a,0], 0 < a < 400, of
the real axis. Assume that t < 0 is such that the point ~t belongs to A, where
v > (VI +1)2
Prove that i )
d+1
_FE>1— (j) (3.19)

Derive from this fact that if F' is a 9-self-concordant barrier for G C R™, z is a boundary point of G and
x is an interior point of G such that z +~y(x — z) € G with v > (VI +1)?, then

_DF()[z—12] > 1— (‘/5;”)2. (3.20)

Now we are in a position to prove (Q).

Exercise 3.3.9 #* Prove (Q).
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Chapter 4

Basic path-following method

The results on self-concordant functions and self-concordant barriers allow us to develop the first poly-
nomial interior point scheme - the path-following one; on the qualitative level, the scheme was presented
in Lecture I.

4.1 Situation

Let G C R™ be a closed and bounded convex domain, and let ¢ € R™, ¢ # 0. In what follows we deal
with the problem of minimizing the linear objective ¢« over the domain, i.e., with the problem

P: minimize ¢’z s.t. x € G.

I shall refer to problem P as to a convex programming program in the standard form. This indeed is a
universal format of a convex program, since a general-type convex problem

minimize f(u) s.t. g;j(u) <0,j=1,...,m,ue HC RF

associated with convex continuous functions f, g; on a closed convex set H always can be rewritten as a
standard problem; to this end it clearly suffices to set

T = (tﬂu)7 c= (1a0707"'70)Ta G= {(t7u) | S Ha g](u) < Oa .7 = 13"'ama f(l‘) —t< 0}

The feasible domain G of the equivalent standard problem is convex and closed; passing, if necessary,
to the affine hull of G, we enforce G to be a domain. In our standard formulation, G is assumed to
be bounded, which is not always the case, but the boundedness assumption is not so crucial from the
practical viewpoint, since we can approximate the actual problem with an unbounded G by a problem
with bounded feasible domain, adding, say, the constraint |z|; < R with large R.

Thus, we may focus on the case of problem in the standard form P. What we need to solve P by an
interior point method, is a 1-self-concordant barrier for the domain, and in what follows we assume that
we are given such a barrier, let it be called F. The exact meaning of the words "we know F” is that,
given = € int GG, we are able to compute the value, the gradient and the Hessian of the barrier at x.

4.2 F-generated path-following method

Recall that the general path-following scheme for solving P is as follows: given convex smooth and
nondegenerate barrier F' for the feasible domain G of the problem, we associate with this barrier and the
objective the penalized family

Fi(z) =tc"x + F(z) : int G — R,

t > 0 being the penalty parameter, and the path of minimizers of the family

x*(t) = argmin Fy(-)
int G

47
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which is well-defined due to nondegeneracy of F' and boundedness of G. The method generates a sequence
x; € int G which approximates the sequence x*(¢;) of points of the path along certain sequence of values
of the penalty parameter ¢; — co; namely, given current pair (¢;, ;) with x; being ”close” to x*(¢;), at an
iteration of the method we replace ¢; by a larger value of the parameter ¢;,; and then update x; into an
approximation x;; to our new target point 2*(¢;11). To update x;, we apply to the new function of our
family, i.e., to Fy,,,, a method for smooth unconstrained minimization, x; being the starting point. This
is the general path-following scheme. Note that a self-concordant barrier for a bounded convex domain
does satisfy the general requirements imposed by the scheme; indeed, such a barrier is convex, C? smooth
and nondegenerate (the latter property is given by V., Lecture 3). The essence of the matter is, of course,
in the specific properties of a self-concordant barrier which make the scheme polynomial.

4.3 Basic path-following scheme

Even with the barrier fixed, the path-following scheme represents a family of methods rather than a single
method; to get a method, one should specify

e policy for updating the penalty parameter;
e what is the ”working horse” - the optimization method used to update x’s;

e what is the stopping criterion for the latter method, or, which is the same, what is the ”closeness
to the path z*(-)” which is maintained when tracing the path.

In the basic path-following method we are about to present the aforementioned issues are specified as
follows:

e we fix certain parameter v > 0 - the penalty rate - and update t’s according to the rule

kA
Vo

tiv1 = (1 + )ti; (41)

e to define the notion of ”closeness to the path”, we fix another parameter x € (0,1) - the path
tolerance - and maintain along the sequence {(¢;,2;)} the closeness relation, namely, the predicate

Colt,z): {t>0V&{z € int G}Y&AN(F,, ) = \/ [V, Fy(2)|T[V2F(2) - [V. Fy(z)] < k) (4.2)

(we write V2F instead of V2F}, since F differs from F; by a linear function);

e the updating z; — x;4; is given by the damped Newton method:

1
I+1 l 2 l 1 l
Yy Yy 1 )\( Fti+1 ’ yl) [ T (y )] tit (y ) ( )

the recurrency starts at y° = x; and is continued until the pair (¢;11,%') turns out to satisfy the
closeness relation Cy(-,-); when it happens, we set x;,1; = %', thus coming to the updated pair

(tit1, Tig1)-

The indicated rules specify the method, up to the initialization rule - where to take the very first pair
(to, xzo) satisfying the closeness relation; in the mean time we will come to this latter issue. What we are
interested in now are the convergence and the complexity properties of the method.

4.4 Convergence and complexity

The convergence and the complexity properties of the basic path-following method are described by the
following two propositions:
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Proposition 4.4.1 [Rate of convergence] If a pair (t,x) satisfies the closeness relation P, with certain
Kk < 1/4, then

T_*<X :19 K
cx C_t’X +1

Vo, (4.4)

c* being the optimal value in P and ¥ being the parameter of the underlying self-concordant barrier F.
In particular, in the above scheme one has

7

L I
cx c < *toeXp{ ()\/;9

to Vo

with positive constant O(1) depending on v only.

}, (4.5)

Proof. Let 2* = z*(t) be the minimizer of F; let us start with proving that

0,
e —c* < e (4.6)
in other words, when we are exactly on the trajectory, the residual in terms of the objective admits
an objective-independent upper bound which is inverse proportional to the penalty parameter. This is

immediate; indeed, denoting by 21 a minimizer of our objective ¢’z over G, we have

VoFi(2*) =0=tc=—F'(2%) = t(c"ow — o) =t(cTow — c*) = [F' (2]  (aT —2%) <0

(the concluding inequality is the Semiboundedness property I., Lecture 3, and follows.
To derive from (4.6), let us act as follows. The function Fy(z) is self-concordant on int G (as
a sum of two self-concordant functions, namely, F and a linear function tc’ z, see Proposition (ii))
and, by assumption, A = A\(F,z) < k < 1; applying (see Lecture 2), we come to
< K

x* =
1—k’

(4.7)

|z — ™

where | - |+ is the Euclidean norm defined by the Hessian of F}, or, which is the same, of F, at z*. We
now have
te=—F'(z*) =

t(cTe — cTa*) = [F'(a*)]T (" — 2) < |&* — a|p- sup{ DF(z*)[A] | |h
s ME, ) < 7=V

=l|z" -z

(the concluding inequality follows from (4.7)) and the fact that F is a 1-self-concordant barrier for G, so
that A(F,-) < v4). Thus,
T T, * K
— < —V, 4.8
|c" @ cx|7t(1_ﬂ)\/> (4.8)
which combined with (4.6]) results in (4.4]). m
Now we come to the central result

Proposition 4.4.2 [Newton complexity of a step] The updating recurrency 1s well-defined, i.e.,
it keeps the iterates in int G and terminates after finitely many steps; the Newton complexity of the
recurrency, i.e., the # of Newton steps before termination, does not exceed certain constant N
which depends on the path tolerance k and the penalty rate v only.

Proof. As we have mentioned in the previous proof, the function Fy,, , is self-concordant on int G' and
is below bounded on this set (since G is bounded). Therefore the damped Newton method does keep the
iterates 4! in int G and ensures the stopping criterion AMFy y!) < k after a finite number of steps (IX.,
Lecture 2). What we should prove is the fact that the Newton complexity of the updating is bounded
from above by something depending solely on the path tolerance and the penalty rate. To make clear why
it is important here that F' is a self-concordant barrier rather than an arbitrary self-concordant function,
let us start with the following reasoning.
We already have associated with a point = € int G the Euclidean norm

(hla = \/BTF" (2)h = \[WT /()b
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in our case F' is nondegenerate, so that |- |, is an actual norm, not a seminorm. Let |- |% be the conjugate

norm:
lu|% = max{uTh | |h|, < 1}.

By definition of the Newton decrement,

MFy,x) = max{[Vo F(2)]"h | By < 1} = [VaFy(2)]; = [te + F'(2)[;, (4.9)
and similarly
MNFE,z) = |F'(z)]%. (4.10)
Now, (t;, ;) satisfy the closeness relation A\(F, z) < k, i.e.
tic+ F'(2)];, < &, (4.11)

and F is ¥-self-concordant barrier, so that A(F, z;) < V9, or, which is the same in view of 1)

|F ()], < V9. (4.12)
Combining and (4.12]), we come to

tiely, <k + V9,

whence
YK

Vi

(ti1 = t)els, = s lte

Combining the resulting inequality with (4.11)), we come to

S+

MFy o wi) = i+ ()5, < v+ 1+ %h < 3y (4.13)

(the concluding inequality follows from the fact that the parameter of any nontrivial self-concordant
barrier is > 1, see the beginning of Lecture 3). Thus, the Newton decrement of the new function Fj,,
at the previous iterate x; is at most the quantity 3~; if v and & are small enough, this quantity is < 1/4,
so that x; is within the region of the quadratic convergence of the damped Newton method (see IX.,
Lecture 2), and therefore the method quickly restores the closeness relation. E.g., let the path tolerance
x and the penalty rate v be set to the value 0.05. Then the above computation results in

)\(Fti+17xi) S 015)

and from the description of the local properties of the damped Newton method as applied to a self-
concordant function (see (2.19), Lecture 2) it follows that the Newton iterate y' of the starting point

y" = x;, the Newton method being applied to Fj, 41, satisfies the relation

AMFy, 0 y") <2 % (0.15)% = 0.045 < 0.05 = &,

i.e., for the indicated values of the parameters a single damped Newton step restores the closeness to the
path after the penalty parameter is updated, so that in this particular case N = 1. Note that the policy
for updating the penalty - which is our presentation looked as something ad hoc - in fact is a consequence
of the outlined reasoning: growth of the penalty given by

o(1
t—(1+ o) ))t
VY
is the highest one which results in the relation A(Fy,_ ,,z;) < O(1).

The indicated reasoning gives an insight on what is the intrinsic nature of the method: it does not
allow, anyhow, to establish the announced statement in its complete form, since it requires certain bounds
on the penalty rate. Indeed, our complexity results on the behaviour of the damped Newton method
bound the complexity only when the Newton decrement at the starting point is less than 1. To ”globalize”
the reasoning, we should look at the initial residual in terms of the objective the Newton method is applied
to rather than in terms of the initial Newton decrement. To this end let us prove the following
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Proposition 4.4.3 Let t and 7 be two values of the penalty parameter, and let (t,x) satisfy the closeness
relation Cy(-,-) with some k < 1. Then

Fr(2) — min Fr(u) < p(k) + 7 (1- g), (4.14)
where, as always,
p(s) =—In(1—s) —s.
Proof. The path z*(7) is given by the equation
F'(u) + 1¢ = 0; (4.15)

since F”’ is nondegenerate, the Implicit Function Theorem says to us that 2*(¢) is continuously differen-
tiable, and the derivative of the path can be found by differentiating (4.15]) in 7:

(@) (7) = —[F"(2*(7))] e (4.16)

Now let
¢(r) = [rc"a* (1) + F(a* (1))] = [rc"a" (1) + F(a*(7))]
be the residual in terms of the objective F;(-) taken at the point z*(t). We have
(1) = cTa*(t) = "o (1) = [re + F'(2"())]" (27) (1) = c"a*(t) — "a"(7)
(see (4.15)). We conclude that
o) = /(1) = 0 (4.17)

and that ¢'(- ) = cTac*(t) —cT'z*(7) is continuously differentiable; differentiating in 7 once more and taking
into account (4.16)), we come to

() =~ @) () = F )] e
which combined with (4.15|) results in

0<6"(7) = [P [ ()] F @ (1) = 5 X(Fat () < 5 (418)

(we have used the fact that F' is 9¥-self-concordant barrier).

From (4.17)), (4.18) it follows that

o(r) < Ip(1 = 7). (4.19)
Now let us estimate the residual invloved into our target inequality :
Fr(z) —min Fr (u) = Fr(z) = Fr(27(7)) = [Fr(2) = Fr (27 (0))] + [Fr (27 (1)) = Fr(27(7))] =

= [Fr(z) = Fr(z* ()] + 6(7) = [Fi(2) = By (2" ()] + (¢ = 7)e’ (& — 27(1)) + o(7); (4.20)
since Fy(-) is self-concordant and A(F;,z) < k < 1, we have Fy(z) — Fy(z*(t)) = Fy(z) — min, Fy(u) <
p(A(Fy, x)) (see (2.16]), Lecture 2), whence

Fy(a) - F(" (1) < p(x). (4.21)

says to us that |7 (z — z*(t))| < k(1 — k)"0t~ 1; combining this inequality, (4.20) and (4.19)), we
come to (4.14]). =

Now we are able to complete the proof of Proposition Applying (4.14) to x = z;, t = t; and
T=ty1=(1+ %)ti, we come to

Ftl+1( ) muinFtH1 (u) ( ) +—t 19p<

- m)

and the left hand side of this inequality is bounded from above uniformly in ¢ > 1 by certain function
depending on « and ~ only (as it is immediately seen from the evident relation p(s) < O(s?), |s| < 3 [I)
| |

An immediate consequence of Propositions [{.4.1] and [£:4.2] is the following

lhere is the corresponding reasoning: if s = v9~1/2 < 1/2, then g = 9p(y9~1/2) < O(1)y2 due to 0 < s < 1/2; if
s> 1/2, then ¥ < 442, and consequently g < 442 In~; note that 9 > 1. Thus, in all cases the last term in the estimate is
bounded from above by certain function of ~
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Theorem 4.4.1 Let problem P with a closed convex domain G C R™ be solved by the path-following
method associated with a ¥-self-concordant barrier F, let k € (0,1) and v > 0 be the path tolerance and
the penalty rate used in the method, and let (to,xo) be the starting pair satisfying the closeness relation
Cw(+,+). Then the absolute inaccuracy ¢ x; — c* of approzimate solutions generated by the method admits
the upper bound
20 v o
T * —1
cr,—c < —(14+— i=1,2,.. 4.22
K3 — tO ( + \/@) ) ) ( )

and the Newton complexity of each iteration (t;,x;) — (ti+1,Zi+1) of the method does not exceed certain
constant N depending on k and y only. In particular, the Newton complezity (total # of Newton steps)
of finding an e-solution to the problem, i.e., of finding x € G such that ¢’z — c* < ¢, is bounded from
above by

O(1)Vd1n (ti + 1) ,

with constant factor O(1) depending solely on k and 7.

4.5 Initialization and two-phase path-following method

The aforementioned description of the method is uncomplete - we know how to follow the path z*(-),
provided that we once came close to it, but we do not know yet how to get close to the path to start the
tracing. There are several ways to resolve this initialization difficulty, and the simplest one is as follows.
We know where the path x*(t) ends, where it tends to as ¢ — oo - all cluster points of the path belong
to the optimal set of the problem. Let us look where the path starts, i.e., where it tends as t — 4+0. The
answer is evident - as t — 40, the path

z*(t) = argmin(tc’ z + F(z))

tends to the analytic center of G with respect to F, to the minimizer x%, of F over G (since G is bounded,
we know from V., Lecture 3, that this minimizer does exist and is unique). Thus, all F-generated paths
associated with various objectives c¢ start at the same point - the analytic center of G - and run away
from this point as ¢ — 0o, each to the optimal set associated with the corresponding objective. In other
words, the analytic center of G is close to all the paths generated by F', so that it is a good position to
start following the path we are interested in. Now, how to come to this position? An immediate idea
is as follows: the paths associated with various objectives cover the whole interior of G: if x # x* is an
interior point of GG, then a path passing through x is given by any objective of the form

d=—A\F'(z),

A being positive; the path with the indicated objective passes through x when the value of the penalty
parameter is exactly A. This observation suggests the following initialization scheme: given a starting
point T € int G, let us follow the artificial path

u*(7) = argmin[rd’ z + F(z)], d= —F'(Z)

in the ”inverse time”, i.e., decreasing the penalty parameter 7 rather than increasing it. The artificial
path clearly passes through the point Z:
7=t (1),

and we can start tracing it with the pair (79 = 1,ug = ) which is exactly at the path. When tracing the
path in the outlined manner, we in the mean time come close to the analytic center of G and, consequently,
to the path z*(t) we are interested in; when it happens, we can switch to tracing this target path.

The outlined ideas underly the

Two-Phase Path-Following Method:
Input: starting point Z € int G; path tolerance x € (0, 1); penalty rate v > 0.

Phase 0 [approximating the analytic center] Starting with (79,u0) = (1,Z), generate the sequence
{(7,u;)}, updating (t;,u;) into (7;4+1,ui+1) as follows:
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-1
Tiyl = [14- 7] i

VY
e to get u;+1, apply to the function
ﬁn (z) = 7dTx + F(x)

the damped Newton method

1 ~
+1 _ 1 2 IN—1 l
y =y - ——|V2F(y VeFr  (y
1+/\(meyl)[ ()] ()

starting with y° = wu;. Terminate the method when the pair (7;41,%') turns out to satisfy the

predicate . ~
Coja(myu) : {7 > 0}&{u € int GR&ANFr,u) < K/2}; (4.23)
when it happens, set
w1 =y
e after (T;41,u;41) Is formed, check whether
3
AEF uip1) < 17 (4.24)

if it happens, terminate Phase 0 and call u* = wu;y1 the result of the phase, otherwise go to the
next step of Phase 0.

Initialization of Phase 1. Given the result u* of Phase 0, set
to = max{t | A(Fi,u*) < K}, o =u”, (4.25)

thus obtaining the pair (to,xo) satisfying the predicate Cy(-, ).

Phase 1. [approximating optimal solution to P] Starting with the pair (to, o), form the sequence
{(t;,z;)} according to the Basic path-following scheme from Section[4.3, namely, given (t;,x;), update it
into (ti+1,2i+1) as follows:

tit1 = [1 + 7} ti;

Vi

e to get w;11, apply to Fy,,, the damped Newton method

1
1+ /\(Ft1:+1vxi)

I+

y' =y [VZF(H] 'VaF,, (0, (4.26)

starting with y° = x;. Terminate the method when the pair (t;1,y') turns out to satisfy the
predicate Cy(+,-); when it happens, set
zi1 =y,

thus obtaining the updated pair satisfying the predicate C,, and go to the next step of Phase 1.

The properties of the indicated method are described in the following statement:

Theorem 4.5.1 Let problem P be solved by the two-phase path-following method associated with a 9-
self-concordant barrier for the domain G (the latter is assumed to be bounded). Then
(i) Phase 0 s finite and is comprised of no more than

Nini = O(1)V¥d1n (” + 1) (4.27)
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iterations, with no more than O(1) Newton steps at every iteration; here and further O(1) are
constant factors dpending solely on the path tolerance k and the penalty rate v used in the method.

(ii) For any € > 0, the number of iterations of Phase 1 before an e-solution to P is generated, does
not exceed the quantity

Ninain () = O(1)V¥ In (W + 1) ; (4.28)

where

Var g(c¢) = max ¢’z — min ¢’ z,
zeG zeCG

with no more than O(1) Newton steps at every iteration.
In particular, the overall Newton complexity (total # of Newton steps of the both phases) of finding
an e-solution to the problem does not exceed the quantity

Niotar(€) = O(1)vV In Cj + 1) ,

where the data-dependent constant V is given by

V= ﬁVarg(cA) '
1 — 7= (T)
F

Proof.
1°. Following the line of argument used in the proof of Proposition one can immediately verify
that the iterations of Phase 0 are well-defined and maintain along the sequence {(7;,u;)} the predicate

Cy/2(, ), while the Newton complexity of every iteration of the phase does not exceed O(1). To complete
the proof of (i), we should establish upper bound (4.27) on the number of iterations of Phase 0. To this

end let us note that (?K 2(73, u;) means exactly that

A(Ey, ui) = |md + F'(w)]% < k/2, (4.29)

(compare with (4.9))), whence

|>k
Us

We have

F'(@)];, = max{h"F'(@) | |h

vy < 1} = max{DF(@)[] | D*F(a})[h,h] < 1} <

[see IV., Lecture 3, namely, (3.9)]
9

<a= —.
1 —’/TI*F(LE)

We see that the variation (the difference between the minumum and the maximum values) of the linear
form f(y) = y? F/(Z) over the unit Dikin ellipsoid of F' centered at 2% does not exceed 2. Consequently,
the variation of the form on the (9 + 2v/99)-larger concentric ellipsoid W* does not exceed 2a(¥ + 2v/49).
From the Centering property V., Lecture 3, we know that W* contains the whole G; in particular, W*
contains the unit Dikin ellipsoid Wi (u;) of F centered at u; (I., Lecture 2). Thus, the variation of the
linear form y? F’(Z) over the ellipsoid W (u4), and this is nothing but twice the quantity |F' ()., does
not exceed 2a(¥ + 2v/9):
- 90+ 2V9)
F@, <=

Substituting this estimate in (4.30]), we come to
AME,w;) < K/24T1,8.

Taking into account that 7; = (1 + %)_i, we conclude that the stopping criterion A(F,u;) < 3k/4 for
sure is satisfied when 4 is O(1) In(1 + 9(1 — 7« (Z)) "), as claimed in (i).
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29, Now let us verify that
kVar ¢(c)

to > (4.31)
Indeed, since ¢ # 0, it follows from the origin of ¢y (see (4.25))) that
A Fy,u*) = |toc+ F'(u)]5. = k, (4.32)

while from the termination rule for Phase 0 we know that

ANF,u*) = |F'(u")

e < =K

=~ w

we immediately conclude that

K
w2

t0|C

*

Now, as above, ||
centered at u*; this ellipsoid is contained in G (I., Lecture 2), whence |¢

. is the variation of the linear form y”¢ over the closed unit Dikin ellipsoid of F
*+ < Var g(c). Thus,

toVar g(c) > Z,

and (4.31)) follows.
30, In view of (4.32)), the starting pair (to,z9 = u*) for Phase 1 satisfies the predicate C,; applying

Theorem and taking into account (4.31)), we come to (ii). m

4.6 Concluding remarks

We have seen that the basic path-following method for solving P associated with a 1J-self-concordant
barrier F' for feasible domain G of the problem finds an e-solution to P in no more than

N(e) = 0(1)ViIn Cj)

damped Newton steps; here O(1) depends on the path tolerance x and the penalty rate v only, and V is
certain data-dependent quantity (note that we include into the data the starting point Z € int G as well).
When « and « are once for ever fixed absolute constants, then the above O(1) also is an absolute constant;
in this case we see that if the barrier F' is "computable”, i.e., given x and the data vector D(p) identifying
the problem instance, one can compute F(x), F'(x) and F"(z) in polynomial in I(p) = dim D(p) number
of arithmetic operations M, then the method is polynomial (see Lecture 1), and the arithmetic cost of
finding an e-solution by the method does not exceed the quantity

M(e) = O(1)[M +nd|N(¢)
(the term n? is responsible for the arithmetic cost of solving the Newton system at a Newton step).
Consider, e.g., a Linear Programming problem

minimize ¢’ x s.t. a;r:v <bj,j=1,..,m, x € R",

and assume that the system of linear inequalities a;‘-rx <bj, j =1,...,m, satisfies the Slater condition and
defines a polytope (i.e., a bounded polyhedral set) G. As we know from Corollary the standard
logarithmic barrier

F(z)=— Zln(bj - a]Tm)

is m-self-concordant logarithmic barrier for G. Of course, this barrier is ”computable”:
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and we see that the arithmetic cost of computing F(z), F’(z) and F”(x) is O(mn?), while the dimension
of the data vector for a problem instance is O(mn). Therefore the path-following method associated with
the standard logarithmic barrier for the polytope G finds an e-solution to the problem at the cost of

N(e) = O(1)y/imIn (‘; + 1)

Newton steps, with the arithmetic cost of a step O(1)mn? (the arithmetic cost O(n®) of solving the
Newton system is dominated by the cost of assembling the system, i.e., that one of computing F’ and
F"; indeed, since G is bounded, we have m > n). Thus, the overall arithmetic cost of finding an e-solution
to the problem is

M(e) = O(1)m*®n?In (E + 1) ,

so that the ”arithmetic cost of an accuracy digit” is O(m!5n3). In fact the latter cost can be reduced to
O(mn?) by proper implementation of the method (the Newton systems arising at the neighbouring steps
of the method are ”close” to each other, which allows to reduce the average over steps arithmetic cost of
solving the Newton systems), but I am not going to speak about these acceleration issues.

What should be stressed is that the outlined method is fine from the viewpoint of its theoretical
complexity; it is, anyhow, far from being appropriate in practice. The main drawback of the method
is its ”short-step” nature: to ensure the theoretical complexity bounds, one is enforced to increase the
penalty parameter at the rate (1 + 0(1)19_1/ 2), so that the number of Newton steps is proportional to
V9. For an LP problem of a not too large size - say, n = 1000, m = 10000, the method would require
solving several hundreds, if not thousands, linear systems with 1000 variables, which will take hours - time
incomparable with that one required by the simplex method; and even moderate increasing of sizes results
in days and months instead of hours. You should not think that these unpleasant practical consequences
are caused by the intrinsic drawbacks of the scheme; they come from our ”pessimistic” approach to the
implementation of the scheme. It turns out that "most of the time” you can increase the penalty at a
significantly larger rate than that one given by the worst-case theoretical complexity analysis, and still
will be able to restore closeness to the path by a small number - 1-2 - of Newton steps. There are very
good practical implementations of the scheme which use various on-line strategies to control the penalty
rate and result in a very reasonable - 20-40 - total number of Newton steps, basically independent of
the size of the problem; the best examples known to me are the codes developed in the Optimization
Laboratory of our faculty by Gil Roth and Michael Zibulevski. From the theoretical viewpoint, anyhow,
it is important to develop computationally cheap rules for on-line adjusting the penalty rate which ensure
the theoretical O(\/ﬁ) Newton complexity of the method; in the mean time we shall speak about recent
progress in this direction.
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4.7 Exercises: Basic path-following method

The proof of our main rate-of-convergence statement - Proposition - is based on the following fact:
(*) if z belongs to the path z*(t) = argmin,, s[tc’z + F(x)]: x = 2*(t) for certain ¢ > 0, then

c* being the optimal value in P. What is responsible for this remarkable and simple inequality? The
only property of a ¥-self-concordant barrier F' used in the corresponding place of the proof of Proposition
[44.1) was the semiboundedness property:

DF(x)[y—x] <9 Yz €int G Vy € G. (4.33)

In turn looking at the proof of this property (0., I., Lecture 3), one can find out that the only properties
of F' and G used there were the following ones:

S(¥): G € R™ is a closed convex domain; F is a twice continuously differentiable convex function on
int G such that

DF(x)[h] < 0Y2{D?*F(x)[h, h]}}/? V& € int G Vh € R".

Thus, (4.33]) has nothing to do with self-concordance of F'.

Exercise 4.7.1 # Verify that S(9) implies .

Exercise 4.7.2 # Prove that property S(-) is stable with respect to affine substitutions of argument and
with respect to summation; namely, prove that

1) if the pair (G C R™, F) satisfies S(¥) and y = A(x) = Az + a is an affine mapping from RF into R"
with the image intersecting int G, then the pair (A=Y(G), F(A("))) also satisfies S(¥);

2) if the pairs (G; C R™ F;), i = 1,..,m, satisfy S(¢;) and G = N;G; is a domain, then the pair
(G, >, aF), o >0, satisfies S(>°, ;).

Now let us formulate a simple necessary and sufficient condition for a pair (G, F) to satisfy S(9).

Exercise 4.7.3 # Let ¥ > 0, and let (G C R™, F) be a pair comprised of a closed convex domain and a
function twice continuously differentiable on the interior of the domain. Prove that (G, F) sastisfies S(19)
if and only if the function exp{—9F} is concave on int G. Derive from this observation and the result of
the previous exercise the following statement (due to Fiacco and McCormic):

let g;, 1 = 1,...,m, be convex twice continuously differentiable functions on R"™ satisfying the Slater
condition. Consider the logarithmic barrier

F(z) = =3 In(~0:(x))

for the domain
G={zeR"| gi(x) <0, i=1,..,m}.
Then the pair (G, F) satisfies S(m), and therefore F satisfies relation with ¥ = m. In particular,

let

x € Argminftc”u + F(u))
u€int G

T is below bounded on G and

for some positive t; then f(u) =c
m
Ty — inf f < —.

G t

The next exercise is an ”exercise” in the direct meaning of the word.
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Exercise 4.7.4 Consider a Quadratically Constrained Quadratic Programming program
minimize fo(z) s.t. fj(z) <0, j=1,...,m, x € R",

where
filz) = a:Tij + 2b?m +ci, 7=0,...,m

are convex quadratic forms. Assume that you are given a point T such that f;(Z) <0, j =1,....,m, and
R > 0 such that the feasible set of the problem is inside the ball {z | |z|2 < R}.

1) reduce the problem to the standard form with a bounded feasible domain and point out an (m+ 2)-self-
concordant barrier for the domain, same as an interior point of the domain;

2) write down the algorithmic scheme of the associated path-following method. Fuvaluate the arithmetic
cost of a Newton step of the method.

Now let us discuss the following issue. In the Basic path-following method the rate of updating the
penalty parameter, i.e., the penalty ratio
w = ti+1/ti,

is set to 1+ 0(1)19’1/ 2 ¥ being the parameter of the underlying barrier. This choice of the penalty ratio
results in the best known, namely, proportional to v/¥, theoretical complexity bound for the method. In
Lecture 4 it was explained that this fine theoretically choice of the penalty ratio in practice makes the
method almost useless, since it for sure enforces the method to work according its theoretical worst-case
complexity bound; the latter bound is in many cases too large for actual computations. In practice
people normally take as the initial value of the penalty ratio certain moderate constant, say, 2 or 3, and
then use various routines for on-line adjusting the ratio, slightly increasing/decreasing it depending on
whether the previous updating z; — ;41 took "small” or "large” (say, < 2 or > 2) number of Newton
steps. An immediate theoretical question here is: what can be said about the Newton complexity of a
path-following method where the penalty ratio is a once for ever fixed constant w > 1 (or, more generally,
varies somehow between once for ever fixed bounds w_ < w4, with 1 < w_ < w; < o0). The answer is
that in this case the Newton complexity of an iteration (t;,z;) v (t;+1,2i4+1) is of order of ¥ rather than
of order of 1.

Exercise 4.7.5 Consider the Basic path-following method from Section with rule replaced with
tiy1 = wity,

where w_ <w; <wy and 1 < w_ < wy < 00. Prove that for this version of the method the statement of
Theorem [{-4.1] should be modified as follows: the total # of Newton steps required to find an e-solution
to P can be bounded from above as

O(1)91n (;9 + 1) ,

0€

with O(1) depending only on k,w_,w, .
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Conic problems and Conic Duality

In the previous lecture we dealt with the Basic path-following interior point method. It was explained
that the method, being fine theoretically, is not too attractive from the practical viewpoint, since it is a
routine with a prescribed (and normally close to 1) rate of updating the penalty parameter; as a result,
the actual number of Newton steps in the routine is more or less the same as the number given by the
theoretical worst-case analysis and for sure is proportional to v/4J, ¥ being the parameter of the underlying
self-concordant barrier. For large-scale problems, 9 normally is large, and the # of Newton steps turns
out to be too large for practical applications. The source of difficulty is the conceptual drawback of our
scheme: everything is strictly regulated, there is no place to exploit favourable circumstances which may
occur. As we shall see in the mean time, this conceptual drawback can be eliminated, to certain extent,
even within the path-following scheme; there is, anyhow, another family of interior point methods, the so
called potential reduction ones, which are free of this drawback of strict regulation; some of these methods,
e.g., the famous - and the very first - interior point method of Karmarkar for Linear Programming, turn
out to be very efficient in practice. The methods of this potential reduction type are what we are about
to investigate now; the investigation, anyhow, should be preceded by developing a new portion of tools,
interesting in their own right. This development is our today goal.

5.1 Conic problems

In order to use the path-following method from the previous lecture, one should reduce the problem
to the specific form of minimizing a linear objective over convex domain; we called this form standard.
Similarly, to use a potential reduction method, one also needs to represent the problem in certain specific
form, called conic; I am about to introduce this form.

Cones. Recall that a convex cone K in R"™ is a nonempty convex set with the property
tx € K whenever x € K and t > 0;

in other words, a cone should contain with any of its points the whole ray spanned by the point. A convex
cone is called pointed, if it does not contain lines.
Given a convex cone K C R™, one can define its dual as

K'={scR"|sTe>0Vrec K}.

In what follows we use the following elementary facts about convex cones: let K C R™ be a closed
convex cone and K* be its dual. Then

e K* is closed convex cone, and the cone (K*)* dual to it is nothing but K.

e K is pointed if and only if K* has a nonempty interior; K* is pointed if and only if K has a
nonempty interior. The interior of K* is comprised of all vectors s strictly positive on K, i.e., such
that s”2 > 0 for all nonzero x € K.

e s € K* is strictly positive on K if and only if the set K(s) = {x € K | sTx <1} is bounded.

59
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An immediate corollary of the indicated facts is that a closed convex cone K is pointed and possesses a
nonempty interior if and only if its dual shares these properties.

Conic problem. Let K C R"™ be a closed pointed convex cone with a nonempty interior. Consider
optimization problem

(P): minimize ¢’z st. ze€{b+L}NK,
where
e [ is a linear subspace in R";
e b is a vector from R™.

Geometrically: we should minimize a linear objective (¢I'z) over the intersection of an affine plane (b+ L)
with the cone K. This intersection is a convex set, so that (P) is a convex program; let us refer to it as
to convex program in the conic form.

Note that a program in the conic form strongly resembles a Linear Programming program in the
standard form; this latter problem is nothing but (P) with K specified as the nonnegative orthant R’ .
On the other hand, (P) is a universal form of a convex programming problem. Indeed, it suffices to
demonstrate that a standard convex problem

(S) minimize d*u s.t. u € G C RF,
G being a closed convex domain, can be equivalently rewritten in the conic form (P). To this end it
suffices to represent G as an intersection of a closed convex cone and an affine plane, which is immediate:
identifying R* with the affine hyperplane
= {z=(tu) e R* | t=1},

we can rewrite (S) equivalently as

(S.) minimize ¢’z s.t. x € TNK,

-()

K=c{(t,z)| t>0,t" v cG}

where

and

is the conic hull of G. Tt is easily seen that (S) is equivalent to (S.) and that the latter problem is
conic (i.e., K is a closed convex pointed cone with a nonempty interior), provided that the closed convex
domain G does not contain lines (whih actually is not a restriction at all). Thus, (P) indeed is a universal
form of a convex program.

5.2 Conic duality

The similarity between conic problem (P) and a Linear Programming problem becomes very clear when
the duality issues are concerned. This duality, which is important for developing potential reduction
methods and interesting in its own right, is our now subject.

5.2.1 Fenchel dual to (P)

We are about to derive the Fenchel dual of conic problem (P), and let me start with recalling you what
is the Fenchel duality.

Given a convex, proper, and closed function f on R"™ taking values in the extended real
axis RU {400} ("proper” means that the domain domf of the function f, i.e., the set where
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f is finite, is nonempty; ”closed” means that the epigraph of the function is closeﬂ one can
define its congugate (the Legendre transformation)

fr(s) = sup {s"w — f(x)} = suwp {s"w— f(a)},

zeR" zedom f

which again is a convex, proper and closed function; the conjugacy is an involution: (f*)* = f.

Now, let fi,..., f be convex proper and closed functions on R™ such that the relative
interiors of the domains of the functions (i.e., the interiors taken with respect to the affine
hulls of the domains) have a point in common. The Fenchel Duality theorem says that if the

function .
flx) = filx)
i=1
is below bounded, then
—inf f = min {fi(s1)+ ...+ fi(sk)} (5.1)
S1,...,8k:81+...+s,=0

(note this min in the right hand side: the theorem says, in particular, that it indeed is
achieved). The problem

k
minimize Z fi(s;) s.t. ZS’ =0
i

i=1
is called the Fenchel dual to the problem
minimize Z fi(x).
Now let us derive the Fenchel dual to the conic problem (P). To this end let us set
R = pale) = {

0, reb+ L Folw) = 0, re kK
+o00, otherwise’' 72\ 7 ) 400, otherwise'’

these functions clearly are convex, proper and closed, and (P) evidently is nothing but the problem of
minimizing fi + fo + f3 over R™. To write down the Fenchel dual to the latter problem, we should realize
what are the functions f7*, ¢« = 1,2,3. This is immediate:

0, s=c

* — T — T n = 5
fi(s) =sup{s’w —c x| x € R"} {+oo otherwise’

sTh, seL*

* T —
f3(s) =sup{s’z — 0| € domf> +L} {—1—007 otherwise ’

where L1 is the orthogonal complement to L;

fi(s) =sup{s’z —0| z € domfs = K} = {3_’00’ f)tiervgse ,
where K* is the cone dual to K.

Now, in the Fenchel dual to (P), i.e., in the problem of minimizing f(s1) + f3(s2) + f4(s3) over
S1, S2, S3 subject to s1 + so + s3 = 0, we clearly can restrict s; to be in domf} without violating the
optimal solution; thus, we may restrict ourselves to the case when s; = ¢, s € L+ and s3 € —K*, while
51 + 82 + s3 = 0; under these restrictions the objective in the Fenchel dual is equal to sI'b. Expressing
81, 89, S3 in terms of s = s1 + so = —s3, we come to the following equivalent reformulation of the Fenchel
dual to (P):

(D) minimize b''s s.t. s € {c+ Lt} NK*.

Lequivalently: f is lower semicontinuous, or: the level sets {z | f(z) < a} are closed for every a € R
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Note that the actual objective in the Fenchel dual is s1b = s7b + ¢Tb; writing down (D), we omit the
constant term ¢’'b (this does not influence the optimal set, although varies the optimal value). Problem
(D) is called the conic dual to the primal conic problem (P).

Note that K is assumed to be closed convex and pointed cone with a nonempty interior; therefore
the dual cone K* also is closed, pointed, convex and with a nonempty interior, so that the dual problem
also is conic. Bearing in mind that (K*)* = K, one can immediately verify that the indicated duality is
completely symmetric: the problem dual to dual is exactly the primal one. Note also that in the Linear
Programming case the conic dual is nothing but the usual dual problem written down in terms of slack
variables.

5.2.2 Duality relations

Now let us establish several useful facts about conic duality; all of them are completely similar to what
we know from LP duality.

0. Let (z,s) be a primal-dual feasible pair, i.e., a pair comprised of feasible solutions to (P) and (D).
Then
r+bTs—cTb=2"s>0.
The left hand side of the latter relation is called the duality gap; 0. says that the duality gap is equal to
2Ts and always is nonnegative. The proof is immediate: since x is primal feasible,  — b € L, and since
s is dual feasible, s — ¢ € L, whence
(x=0)"(s—¢)=0,

or, which is the same,
r4+bTs—cTb=2aTs;

the right hand side here is nonnegative, since x € K and s € K*.

1. Let P* and D* be the optimal values in the primal and the dual problem, respectively (optimal value
is 400, if the problem is unfeasible, and —oo, if it is below unbounded). Then

P*+D* > T,

where, for finite a, 00 + a = 00, the sum of two infinities of the same sign is the infinity of this sign
and (400) + (—00) = +o0.

This is immediate: take infimums in primal feasible x and dual feasible s in the relation cTr4+bTs>cTh
(see 0.).

I1. If the dual problem is feasible, then the primal is below boundecﬂ' if the primal problem is feasible,
then the dual is below bounded.

This is an immediate corollary of I.: if, say, D* is < 400, then P* > —o0, otherwise D* + P* would be
—o0, which is impossible in view of I.

II1. Conic Duality Theorem. If one of the problems in the primal-dual pair (P), (D) is strictly feasible
(i.e., possesses feasible solutions from the interior of the corresponding cone) and is below bounded, then
the second problem is solvable, the optimal values in the problems are finite and optimal duality gap
P* +D* — cT'b is zero.

If both of the problems are strictly feasible, then both of them are solvable, and a pair (z*,s*)
comprised of feasible solutions to the problems is comprised of optimal solutions if and only if the duality
gap cTz* 4+ bT's* — cT'b is zero, and if and only if the complementary slackness (x*)Ts* = 0 holds.

Proof. Let us start with the first statement of the theorem. Due to primal-dual symmetry, we can
restrict ourselves with the case when the strictly feasible below bounded problem is (P). Strict feasibility
means exactly that the relative interiors of the domains of the functions f1, fa, f3 (see the derivation of
(D)) have a point in common, due to the description of the domains of f; (the whole space), fo (the affine
plane b+ L), f3 (the cone K). The below boundedness of (P) means exactly that the function f1 + fo+ f3
is below bounded. Thus, the situation is covered by the premise of the Fenchel duality theorem, and

2%i.e., P* > —oo; it may happen, anyhow, that (P) is unfeasible
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according to this theorem, the Fenchel dual to (P), which can be obtained from (D) by substracting the
constant ¢”'b from the objective, is solvable. Thus, (D) is solvable, and the sum of optimal values in (P)
and (D) (which is by ¢T'b greater than the zero sum of optimal values stated in the Fenchel theorem) is
CTb, as claimed.

Now let us prove the second statement of the theorem. Under the premise of this statement both
problems are strictly feasible; from II. we conclude that both of them are also below bounded. Applying
the first statement of the theorem, we see that both of the problems are solvable and the sum of their
optimal values is ¢Z'b. It immediately follows that a primal-dual feasible pair (x, s) is comprised of primal-
dual optimal solutions if and only if ¢’x + bT's = ¢T'b, i.e., if and only if the duality gap at the pair is
0; since the duality gap equals also to 27's (see 0.), we conclude that the pair is comprised of optimal
solutions if and only if 275 = 0. m

Remark 5.2.1 The Conic duality theorem, although very similar to the Duality theorem in LP, is a
little bit weaker than the latter statement. In the LP case, already (feasibility + below boundedness),
not (strict feasibility + below boundedness), of one of the problems implies solvability of both of them
and characterization of the optimality identical to that one given by the second statement of the Conic
duality theorem. A ”word by word” extension of the LP Duality theorem fails to be true for general cones,
which is quite natural: in the non-polyhedral case we need certain qualification of constrains, and strict
feasibility is the simplest (and the strongest) form of this qualification. From the exercises accompanying
the lecture you can find out what are the possibilities to strengthen the Conic duality theorem, on one
hand, and what are the pathologies which may occur if the assumptions are weakened too much, on the
other hand.

Let me conclude this part of the lecture by saying that the conic duality is, as we shall see, useful for
developing potential reduction interior point methods. It also turned out to be powerful tool for analytical
- on paper - processing a problem; in several interesting cases, as we shall see in the mean time, it allows
to derive (completely mechanically!) nontrivial and informative reformulations of the initial setting.

5.3 Logarithmically homogeneous barriers

To develop potential reduction methods, we need deal with conic formulations of convex programs and
should equip the corresponding cones with specific self-concordant barriers - the logarithmically homo-
geneous ones. This latter issue is our current goal.

Definition 5.3.1 Let K C R™ be a a convex, closed and pointed cone with a nonempty interior, and
let 9 > 1 be a real. A function F : int K — R is called ¥-logarithmically homogeneous self-concordant
barrier for K, if it is self-concordant on int K and satisfies the identity

F(tx) = F(z) —9Int Vreint K Vt>0. (5.2)

Our terminology at this point looks confusing: it is not clear whether a ”logarithmically homogeneous
self-concordant barrier” for a cone is a ”self-concordant barrier” for it. This temporary difficulty is
resolved by the following statement.

Proposition 5.3.1 A ¥-logarithmically homogeneous self-concordant barrier F' for K is a nondegenerate
¥-self-concordant barrier for K. Besides this, F satisfies the following identities (x € int K,t > 0):

F'(tz) =t F'(2); (5.3)
F'(z) = —F"(x)z; (5.4)
MN(F,z)= —2TF'(z) = 2TF"(z)x = 9. (5.5)

Proof. Since, by assumption, K does not contain lines, F is nondegenerate (II., Lecture 2). Now let us
prove (5.3)) - (5.5)). Differentiating the identity

F(tx) = F(z) — 91nt (5.6)
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in z, we come to (5.3)); differentiating (5.3]) in ¢ and setting ¢ = 1, we obtain (5.4). Differentiating (5.6
in ¢ and setting ¢t = 1, we come to

—2TF'(z) = 9.

Due to already proved , this relation implies all equalities in 7 excluding the very first of them;
this latter follows from the fact that z, due to , is the Newton direction —[F"(z)]71F’'(x) of F at x,
so that \2(F,z) = —2T F’(z) (IVa., Lecture 2).

Form it follows that the Newton decrement of F is identically equal to v/¥; since, by definition,
F is self-concordant on int K, F' is ¥-self-concordant barrier for K. m

Let us list some examples of self-concordant barriers.

Example 5.3.1 The standard logarithmic barrier

n
F(z)=— Z Inx;
i=1
for the nonnegative orthant R} is n-logarithmically homogeneous self-concordant barrier for the orthant.

Example 5.3.2 The function
F(z) = —In(t* - |z[3)

is 2-logarithmically homogeneous self-concordant barrier for the ice-cream cone

K? = {(t,z) € R | t > |x|2}-

n

Example 5.3.3 The function
F(z) = —InDet z

is n-logarithmically self-concordant barrier for the cone S of symmetric positive semidefinite n x n
matrices.

Indeed, self-concordance of the functions listed in the above examples is given, respectively, by Corollary
[2:11] Exercise [3:3:4 and Exercise [3.3.3} logarithmic homogeneity is evident.

The logarithmically homogeneous self-concordant barriers admit combination rules completely similar
to those for self-concordant barriers:

Proposition 5.3.2 (i) [stability with respect to linear substitutions of the argument] Let F be 0-
logerithmically homogeneous self-concordant barrier for cone K C R™, and let * = Ay be a linear
homogeneous mapping from RF into R™, with matriz A being of the rank k, such that the image of
the mapping intersects int K. Then the inverse image KT = A™Y(K) of K under the mapping is convex
pointed and closed cone with a nonempty interior in R¥, and the function F(Ay) is 0-logarithmically
homogeneous self-concordant barrier for K.

(ii) [stability with respect to summation] Let F;, ¢ = 1,...,k, be ¥;-logarithmically homogeneous self-
concordant barriers for cones K; C R™, and let a; > 1. Assume that the cone K = N¥_; K, possesses a
nonempty interior; then the function Ele a; Fy is (3, oi;)-logarithmically homogeneous self-concordant
barrier for K.

(iii) [stability with respect to direct summation| Let F;, i = 1,..., k, be ¥;-self-concordant barriers for
cones K; C R™. Then the direct sum

Fl(xl) + ...+ Fk(xk)

of the barriers is (), V;)-logarithmically homogeneous self-concordant barrier for the direct product K x
... X Ky of the cones.

The proposition is an immediate corollary of Proposition and Definition [5.3.1
In what follows we heavily exploit the following property of logatrithmically homogeneous self-
concordant barriers:



5.3. LOGARITHMICALLY HOMOGENEOUS BARRIERS 65

Proposition 5.3.3 Let K C R" be a convex pointed closed cone with a nonempty interior, and let F' be
a V-logarithmically homogeneous self-concordant barrier for K. Then

(i) The domain Dom F* of the Legendre transformation of F* of the barrier F is exactly the interior
of the cone —K* anti-dual to K and F* is ¥-logarithmically homogeneous self-concordant barrier for this
anti-dual cone. In particular, the mapping

x— F'(x) (5.7)

is a one-to-one mapping of int K onto —int K* with the inverse given by s — (F*)'(s).
(ii) For any x € int K and s € int K* the following inequality holds:

F(x) + F*(—s) + 91n(z”s) > 91Ind — 0. (5.8)

This inequality is equality if and only if
s=—tF () (5.9)

for some positive t.

Proof.

1°. From Proposition we know that F' is nondegenerate; therefore F* is self-concordant on its
domain @, and the latter is nothing but the image of int K under the one-to-one mapping (5.7)), the
inverse to the mapping being s — (F*)'(s) (see Lecture 2, (L.1)-(L.3) and VIL.). Further, fro it
follows that @ is an (open) cone; indeed, any point s € @, due to already proved relation Q = F'(int K),
can be represented as F’(x) for some z € int K, and then ts = F’(t~'z) also belongs to Q. It follows
that Kt = clQ is a closed convex cone with a nonempty interior.

20, Let us prove that Kt = —K*. This is exactly the same as to prove that the interior of —K*
(which is comprised of s strictly negative on K, i.e., with sz being negative for any nonzero x € K, see
Section coincides with @ = F'(int K):

F'(int K) = —int K*. (5.10)

20.1. The inclusion
F'(int K) C —int K* (5.11)

is immediate: indeed, we should verify that for any z € int K F'(z) is strictly negative on K, i.e., that
yT' F'(z) is negative whenever y € K is nonzero. This is readily given by Corollary since K is a
cone, y € K is a recessive direction for K, and, due to the Corollary,

—y"F'(¢) = =DF(2)[y] = {D*F()[y. y]}"/*;

the concluding quantity here is strictly positive, since y is nonzero and F', as we already know, is nonde-
generate.

29.2. To complete the proof of , we need to verify the inclusion inverse to , i.e., we should
prove that if s is strictly negative on K, then s = F'(x) for certain = € int K. Indeed, since s is strictly
negative on K, the cross-section

K,={ye K| s'y=-1} (5.12)

is bounded (Section [5.1)). The restirction of F' onto the relative interior of this cross-section is a self-
concordant function on rint K (stability of self-concordance with respect to affine substitutions of argu-
ment, Proposition M(l)) Since K is bounded, F' attains its minimum on the relative interior of K,
at certain point y, so that
F'(y) =Xs

for some A, The coefficient \ is positive (since y* F'(y) = A\y”'s is negative in view of and yTs = —1
also is negative (recall that y € K;). Since A is positive and F'(y) = s, we conclude that F'(A\~ly) = s
7 and s indeed is F'(x) for some z € int K (namely, z = A~'y). The inclusion is proved.

3%, Summarising our considerations, we see that F* is self-concordant on the interior of the cone
—K*; to complete the proof of (i), it suffices to verify that

F*(ts) = F(s) — YInt.
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This is immediate:

(F*)(ts) = sup {ts"z—F(z)}= sup {s'y—F(y/t)}=

z€int K y=tx€int K

= sup {sTy—[F(y)—9In(1/t)]} = F*(s) —d1nt.
y€int K
(i) is proved.
49, Let us prove (ii). First of all, for x € int K and s = —tF’(z) we have
F(z) + F*(=s) + 9In(zTs) = F(x) + F*(tF'(z)) + 9 1In(—tzT F'(2)) =
[since F* is ¥-logarithmically homogeneous due to (i) and —z7 F’(z) = 9, see (5.5)]
= F(x)+ F*(F'(z)) + 9Ind =
[since F*(F'(z)) = 27 F'(x) — F(x) due to the definition of the Legendre transformation]
=27 F'(z) +9Ind = dInd — 0

(we have used (5.5))). Thus, (5.8) indeed is equality when s = —tF’(x) with certain ¢ > 0.
5%, To complete the proof of ([5.8)), it suffices to demonstrate that if z and s are such that

V(x,s) = F(x) + F*(—s) + 91n(sTx) <9nd — 0, (5.13)

then s is proportional, with positive coefficient, to —F”(z). To this end consider the cross-section of K
as follows:
K,={ye K| s'y=s"a}.

The restriction of V(+, s) onto the relative interior of Ky is, up to additive constant, equal to the restriction
of F, i.e., it is self-concordant (since K is cross-section of K by an affine hyperplane passing through
an interior point of K; we have used similar reasoning in 2°.2). Since K is bounded (by virtue of
s € int K*), F, and, consequently, V (-, s) attains its minimum on the relative interior of K, and this
minimum is unique (since F' is nondegenerate). At the minimizer, let it be y, one should have

F'y) = =As;

taking here inner product with y and using and the inclusion y € K, we get A > 0. As we alerady
know, the relation F’(y) ——M\s with positive A implies that V (y, s) = ¢ 1ln 9 —9; now from it follows
that V(y,s) > V(x,s). Since, by construction, z € rintK and y is the unique minimizer of V (-, s) on
the latter set, we conclude that x =y, so that F'(z) = —\s, and we are done. m
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5.4 Exercises: Conic problems

The list of below exercises is unusually large; you are kindly asked at least to look through the formula-
tions.

5.4.1 Basic properties of cones

Those not familiar with some of the facts on convex cones used in the lecture (see Section [5.1)), are
recommended to solve the exercises from this subsection; in these exercises, K C R"™ is a closed convex
cone and K* is its dual.

Exercise 5.4.1 #* Prove that K* is closed cone and (K*)* = K.

Exercise 5.4.2 #1t Prove that K possesses a nonempty interior if and only if K* is pointed, and that
K* possesses a nonempty interior if and only if K is pointed.

Exercise 5.4.3 #1 Let s € R". Prove that the following properties of s are equivalent:
(i) s is strictly positive on K, i.e., sTax > 0 whenever x € K is nonzero;
(ii) The set K(s) = {x € K | sTa <1} is bounded;
(iii) s € int K*.
Formulate ”symmetric” characterization of the interior of K.

5.4.2 More on conic duality

Here we list some duality relations for the primal-dual pair (P), (D) of conic problems (see Lecture 5).
The goal is to realize to which extent the standard properties of LP duality preserve in the general case.
The forthcoming exercises are not accompanied by solutions, although some of then are not so simple.

Given a conic problem, let it be called (7), with the data @ (the cone), r (the objective), d + M (the
feasible plane; M is the corresponding linear subspace), denote by D(T) the feasible set of the problem
and consider the following properties:

o (F): Feasibility: D(T) # 0;
e (B): Boundedness of the feasible set (D(T) is bounded, e.g., empty);
e (SB): Boundedness of the solution set (the set of optimal solutions to (7°) is nonempty and bounded);

e (BO): Boundedness of the objective (the objective is below bounded on D(T), e.g., due to D(T) =
0);

e (I): Existence of a feasible interior point (D(T) intersects int Q);
e (S): Solvability ((7) is solvable);

e (WN): Weak normality (both (7) and its conic dual are feasible, and the sum of their optimal
values equals to r7'd).

e (N): Normality (weak normality + solvability of both (7)) and its conic dual).

Considering a primal-dual pair of conic problems (P), (D), we mark by superscript p, d, that the property
in question is shared by the primal, respectively, the dual problem of the pair; e.g., (S4) is abbreviation
for the property ”the dual problem (D) is solvable”.

Good news about conic duality:

Exercise 5.4.4 Prove the following implications:
1) (Fp)= (BOq)

7if primal is feasible, then the dual is below bounded”; this is II., Lecture 5; this is exactly as in LP;
2) [(Fp) & (By)] = [(Sp) & (WN)]
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7if primal is feasible and its feasible set is bounded, then primal is solvable, dual is feasible and below
bounded, and the sum of primal and dual optimal values equals to ¢'b”; in LP one can add to the
conclusion ”"the dual is solvable”;

3) (1) & (BO)] = [(Sa) & (WN))
this is exactly the Conic duality theorem;

4) (SB,) = (WN)
”if primal is solvable and its optimal set is bounded, then dual is feasible and below bounded, and the
sum of primal and dual optimal values equals to ¢Tb”; in LP one can omit ”optimal set is bounded” in
the premise and add ”dual is solvable” to the conclusion.

Formulate the ”"symmetric” versions of these implications, by interchanging the primal and the dual
problems.

Bad news about conic duality:

Exercise 5.4.5 Demonstrate by examples, that the following situations (which for sure do not occur in
LP duality) are possible:

1) the primal problem is strictly feasible and below bounded, and at the same time it is unsolvable (cf.
Ezercise 2));

2) the primal problem is solvable, and the dual is unfeasible (cf. Ea:ercz'se 2), 3), 4));

3) the primal problem is feasible with bounded feasible set, and the dual is unsolvable (cf. FExercise
2), 3));

3) both the primal and the dual problems are solvable, but there is nonzero duality gap: the sum of
optimal values in the problems is strictly greater than cT'b (cf. Eacercz'se 2), 3)).

The next exercise is of some interest:

Exercise 5.4.6 * Assume that both the primal and the dual problem are feasible. Prove that the feasible
set of at least one of the problems is unbounded.

5.4.3 Complementary slackness: what it means?

The Conic duality theorem says that if both the primal problem (P) and the dual problem (D), see
Lecture 5, are strictly feasible, then both of them are solvable, and the pair (x, s) of feasible solutions
to the problems is comprised of optimal solutions if and only if 27s = 0. What does the latter relation
actually mean, it depends on analytic structure of the underlying cone K. Let us look what happens in
several specific cases which are responsible for a wide spectrum of applications.

Recall that in Lecture 5 we have mentioned three particular (families of) cones:

e the cone R} - the n-dimensional nonnegative orthant in R"; the latter space from now on is
equipped with the standard Euclidean structure given by the inner product z7y;

e the cone 87} of positive semidefinite symmetric n X n matrices in the space S™ of symmetric n x n
matrices; this latter space from now on is equipped with the Frobenius Euclidean structure given by
the inner product (z,y) = Tr{xy}, Tr being the trace; this is nothing but the sum, over all entries,
of the products of the corresponding entries in x and in y;

e the ”ice-cream” (more scientific name - second-order) cone
2 n+1 2 2.
K;={zeR"" | xpp1 > /27 + ... +22};

this is a cone in R™!, and we already have said what is the Euclidean structure the space is
equipped with.

Exercise 5.4.7 # Prove that each of the aforementioned cones is closed, pointed, conver and with a
nonempty interior and, besides this, is self-dual, i.e., coincides with its dual com—ﬂ

3self-duality, of course, makes sense only with respect to certain Euclidean structure on the embedding linear space,
since this structure underlies the construction of the dual cone. We have already indicated what are these structures for
the spaces where our cones live
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Now let us look what means complementary slackness in the case of our standard cones.

Exercise 5.4.8 # Let K be a cone, K* be a dual cone and let z, s satisfy the complementary slackness
relation

S(K): {xeK}&{sec K*}&{zTs=0}.

Prove that
1) in the case of K = R the relation S says exactly that x and s are nonnegative n-dimensional
vectors with the zero dot product x X s = (181, ..., Tnsp) T ;

2)% in the case of K = S the relation S says exactly that x and s are positive semidefinite symmetric
matrices with zero product xs; if it is the case, then x and s commutate and possess, therefore, a common
eigenbasis, and the dot product of the diagonals of x and s in this basis is zero;

3)T in the case of K = K2 the relation S says exactly that T,+1 = /2% + ... + 22, sp11 = /57 + ... + 82
and

XT1:81 =Tg 182 = ..=Tpn Sy = —[Tpni1: Snt1]-
We have presented the ”explicit characterization” of complementary slackness for our particular cones
which often occur in applications, sometimes as they are, and sometimes - as certain ”building blocks”.
I mean that there are decomposable situations where the cone in question is a direct product:

K=K x..x K,

and the Euclidean embedding space for K is the direct product of Euclidean embedding spaces for the
”component cones” K;. In such a situation the complementary slackness is ”componentwise”:

Exercise 5.4.9 # Prove that in the aforementioned decomposable situation

K* =K} x..x K},
and a pair x = (21, ...,2%), s = (81, ..., Sk) possesses the complementary slackness property S(K) if and
only if each of the pairs x;, s; possesses the property S(K;), i=1,..., k.

Thus, if we are in a decomposable situation and the cones K; belong each to its own of our three standard
families, then we are able to interpret explicitly the complementary slackness relation.

Let me complete this section with certain useful observation related to the three families of cones
in question. We know form Lecture 5 that these cones admit explicit logarithmically homogeneous self-
concordant barriers; on the other hand, we know that the Legendre transformation of a logarithmically
homogeneous self-concordant barrier for a cone is similar barrier for the anti-dual cone. It is interesting
to look what are the Legendre transformations of the particular barriers known to us. The answer is as
it should be: these barriers are, basically, ”self-adjoint” - their Legendre transformations coincide with
the barriers, up to negating the argument and adding a constant:

Exercise 5.4.10 # Prove that
1) the Legendre transformation of the standard logarithmic barrier

F(z)=— Z Inx;
i=1
for the cone RY is
F*(s)=F(—s) —n, Dom F* = —R";
2) the Legendre transformation of the standard barrier
F(z) = —InDet z

for the cone S} is
F*(s) = F(=s) —n, Dom F* = —S";

3) the Legendre transformation of the standard barrier
F(z)=—-In(a, —2] —...—22)

for the cone K2 is
F*(s) = F(—s) +2In2 — 2, Dom F* = —K2.
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5.4.4 Conic duality: equivalent form

In many applications the "natural” form of a conic problem is
(P): minimize xT¢ s.t. ¢€ R P(E—p) =0, A¢) € K,

where ¢ is the vector of design variables, P is given k x [ matrix, p is given [-dimensional vector, x € R/
is the objective,

A() = AE+b

is an affine embedding of R! into R™ and K is a convex, closed and pointed cone with a nonempty interior
in R™. Since A is an embedding (different £’s have different images), the objective can be expressed in
terms of the image z = A(§) of the vector £ under the embedding: there exists (not necessarily unique)
¢ € R" such that

cTA() = " A(0) + xT¢

identically in £ € R!.
It is clear that (P) is equivalent to the problem

(P'): minimize ¢’z s.t. z € {3+ L} NK,
where the affine plane 8 + L is nothing but the image of the affine space
{¢eR' | PE—p) =0}

under the affine mapping A. Problem (P’) is a conic program in our ”canonical” form, and we can
write down the conic dual to it, let this dual be called (D). A useful thing (which saves a lot of time in
computations with conic duality) is to know how to write down this dual directly in terms of the data
involved into (P), thus avoiding the necessity to compute c.

Exercise 5.4.11 # Prove that (D) is as follows:
e . T * T, _ T k
minimize B° s s.t.s€ K", A*s=x+ P'r for somer € R", (5.14)

with
B8 =0b+ Ap. (5.15)
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5.5 Exercises: Truss Topology Design via Conic duality

It was said in Lecture 5 that conic duality is a powerful tool for mathematical processing a convex
problem. Let us illustrate this point by considering an interesting example - Truss Topology Design
problem (TTD).

”Human” formulation. We should design a truss - a construction, like the Eifel Tower, comprised of
thin bars linked with each other at certain points - nodes of the truss. The construction is subject to
loads, i.e., external forces acting at the nodes. A particular collection of these forces - each element of
the collection specifying the external force acting at the corresponding node - is called loading scenario.
A given load causes certain deformation of the truss - nodes move a little bit, the bars become shorter
or longer. As a result, the truss capacitates certain energy - the compliance. It is reasonable to regard
this compliance as the measure of rigidity of the truss under the loading in question - the larger is the
compliance, the less rigid is the construction. For a given loading scenario, the compliance depends on
the truss - on how thick are the bars linking the nodes. Now, the rigidity of a truss with respect to a
given set of loading scenarios is usually defined as its largest, over the scenarios, compliance. And the
problem is to design, given the set of scenarios and restrictions on the total mass of the construction, the
most rigid truss.

More specifically, when solving the problem you are given a finite 2D or 3D set of tentative nodes,
same as the finite set of tentative bars; for each of these bars it is said at which node it should start
and at which node end. To specify a truss is the same as to choose the volumes t;, i = 1,...,m, of the
tentative bars (some of these volumes may be 0, which means that the corresponding bar in fact does not
present in the truss); the sum V' of these volumes (proportional to the total mass of the construction) is
given in advance.

Mathematical formulation. Given are

e Joading scenarios fi, ..., fr - vectors from R™; here n is the total number of degrees of freedom of
the nodes (i.e., the dimension of the space of virtual nodal displacements), and the entries of f are
the components of the external forces acting at the nodes.

n is something like twice (for 2D constructions) or 3 times (for 3D ones) the number of nodes;
”something like”, because some of the nodes may be partially or completely fixed (say, be in the
fundament of the construction), which reduces the total # of freedom degrees;

e bar-stiffness matrices - n X n matrices A;, i = 1,...,m, where m is the number of tentative bars.
The meaning of these matrices is as follows: for a truss with bar volumes ¢; virtual displacement
x € R"™ of the nodes result in reaction forces

Under reasonable mechanical hypothesis, these matrices are symmetric positive semidefinite with
positive definite sum, and in fact even dyadic:

A; = bib]

for certain vectors b; € R™ (these vectors are defined by the geometry of the nodal set). These
assumptions on A; are crucial for what followg’}

e total bar volume V > 0 of the truss.

Now, the vector = of nodal displacements caused by loading scenario f satisfies the equilibrium equation
Alt)x = f

(which says that the reaction forces A(t)x caused by the deformation of the truss under the load should
balance the load; if the equilibrium equation has no solution, that means that the truss is unable to carry
the load in question). The compliance, up to an absolute constant factor, turns out to be

zT f.

crucial are positive semidefiniteness and symmetry of A;, not the fact that they are dyadic; this latter assumption,
quite reasonable for actual trusses, is not too important, although simplifies some relations

4
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Thus, we come to the following problem of Multi-Loaded Truss Topology Design:

(TTD;yni): find vector t € R™ of bar volumes satisfying the constraints

and the displacement vectors x; € R", j =1, ..., k, satisfying the equilibrium equations
A(t)SC] = fja j = 1, ...7k,
which minimize the worst-case compliance

T
Ct,x1, .y xp) = Jirllaxk z; -

(5.16)

(5.17)

From our initial formulation it is not even seen that the problem is convex (since equality constraints
(5.17) are bilinear in ¢ and z;). It is, anyhow, easy to demonstrate that in fact the problem is convex. The
motivation of the reasoning is as follows: when ¢ is strictly positive, A(t) is positive definite (since A; are
positive semidefinite with positive definite sum), and the equilibrium equations can be solved explicitly:

z; = A7) f;,
so that j-th compliance, as a function of £ > 0, is
¢i(t) = [T AT D) f;-
This function is convex in t > 0, since the interior of its epigraph
Gi={(rt)| t>0,7> ffA (1) f;}
is convex, due to the following useful observation:

T
(*): a block-diagonal symmetric matrix (; J;l

) (T and A are l x| and n x n symmetric matrices, f is

n x | matrix) is positive definite if and only if both the matrices A and T — fT A=1 f are positive definite.
The convexity of G is an immediate consequence of this observation, since, due to it (applied with [ =1
and f = f;) G, is the intersection of the convex set {(,t) | t > 0} and the inverse image of a convex set

(the cone of positive definite (n + 1) x (n + 1) matrices) under the affine mapping
T fF
T,1) — J
w0 (7, )

Exercise 5.5.1 # Prove (*).

The outlined reasoning is unsufficient for our purposes: it does not say what happens if some of ¢;’s
are zero, which may cause degeneracy of A(t). In fact, of course, nothing happens: the epigraph of the
function ”compliance with respect to j-th load”, regarded as a function of ¢ > 0, is simply the closure of
the above G (and is therefore convex). Instead of proving this latter fact directly, we shall come to the

same conclusion in another way.

Exercise 5.5.2 Prove that the linear equation

Az = f

with symmetric positive semidefinite matrix A is solvable if and only if the concave quadratic form

qr(z) =227 f — 2T Az



5.5. EXERCISES: TRUSS TOPOLOGY DESIGN VIA CONIC DUALITY 73

is above bounded, and if this is the case, then the quantity x* f, x being an arbitrary solution to the
equation, coincides with max, qr(2).

Derive from this observation that one can eliminate from (TTDini) the displacements x; by passing
to the problem

(TTDy): find vector t of bar volumes subject to the constraint which minimizes the objective

c(t) = max c¢;(t), c;(t) = sup [227 f; — 2T A(t)2].
G=Lok 2eR"

Note that ¢;(t) are closed and proper convex functions (as upper bounds of linear forms; the fact that
the functions are proper is an immediate consequence of the fact that A(t) is positive definite for strictly
positive t), so that (TTD;) is a convex program.

Our next step will be to reduce (TTD;) to a conic form. Let us first make the objective linear. This
is immediate: by introducing an extra variable 7, we can rewrite (TTD;) equivalently as

(TTD,): minimize T by choice of t € R™ and T subject to the constraints (5.16) and
T4+ 2T Az — 2T, >0, V2eR" Vj=1,.... k. (5.18)

((5.18)) clearly express the inequalities 7 > ¢;(t), j =1,..., k).
Our next step is guided by the following evident observation:

the inequality
T+ 2T Az — 227 f,

T being real, A being symmetric n X n matrix and f being a n-dimensional vector, is valid for all z € R"
if and only if the symmetric (n 4+ 1) X (n + 1) matrix

(; JZ>>0

Exercise 5.5.3 Prove the latter statement. Derive from this statement that (TTD2) can be equivalently
written down as

is positive semidefinite.

(TTD,): minimize T by choice of s € R™ and 7 € R subject to the constraint
A(r, s) € K; Zsz =0,
i=1

where
e K is the direct product of R' and k copies of the cone Si“;
e the affine mapping A(7,s) is as follows: the R} -component of A is
Ai(r,s) =s+m (V,..,V) =s+¢

the component of A associated with j-th of the copies of the cone Sﬁ“ 18

Aj(7,5) = (]J A(e)fiTA<s>>'

Note that A;(7,s) is nothing but our previous ¢; the constraint A;(7,s) € R (which is the part of
the constraint A(7,s) € K) together with the constraint ). s; = 0 give equivalent reformulation of the
constraint 7 while the remaining components of the constraint A(7,s) € K, i.e., the inclusions
Aj(r,s) € ST, represent the constraints
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Note that the problem (TTD,) is in fact in the conic form (cf. Section . Indeed, it requires to
minimize a linear objective under the constraints that, first, the design vector (7,s) belongs to sertain
linear subspace E (given by ) . s; = 0) and, second, that the image of the design vector under a given
affine mapping belongs to certain cone (closed, pointed, convex and with a nonempty interior). Now, the
objective evidently can be respresented as a linear form ¢'u of the image u = A(7, s) of the design vector
under the mapping, so that our problem is exactly in minimizing a linear objective over the intersection
of an affine plane (namely, the image of the linear subspace E under the affine mapping A) and a given
cone, which is a conic problem.

To the moment we acted in certain ”clever” way; from now on we act in completely ”mechanical”
manner, simply writing down and straightforwardly simplifying the conic dual to (TTD,).

First step: writing down conic dual to (TTD,). What we should do is to apply to (TTD,) the
general construction from Lecture 5 and look at the result. The data in the primal problem are as follows:

e K is the direct product of K; = R and k copies K of the cone S""’1 the embedding space for

this cone is
E=R"xS"! x ... xSt

we denote a point from this latter space by u = (¢, p1,....pk), t € R™ and p; being (n+1) x (n+1)
symmetric matrices, and denote the inner product by (-,-);

(koo
X={L o o

s (n+1) x (n 4 1) matrix with the only nonzero entry, which ensures the desired relation

e c € & is given by ¢ = (0, x, ...x), where

(¢, A(T,8)) =T
note that there are many other ways to choose ¢ in accordance with this relation;

e [ is the image of E under the homogeneous part of the affine mapping A;

e b=A(0,0) = (e, b1, ..., px ), where
G 4D
T Ale) )

Now let us build up the dual problem. We know that the cone K is self-dual (as a direct product of
self-dual cones, see Exercises , so that K* = K. We should realize only what is L', in other
words, what are the vectors

5= (Ta q1, 7qk) €&

which are orthogonal to the image of E under the homogeneous part of the affine mapping A. This
requires nothing but completely straightforward computations.

Exercise 5.5.4 + Prove that feasible plane ¢ + L+ of the dual problem is comprised of exactly those
w = (r,q1,...,qr) for which the symmetric (n+ 1) x (n+ 1) matrices q;, j = 1,...,k, are of the form

) X
(AJ ) (5.19)

k
da=1 (5.20)

Jj=1

with A; satisfying the relation

and the n xn symmetric matrices oy, ..., ok, along with the n-dimensional vector r, and a real p, satisfying

the equations
E

r; + ZbiTUjbi =p,i=1,...,m. (5.21)

j=1
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(bi are the vectors involved into the representation A; = b;bl', so that bl o;b; = Tr{A;0;}).

7

Derive from this observation that the conic dual to (TTD,) is the problem

(TTDy): minimize the linear functional

k
23 2T fi+Vp (5.22)

j=1
by choice of positive semidefinite matrices q; of the form , nonnegative vector r € R™ and real p
under the constraints and .

Second step: simplifying the dual problem. Now let us simplify the dual problem. It is immediately
seen that one can eliminate the "heavy” matrix variables o; and the vector r by performing partial
optimization in these variables:

Exercise 5.5.5 T Prove that in the notation given by , a collection
<)\1a “eey )‘kv Zla seey Zk7 p)

can be extended to a feasible plan (r;q1,...,qx; p) of problem (TTDy) if and only if the collection satisfies
the following requirements:

A=00 Y N=1 (5.23)
j=1
T, \2
= (bi;?) Vi (5.24)
=1 "

(a fraction with zero denominator from now on is +00), so that (TTDy) is equivalent to the problem of

minimizing linear objective of the variables \., z., p under constraints , .

Eliminate p from this latter problem to obtain the following equivalent reformulation of (TTDy):

(TTD?):  minimize the function

k
b7 z;)?
,max [Qz;‘-rfj + V( ’)\?) } (5.25)
EARRR] le j
by choice of Aj, j =1,....,k, and z; € R"™ subject to the constraint
k
A0 > N =1 (5.26)
j=1

Note that in the important single-load case k = 1 the problem (TTD%) is simply in minimizing, with
respect to z; € R", the maximum over ¢ = 1, ..., m of the quadratic forms

Vi(z1) =221 f1 + V(b 21)*.

Now look: the initial problem (TTD,) contained m-dimensional design vector (7,s) (the ”formal”
dimension of the vector is m + 1, but we remember that the sum of s; should be 0). The dual problem
(TTD?) has k(n + 1) — 1 variables (there are k n-dimensional vectors z; and k reals \; subject to a
single linear equation). In the ”full topology TTD” (it is allowed to link by a bar any pair of nodes), m
is of order of n? and n is at least of order of hundreds, so that m is of order of thousands and tens of
thousands. In contrast to these huge numbers, the number k& of loading scenarios is, normally, a small
integer (less than 10). Thus, the dimension of (TTD?) is by order of magnitudes less than that one
of (TTD,). At the same time, solving the dual problem one can easily recover, via the Conic duality
theorem, the optimal solution to the primal problem. As a kind of ”penalty” for relatively small # of
variables, (TTD?) has a lot of inequality constraints; note, anyhow, that for many methods it is much
easier to struggle with many constraints than with many variables; this is, in particular, the case with
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the Newton-based methodsﬂ Thus, passing - in a completely mechanical way! - from the primal problem
to the dual one, we improve the ”computational tractability” of the problem.

Third step: back to primal. And now let us demonstrate how duality allows to obtain a better
insight on the problem. To this end let us derive the problem dual to (TTD?). This looks crazy: we
know that dual to dual is primal, the problem we started with. There is, anyhow, an important point:
(TTD?) is equivalent to the conic dual to (TTD,), not the conic dual itself; therefore, taking dual to
(TTD?), we should not necessarily obtain the primal problem, although we may expect that the result
will be equivalent to this primal problem.

Let us implement our plan. First, we rewrite (TTD?) in an equivalent conic form. To this end we
introduce extra variables y;; € R, i = 1,...,m, j = 1,...,k, in order to ”localize” nonlinearities, and an
extra variable f to represent the objective (5.25) (look: a minute ago we tried to eliminate as many
variables as possible, and now we go in the opposite direction... This is life, isn’t it?) More specifically,
consider the system of constraints on the variables z;, A;, y;;, f (¢ runs from 1 to m, j runs from 1 to k):

bl ;)2

Yij 2 ( Z)\Z]) ] /\j >0, i=1,...m, j=1,.,k; (527)
j

k
F2Y 2] fi+ V)i =1, m; (5.28)

j=1

k

Aj =L (5.29)

j=1

It is immediately seen that (TTD?) is equivalent to minimization of the variable f under the constraints

(5.27) - (5.29). This latter problem is in the conic form (P) of Section since ({5.27)) can be equivalently

rewritten as

. T, .
(b?’;;j b}jﬂ) >0, i=1,..,m,j=1,...k (5.30)
K3
(?> 0” for symmetric matrices stands for ”positive semidefinite”); to justify this equivalence, think what
is the criterion of positive semidefiniteness of a 2 x 2 symmetric matrix.
We see that (TTD?) is equivalent to the problem of minimizing f under the constraints (5.28)) - (5.30).
This problem, let it be called (), is of form (P), Section with the following data:

e the design vector is

§=(fixsy:2);

e K is the direct product of R’* and mk copies of the cone Sa_ of symmetric positive semidefinite
2 x 2 matrices; we denote the embedding space of the cone by F, the vectors from F by n =
JAmiiti=1....m.i=1....k), ¢ being m-dimensional and m;; being 2 x 2 matrices, and equip F with
J M=l J
the natural inner product
o'\ ") = ()¢ + ZTr{ﬂ';jﬂ',,»/j};
4,J

e A is the homogeneous linear mapping with the components

e Y is the vector with the only nonzero component (associated with the f-component of the design
vector) equal to 1.

5since the number of constraints influences only the complexity of assembling the Newton system, and the complexity is

linear in this number; in contrast to this, the # of variables defines the size of the Newton system, and the complexity of
solving the system is cubic in # of variables
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e The system P(§ —p) =0 1is Zj A\; = 1, so that PTr, r € R, is the vector with \.-components equal
to r and remaining components equal to 0, and p is PT%.

Exercise 5.5.6 * Prove that the conic dual, in the sense of Section to problem (m) is equivalent
to the following program:

(¥):  minimize
m 2
[ mmax, lz QZJ] (5.31)
T Li=1

by choice of m-dimensional vector ¢ and mk reals 3;; subject to the constraints

$>0; Y ¢i=V; (5.32)

i=1

=1

Fourth step: from primal to primal. We do not know what is the actual relation between problem
(v) and our very first problem (TTDjy;) - what we can say is:

() is equivalent to the problem which is conic dual to the problem which is equivalent to the conic
dual to the problem which is equivalent to (TTDiy;)”;
it sounds awkful, especially taking into account that the notion of equivalency between problems has no
exact meaning. At the same time, looking at (¢), namely, at equation , we may guess that ¢; are
nothing but our bar volumes ¢; - the design variables we actually are interested in, so that () is a ”direct
reformulation” of (TTDjy;) - the ¢-component of optimal solution to (1) is nothing but the t-component
of the optimal solution to (TTDjy,;). This actually is the case, and the proof could be given by tracing
the chain wich leaded us to (¢). There is, anyhow, a direct, simple and instructive way to establish
equivalency between the initial and the final problems in our chain, which is as follows.

Given a feasible solution (¢, 1, ...,xx) to (TTDiy;), consider the bar forces

Bij = tiw] bi;

these quantities are magnitudes of the reaction forces caused by elongations of the bars under the corre-
sponding loads. The equilibrium equations

A(t)z; = f
in view of A(t) =", t;A; =Y, t;b;b] say exactly that
Zﬁzjbi =fj J=1,..k; (5.34)
thus, we come to a feasible plan
(¢,8): o=t Bij =t} b; (5.35)

to problem (¢0). What is the value of the objective of the latter problem at the indicated plan? Multiplying
1' by acf and taking into account the origin of 3;;, we see that j-th compliance ¢; = x;*-rfj is equal to

2 Z

so that the value of the objective of (TTDin;) at (¢, 21, ..., %), which is max; ¢;, is exactly the value of
the objective (5.31]) of the problem (¢) at the feasible plan (5.35)) of the latter problem. Thus, we have
establish the following proposition:

A. Transformation (5.35) maps a feasible plan (t,x1, ..., x)) to problem (T'TS;y;) into feasible plan (¢, 3.)
to problem (), and the value of the objective of the first problem at the first plan is equal to the value
of the objective of the second problem at the second plan.
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Are we done? Have we established the desired equivalence between the problems? No! Why do we know
that images of the feasible plans to (TTD;y;) under mapping cover the whole set of feasible plans
of (v)? And if it is not the case, how can we be sure that the problems are equivalent - it may happen
that optimal solution to (1) corresponds to no feasible plan of the initial problem!

And the image of mapping indeed does not cover the whole feasible set of (¢), which is clear by
dimension reasons: the dimension of the feasible domain of (TTDjy;), regarded as a nonlinear manifold,
is m — 1 (this is the # of independent ¢;’s; x; are functions of ¢ given by the equilibrium equations); and
the dimension of the feasible domain of (), also regarded as a manifold, is m — 1 (# of independent ¢;’s)
plus mk (# of 8;;) minus nk (# of scalar linear equations (5.33))), i.e., it might be by order of magnitudes
greater than the dimension of the feasible domain of (TTD;yi) (recall that normally m >> n). In
other words, transformation allows to obtain only those feasible plans of (1)) where the S-part is
determined, via the expressions

Bij = tz'Iijzw

by k n-dimensional vectors x; (which is also clear from the origin of the problem: the actual bar forces
should be caused by certain displacements of the nodes), and this is in no sense a consequence of the
constraints of problem (¢): relations say only that the sum of the reaction forces balances the
external load, and says nothing on the "mehcanical validity” of the reaction forces, i.e., whether or not
they are caused by certain displacements of the nodes. Our dimension analysis demonstrates that the
reaction forces caused by nodal displacements - i.e., those valid mechanically - form a very small part of
all reaction forces allowed by equations .

In spite of these pessimistic remarks, we know that the optimal value in (¢) - which is basically dual
to dual to (TTDjy;) - is the same one as that one in (TTDjy;), so that in fact the optimal solution to (1) is
in the image of mapping . Can we see it directly, without referring to the chain of transformations
which leaded us to (1)? Yes! It is very simple to verify that the following proposition holds:

B. Let (¢,3.) be a feasible plan to (1) and w be the corresponding value of the objective. Then ¢ can
be extended to a feasible plan (t = ¢, x1,...,x) to (TTDiy;), and the maximal, over the loads fi, ..., fk,
compliance of the truss t is < w.

Exercise 5.5.7 T Prove B.

From A. and B. it follows, of course, that problems (TTD;y;) and (i) are equivalent - e-solution to
any of them can be immediately transformed into e-solution to another.

Concluding remarks. Let me make several comments on our ”truss adventure”.

e Our main effort was to pass from the initial form (TTDjy;) of the Truss Topology Design problem
to its dual (TTDY) and then - to the ”dual to dual” bar forces reformulation () of the initial
problem. Some steps seemed to be ”clever” (convex reformulation of (TTDjy;); conic reformulation
of of (TTD?) in terms of cones of positive semidefinite 2 x 2 matrices), but most of them were
completely routine - we used in a straightforward manner the general scheme of conic duality. In fact
the ”clever” steps also are completely routine; small experience suffices to see immediately that the
epigraph of the compliance can be represented in terms of nonnegativity of certain quadratic forms
or, which is the same, in terms of positive semidefiniteness of certain matrices linearly depending
on the control vectors; this is even easier to do with the constraints . I would qualify our
chain of reformulations as a completely straightforward.

e Let us look, anyhow, what are the results of our effort. There are two of them:

(a) "compressed”, as far as # of variables is concerned, form (TTD9) of the problem; as it was
mentioned, reducing # of variables, we get better possibilities for numerical processing the problem;

(b) very instructive ”bar forces” reformulation (¢) of the problem.

e After the ”bar forces” formulation is guessed, one can easily establish its equivalence to the initial
formulation; thus, if our only goal were to replace (TTDjy,;) by (v), we could restrict ourselves with
the fourth step of our construction and skip the preceding three steps. The question, anyhow, how
to guess that (¢) indeed is equivalent to (TTDjy;). This is not that difficult to look what are the
equilibrium equations in terms of the bar forces 3;; = tiijbi; but one hardly could be courageous
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enough (and, to the best of our knowledge, in fact was not courageous) to conjecture that the "heart
of the situation” - the restriction that the bar forces should be caused by certain displacements of the
nodes - simply is redundant: in fact we can forget that the bar forces should belong to an ”almost
negligible”, as far as dimensions are concerned, manifold (given by the equations 5;; = tix;‘rbi),
since this restriction on the bar forces is automatically satisfied at any optimal solution to () (this
is what actually is said by B.).

Thus, the things are as they should be: routine transformations result in something which, in
principle, could be guessed and proved directly and quickly; the bottleneck is in this ”in principle”:
it is not difficult to justify the answer, it is difficult to guess what the answer is. In our case, this
answer was "guessed” via straightforward applications of a quite routine general scheme, scheme
useful in other cases as well; to demonstrate the efficiency of this scheme and some ”standard”
tricks in its implementation, this is exactly the goal of this text.

To conclude, let me say several words on the "bar forces” formulation of the TTD problem. First
of all, let us look what is this formulation in the single-load case k = 1. Here the problem becomes

B2
minimize Z =
— O
under the constraints
$>0; > ¢i=V;» Bibi=f.

We can immediately perform partial optimization in ¢;:

> |B¢] : :

i =V|pBli

(2

The remaining optimization in ;, i.e., the problem

2
sz] s.t. Zﬂilh:f’

can be immediately reduced to an LP program.

Another useful observation is as follows: above we dealt with A(t) = > t;A4;, A; = bbl; in
mechanical terms, this is the linear elastic model of the material. For other mechanical models,
other types of dependencies A(t) occur, e.g.,

minimize V1

Aty =D 5 A, A =bid]

i=1

where k > 0 is given. In this case the ”direct” reasoning establishing the equivalence between
(TTD;yni) and (¢) remains valid and results in the following ”bar forces” setting:

m 2

minimize max L
j=1,...,k 4 1 ty
1=

under the constraints

t>0; Zti =V; Zﬁijbi:fj,jzl,...,k.

A bad news here is that the problem turns out to be convex in (¢, 8.) if and only if k > 1, and from
the mechanical viewpoint, the only interesting case in this range of values of k is that one of linear
model (k =1).
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Chapter 6

The method of Karmarkar

The goal of this lecture is to develop the method which extends onto the general convex case the very
first polynomial time interior point method - the method of Karmarkar. Let me say that there is no
necessity to start with the initial LP method and then pass to the extensions, since the general scheme
seems to be more clear than its particular LP implementation.

6.1 Problem setting and assumptions
The method in question is for solving a convex program in the conic form:
(P): minimize ¢’z st. z€{b+L}NK, (6.1)
where
e K is a closed convex pointed cone with a nonempty interior in R";
e [ is a linear subspace in R"™;
e b and c are given n-dimensional vectors.

We assume that

A the feasible set
Ky={b+L}NK

of the problem is bounded and intersects the interior of the cone K.

B: we are given in advance a strictly feasible solution T to the problem, i.e., a feasible solution
belonging to the interior of K;

Assumptions A and B are more or less standard for the interior point approach. The next assumption
is specific for the method of Karmarkar:

C: the optimal value, c*, of the problem is known.

Assumption C. might look rather restrictive; in the mean time we shall see how one can eliminate it.
Our last assumption is as follows:

D: we are given a ¥-logarithmically homogeneous self-concordant barrier F' for the cone K.
As in the case of the path-following method, ”we are given F” means that we are able, for any x € R",
to decide whether € Dom F' = int K, and if it is the case, can compute the value F'(x), the gradient
F'(z) and the Hessian F”'(z) of the barrier at z. Note that the barrier F is the only representation of
the cone used in the method.

81
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6.2 Homogeneous form of the problem

To proceed, let us note that the feasible affine plane b + L of problem (P) can be, by many ways,
represented as an intersection of a linear space M and an affine hyperplane IT = {x € R" | Tz = 1}.
Indeed, our feasible affine plane always can be represented as the plane of solutions to a system

Pxr=p

of, say, m + 1 linear equations. Note that the system for sure is not homogeneous, since otherwise the
feasible plane would pass through the origin; and since, in view of A, it intersects also the interior of
the cone, the feasible set K¢ would be a nontrivial cone, which is impossible, since Ky is assumed to be
bounded (by the same A). Thus, at least one of the equations, say, the last of them, is with a nonzero
right hand side; normalizing the equation, we may think that it is of the form e’z = 1. Substracting this
equation, with properly chosen coefficient, from the remaining m equations of the system, we may make
these equations homogeneous, thus reducing the system to the form

Az =0; ez =1,
now b + L is represented in the desired form
b+ L={xeM|cTe=1}, M={z| Az =0}.
Thus, we can rewrite (P) as
minimize ¢’z st. x e KNM, efz =1,

with M being a linear subspace in R".

It is convenient to convert the problem into an equivalent one where the optimal value of the objective
(which, according to C, is known in advance) is zero; to this end it suffices to replace the initial objective
¢ with a new one

oc=c—ce

T

since on the feasible plane of the problem e’ x is identically 1, this updating indeed results in equivalent

problem with the optimal value equal to 0.
Thus, we have seen that (P) can be easily rewritten in the so called Karmarkar format

(Px) minimize o'x st. € KNM, eTo=1, (6.2)

with M being a linear subspace in R™ and the optimal value in the problem being zero; this transformation
preserves, of course, properties A, B.

Remark 6.2.1 In the original description of the method of Karmarkar, the problem from the very
beginning is assumed to be in the form (Pg), with K = R’} ; moreover, Karmarkar assumes that

e=(1,.,)T eRr"

and that the given in advance strictly feasible solution Z to the problem is the barycenter n~'e of the
standard simplex; thus, in the original version of the method it is assumed that the feasible set Ky of the
problem is the intersection of the standard simplex

A:{xeR’_HinEeTx:l}
i=1

and a linear subspace of R™ passing through the barycenter n~'e of the simplex and, besides this, that
the optimal value in the problem is 0.

And, of course, in the Karmarkar paper the barrier for the cone K = R’ underlying the whole
construction is the standard n-logarithmically homogeneous barrier

F(z)=-— ilnmi
i=1

for the nonnegative orthant.

In what follows we refer to the particular LP situation presented in the above remark as to the Karmarkar
case.



6.3. THE KARMARKAR POTENTIAL FUNCTION 83

6.3 The Karmarkar potential function

T T

In what follows we assume that the objective ¢’ x, or, which is the same, our new objective o* = is
nonconstant on the feasible set of the problem (otherwise there is nothing to do: ¢’Z = 0, i.e., the
initial strictly feasible solution, same as any feasible solution, is optimal). Since the new objective is
nonconstant on the feasible set and its optimal value is 0, it follows that the objective is strictly positive
at any strictly feasible solution to the problem, i.e., on the relative interior rint K of Ky (due to A, this
relative interior is nothing but the intersection of the feasible plane and the interior of K, i.e., nothing
but the set of all strictly feasible solutions to the problem). Since o'z is strictly positive on the relative
interior of Ky, the following Karmarkar potential

v(z) = F(z) +9In(c7z) : Domv={z cint K | 72 >0} = R (6.3)

is well-defined on rint Kf; this potential is the main hero of our story.

The first observation related to the potential is that when x is strictly feasible and the potential at x
is small (negative with large absolute value), then x is a good approximate solution.
The exact statement is as follows:

Proposition 6.3.1 Let x € int K be feasible for (Px). Then

F(Z) — minging g, F'
3 };

ocle=cle—c* < Vexp{—v = (T2 — ¢*) exp{

(x) —v(z)
?}, vV (6.4)

note that ming,; K, F is well defined, since Ky is bounded (due to A) and the restriction of F' onto the
relative interior of Ky is self-concordant barrier for Ky (Proposition|3.1.1)(i)).

The proof is immediate:
v(Z) —v(z) = IIn(c?Z) —In(cTx)] + F(Z) — F(z) <

<In(c”z) —In(cTx)] + F(z) — HF}% F,
rin f

and (6.4)) follows. m

The above observation says to us that all we need is certain rule for updating strictly feasible solution
x into another strictly feasible solution x+ with a ”significantly less” value of the potential; iterating this
updating, we obtain a sequence of strictly feasible solutions with the potential tending to —oo, so that
the solutions converge in terms of the objective. This is how the method works; and the essence of the
matter is, of course, the aforementioned updating which we are about to represent.

6.4 The Karmarkar updating scheme

The updating of strictly feasible solutions
K:z—at

which underlies the method of Karmarkar is as follows:
1) Given strictly feasible solution x to problem (P ), compute the gradient F'(x) of the barrier F;
2) Find the Newton direction e, of the ”partially linearized” potential

ve(y) = F(y) + ﬂ% +91n(c’x)

at the point x along the affine plane
E,={ylyeM, (y—z)'F(z) =0}

tangent to the corresponding level set of the barrier, i.e., set

1
er = argmin{h’'V, v, (z) + ithzvz(aﬁ)h | he M, hTF'(z) = 0};
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3) Compute the reduced Newton decrement
w=1/—€eI'Vyu(x)

and set

=x+

ey
14w *
4) The point 2’ belongs to the intersection of the subspace M and the interior of K. Find a point x”

from this intersection such that
v(z") <wv(z')

(e.g., set ©’" = ') and set
x-‘,— — (eTx//)—lxll7

thus completing the updating x + x™.

The following proposition is the central one.

Proposition 6.4.1 The above updating is well defined, maps a strictly feasible solution x to (P)k into
another strictly feasible solution x™ to (P) and decreases the Karmarkar potential at least by absolute
constant:

1 4
v(t) <v(®)—x, x= 3 lng > 0. (6.5)
Proof.
0°. Let us start with the following simple observations:
yecint KNM = ely > 0; (6.6)
yecint KNM = oly > 0. (6.7)

To prove , assume, on contrary, that there exists y € int K N M with e”y < 0. Consider the linear
function
¢(t) =e"Z+ty—2)], 0<t <L

This function is positive at ¢ = 0 (since Z is feasible) and nonpositive at ¢ = 1; therefore it has a unique
root t* € (0,1] and is positive to the left of this root. We conclude that the points

= (OE+Hy—3)), 0<t<t,

are well defined and, moreover, belong to K (indeed, since both = and y are in K N M and ¢(t) is positive
for 0 <t < t*, the points x; also are in K N M; to establish feasibility, we should verify, in addition, that
eTx; = 1, which is evident).

Thus, 2, 0 < ¢ < t*, is certain curve in the feasible set. Let us prove that |x¢|s — oo as t = t* — 0;
this will be the desired contradiction, since Ky is assumed to be bounded (see A). Indeed, ¢(t) — 0
as t — t* — 0, while  + ¢(y — z) has a nonzero limit x + t*(y — ) (this limit is nonzero as a convex
combination of two points from the interior of K and, therefore, a point from this interior; recall that K
is pointed, so that the origin is not in its interior).

We have proved ; is an immediate consequence of this relation, since if there were y €
int K N M with 0Ty <0, the vector [eTy] ™'y would be a strictly feasible solution to the problem (since
we already know that e”y > 0, so that the normalization y + [eTy] 'y would keep the point in the
interior of the cone) with nonnegative value of the objective, which, as we know, is impossible.

19, Let us set

G=KnE,=Kn{y|yeM, (y—;v)TF'(m):O};

since € M is an interior point of K, G is a closed convex domain in the affine plane F, (this latter plane
from now on is regarded as the linear space G is embedded to); the (relative) interior of G is exactly the
intersection of F, and the interior of the cone K.
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20, Further, let f(-) be the restriction of the barrier F on rint G; due to our combination rules for self-
concordant barriers, namely, that one on affine substitutions of argument, f is ¥-self-concordant barrier
for G.

3%. By construction, the ”partially linearized” potential, regarded as a function on rint G, is the sum
of the barrier f and a linear form:

ve(y) = f(y) +p" (y — 2) +q,
where the linear term p” (y — ) + ¢ is nothing but the first order Taylor expansion of the function
I1n(oTy)

at the point y = z. From it immediately follows that this function (and therefore v(-)) is well-defined
onto int K N M and, consequently, on rint G; besides this, the function is concave in y € rint G. Thus,
we have

v(y) < ue(y), y €rint G; v(x) = v (). (6.8)

49, Since v, is sum of a self-concordant barrier and a linear form, it is self-concordant on the set rint G.
From definition of e and w it is immediately seen that e, is nothing but the Newton direction of v, (y)
(regarded as a function on rint G) at the point y = x, and w is the corresponding Newton decrement;
consequently (look at rule 3)) 2’ is the iterate of y = x under the action of the damped Newton method.
From Lecture 2 we know that this iterate belongs to rint G and that the iteration of the method decreases
v, 7significantly”, namely, that

Ve (2) — v (2) > p(—w) = w — In(1 + w).

Taking into account , we conclude that
z' belongs to the intersection of the subspace M and the interior of the cone K and

v(@) —v(@') = p(-w). (6.9)

59. Now comes the first crucial point of the proof: the reduced Newton decrement w is not too small,
namely,

1
w> 3. (6.10)

Indeed, z is the analytic center of G with respect to the barrier f (since, by construction, F, is orthogonal
to the gradient F’ of the barrier F' at z, and f is the restriction of F onto E.). Since f, as we just have
mentioned, is ¥-self-concordant barrier for G, and f is nondegenerate (as a restriction of a nondegenerate
self-concordant barrier F', see Proposition [5.3.1), the enlarged Dikin ellipsoid

WH={yeE,||y—zl, <V+2V0}

(I ]z is the Euclidean norm generated by F”(z)) contains the whole G (the Centering property, Lecture
3, V.). Now, the optimal solution z* to (Pg) satisfies the relation o72* = 0 (the origin of o) and is a
nonzero vector from K N M (since z* is feasible for the problem). It follows that the quantity (z*)T F'(x)
is negative (since F’(z) € int (—K*), Proposition[5.3.3](i)), and therefore the ray spanned by * intersects
G at certain point y* (indeed, G is the part of K N M given by the linear equation y* F'(z) = 2T F'(x),
and the right hand side in this equation is —, see , Lecture 5, i.e., is of the same sign as (z*)T F’(z)).
Since oTx* = 0, we have o7 y* = 0; thus,

there exists y* in G, and, consequently, in the ellipsoid W+, with o7 y* = 0.

We conclude that the linear form

oTy
V(y) =
which is equal to ¥ at the center = of the ellipsoid W, attains the zero value somewhere in the ellipsoid,
and therefore its variation over the ellipsoid is at least 2¢). Consequently, the variation of the form over
the centered at 2 unit Dikin ellipsoid of the barrier f is at least 20(9 + 2v/9)~ > 2/3:

Ty

max{ﬁU—Th | he M,hTF'(2) =0,|h|, <1} >
O'TI' ) - Tr = -

Wl =
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But the linear form in question is exactly V,v,(z), since V,, f(x) = 0 (recall that x is the analytic center
of G with respect to f), so that the left hand side in the latter inequality is the Newton decrement of
v.(+) (as always, regarded as a function on rint G) at z, i.e., it is nothing but w.

6°. Now comes the concluding step: the Karmarkar potential v is constant along rays: v(tu) = v(t)
whenever u € Domv and t > 0 [this is an immediate consequence of ¥-logarithmic homogeneity of the
barrier F1] As we just have seen,

o(a) < vle) — pl(—3)

by construction, z” is a point from int K N M such that

v(z") < wv(2)).

According to , when passing from 2" to 7 = [eT2”] 12", we get a strictly feasible solution to the
problem, and due to the fact that v remains constant along rays, v(z™) = v(z”). Thus, we come to
v(z™) < w(z) — p(—3), as claimed. =

6.5 Overall complexity of the method

As it was already indicated, the method of Karmarkar as applied to problem (Pg) simply iterates the
updating K presented in Section [6.4] i.e., generates the sequence

Ty = IC(IL’i_l), Trog = 55'\, (611)

Z being the initial strictly feasible solution to the problem (see B).
An immediate corollary of Propositions [6.3.1] and is the following complexity result:

Theorem 6.5.1 Let problem (P ) be solved by the method of Karmarkar associated with 9-logarithmically
homogeneous barrier F' for the cone K, and let assumptions A - C be satisfied. Then the iterates x; gen-
erated by the method are strictly feasible solutions to the problem and

z) — i ) 1 4
oy —c* < Vexp{—w} < Vexp{—%}, X=3- In—, (6.12)
with the data-dependent scale factor V given by
F(z) — mi rin B
V= (77 — ) exp{ ) m;l KTy (6.13)

In particular, the Newton complexity (# of iterations of the method) of finding an e-solution to the
problem does not exceed the quantity

Nkarm(g) = O(1)91In C} + 1) +1, (6.14)
O(1) being an absolute constant.

Comments.

e We see that the Newton complexity of finding an e-solution by the method of Karmarkar is pro-
portional to ¥; on the other hand, the restriction of F' on the feasible set K is a 1J-self-concordant
barrier for this set (Proposition 3.1.1}(i)), and we might solve the problem by the path-following
method associated with this restriction, which would result in a better Newton complexity, namely,
proportional to V0. Thus, from the theoretical complexity viewpoint the method of Karmarkar is
significantly worse than the path-following method; why should we be interested in the method of
Karmarkar?

land in fact the assumption of logarithmic homogeneity of F, same as the form of the Karmarkar potential, originate
exactly from the desire to make the potential constant along rays
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The answer is: due to the potential reduction nature of the method, the nature which underlies the
excellent practical performance of the algorithm. Look: in the above reasoning, the only thing we
are interested in is to decrease as fast as possible certain explicitly given function - the potential. The
theory gives us certain ”default” way of updating the current iterate in a manner which guarantees
certain progress (at least by an absolute constant) in the value of the potential at each iteration,
and it does not forbid as to do whatever we want to get a better progress (this possibility was
explicitly indicated in our construction, see the requirements on z”). E.g., after 2’ is found, we can
perform the line search on the intersection of the ray [z, 2’) with the interior of G in order to choose
as x’/ the best, in terms of the potential, point of this intersection rather than the ”default” point
z’. There are strong reasons to expect that in some important cases the line search decreases the
value of the potential by much larger quantity than that one given by the above theoretical analysis
(see exercises accompanying this lecture); in accordance with these expectations, the method in
fact behaves itself incomparably better than it is said by the theoretical complexity analysis.

e What is also important is that all ”common sense” improvements of the basic Karmarkar scheme,
like the aforementioned line search, do not spoil the theoretical complexity bound; and from the
practical viewpoint a very attractive property of the method is that the potential gives us a clear
criterion to decide what is good and what is bad. In contrast to this, in the path-following scheme
we either should follow the theoretical recommendations on the rate of updating the penalty - and
then for sure will be enforced to perform a lot of Newton steps - or could increase the penalty at
a significantly higher rate, thus destroying the theoretical complexity bound and imposing a very
difficult questions of how to choose and to tune this higher rate.

e Let me say several words about the original method of Karmarkar for LP. In fact this is exactly
the particular case of the aforementioned scheme for the sutiation described in Remark
Karmarkar, anyhow, presents the same method in a different way. Namely, instead of processing
the same data in varying, from iteration to iteration, plane E,, he uses scaling - after a new iterate
x; is found, he performs fractional-linear substitution of the argument

X1z
x+— ——— X; = Diag{x;
eTX e glai}

(recall that in the Karmarkar situation e = (1,...,1)”). With this substitution, the problem becomes
another problem of the same type (with new objective o and new linear subspace M), and the image
of the actual iterate z; becomes the barycenter n~'e of the simplex A. It is immediately seen that
in the Karmarkar case to decrease by something the Karmarkar potential for the new problem at
the image n~'e of the current iterate is the same as to decrease by the same quantity the potential
of the initial problem at the actual iterate x;; thus, scaling allows to reduce the question of how
to decrease the potential to the particular case when the current iterate is the barycenter of A;
this (specific for LP) possibility to deal with certain convenient ”standard configuration” allows to
carry out all required estimates (which in our approach were consequences of general properties
of self-concordant barriers) via direct analysis of the behaviour of the standard logarithmic barrier
F(z) ==Y, Inz; in a neighbourhood of the point n~'e, which is quite straightforward.

Let me also add that in the Karmarkar situation our general estimate becomes
~ {
lay—c <(Td—c )exp{——X},
n

since the parameter of the barrier in the case in question is ¥ = n and the starting point T = n"le

is the minimizer of F on A and, consequently, on the feasible set of the problem.

6.6 How to implement the method of Karmarkar

To the moment our abilities to solve conic problems by the method of Karmarkar are restricted by the
assumptions A - C. Among these assumptions, A (strict feasibility of the problem and boundedness of
the feasible set) is not that restrictive. Assumption B (a strictly feasible solution should be known in
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advance) is not so pleasant, but let me postpone discussing this issue - this is a common problem in
interior point methods, and in the mean time we shall speak about it. And what in fact is restrictive,
is assumption C - we should know in advance the optimal value in the problem. There are several ways
to eliminate this unpleasant hypothesis; let me present to you the simplest one - the sliding objective
approach. Assume, instead of C, that

C*: we are given in advance a lower bound cj for the unknown optimal value c*

(this, of course, is by far less restrictive than the assumption that we know ¢* exactly). In this case we
may act as follows: at i-th iteration of the method, we use certain lower bound ¢}_; for ¢* (the initial
lower bound ¢ is given by C*). When updating x; into x;41, we begin exactly as in the original method,
but use, instead of the objective
oc=c—Cc'e,
the ”current objective”
Oi—1 =cC—C_qe.

Now, after the current "reduced Newton decrement” w = w; is computed, we check whether it is > % If
it is the case, we proceed exactly as in the original scheme and do not vary the current lower bound for
the optimal value, i.e., set

*x ok
C = Ci1

and, consequently,
0; =0i—-1-

If it turns out that w; < 1/3, we act as follows. The quantity w given by rule 3) depends on the objective
o the rules 1)-3) are applied to:
w = Qz (0)
In the case in question we have
1
Q(c—te) < 3 when t=c}_ ;. (6.15)

The left hand side of this relation is certain explicit function of ¢ (square root of a nonnegative fractional-
quadratic form of t); and as we know from the proof of Proposition [6.4.1}

Qi(c—c'e) > . (6.16)

W =

It follows that the equation §2;(c — te) = % is solvable, and its closest to c¢;_; root to the right of ¢} ;
separates ¢* and ¢;_q, i.e., this root (which can be immediately computed) is an improved lower bound

for ¢*. This is exactly the lower bound which we take as c;; after it is found, we set
o, =c—cje

and update x; into x;11 by the basic scheme applied to this ”improved” objective (for which this scheme,
by construction, results in w = 3).

Following the line of argument used in the proofs of Propositions [6.3.1} [6.4.1] one can verify that the
modification in question produces strictly feasible solutions z; and nondecreasing lower bounds ¢} < c*

of the unknown optimal value in such a way that the sequence of local potentials
vi(zs) = F(x;) +9n(o] ;) = F(z;) +9In(c 'z — )

decreases at a reasonable rate: )

vi(zi) < vic1(Tio1) — p(—§)7
which, in turn, ensures the rate of convergence
;g —c* <V eXp{_—Uo(l“o) ; vz
F(Z) — minyint K F
3 }

completely similar to that one for the case of known optimal value.

b <Vesp{—),

V= ("7 — ) exp{
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6.7 Exercises on the method of Karmarkar

Our first exercise is quite natural.
Exercise 6.7.1 #. Justify the sliding objective approach presented in Section .

Our next story gives a very instructive equivalent description of the method of Karmarkar (in the
LP case, this description is due to Bayer and Lagarias). At a step of the method the situation is as
follows: we are given a strictly feasible solution z to (Pk) and are struggling for updating it into a new
strictly feasible solution with ”significantly less” value of the potential. Now, strictly feasible solutions
are in one-to-one correspondence with strictly feasible rays - i.e., rays r = {ty | ¢ > 0} generated by
y € M Nint K. Indeed, any strictly feasible solution x spans a unique ray of this type, and any strictly
feasible ray intersects the relative interior of the feasible set in a unique point (since, as we know from
7 the quantity eT'y is positive whenever y € M Nint K and therefore the normalization [ely] 1y is
a strictly feasible solution to the problem). On the other hand, the Karmarkar potential v is constant
along rays, and therefore it can be thought of as a function defined on the space R of strictly feasible
rays. Thus, the goal of a step can be reformulated as follows:

given a strictly feasible ray r, find a new ray r+ of this type with ”significantly less” value of the
potential.

Now let us make the following observation: there are many ways to identify strictly feasible rays with
points of certain set; e.g., given a linear functional g7« which is positive on M Nint K, we may consider
the cross-section K9 of M N K by the hyperplane given by the equation g7z = 1. It is immediately seen
that any strictly feasible ray intersects the relative interior of K9 and, vice versa, any point from this
relative interior spans a strictly feasible ray. What we used in the initial representation of the method,
was the ”parameterization” of the space R of strictly feasible rays by the points of the relative interior
of the feasible set K (i.e., by the set K¢ associated, in the aforementioned sense, with the constraint
functional e”x). Now, what happens if we use another parameterization of R? Note that we have
a natural candidate on the role of g - the objective o (indeed, we know that o7z is positive at any
strictly feasible x and therefore is positive on M Nint K). What is the potential in terms of our new
parameterization of R, where a strictly feasible ray r is represented by its intersection y(r) with the plane
{y | Ty =1}? The answer is immediate:

In other words, the goal of a step can be equivalently reformulated as follows:
given a point y from the relative interior of the set
Ko={ze MNK | "z =1},
find a new point y© of this relative interior with F(y™) being "significantly less” than F(y).

Could you guess what is the "linesearch” (with 2" = argmin,_, 1, _,) v(y)) version of the Karmarkar
updating K in terms of this new parameterization of R?

Exercise 6.7.2 # Verify that the Karmarkar updating with linesearch is nothing but the Newton iteration
with linesearch as applied to the restriction of F onto the relative interior of K°.

Now, can we see from our new interpretation of the method why it converges at the rate given by
Theorem [6.5.1]7 This is immediate:

Exercise 6.7.3 #* Prove that
e the set K7 is unbounded;

e the Newton decrement A(¢,u) of the restriction ¢ of the barrier F' onto the relative interior of K¢
is > 1 at any point u € rint K7;

e cach damped Newton iteration (and therefore - Newton iteration with linesearch) as applied to ¢
decreases ¢ at least by 1 —1In2 > 0.
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Conclude from these observations that each iteration of the Karmarkar method with linesearch reduces
the potential at least by 1 —In 2.

Now we understand what in fact goes on in the method of Kramarkar. We start from the problem of
minimizing a linear objective over a closed and bounded convex domain K¢; we know the optimal value,
i.e., we know what is the hyperplane {c¢'x = ¢*} which touches the feasible set; what we do not know and
what should be found, is where the plane touches the feasible set. What we do is as follows (the below
explanation is illustrated by a picture at the next page): we perform projective transformation of the
affine hull of K which moves the target plane {¢’x = ¢*} to infinity (this is exactly the transformation
of Ky onto K7 given by the receipt: to find an image of & € rint Ky, take the intersection of the ray
spanned by z with the hyperplane {7y = 1}). The image of the feasible set K ¢ of the problem is an
unbounded convex domain K9, and our goal is to go to infinity, staying within this image (the inverse
image of the point moving in K7 will then stay within Ky and approach the target plane {cTx = c*}).
Now, in order to solve this latter problem, we take a self-concordant barrier ¢ for K° and apply to this
barrier the damped Newton method (or the Newton method with linesearch). As explained in Exercise
the routine decreases ¢ at every step at least by absolute constant, thus enforcing ¢ to tend to
—oo at certain rate. Since ¢ is convex (and therefore below bounded on any bounded subset of K7), this
inevitably enforces the iterate to go to infinity. Rather sophisticated way to go far away, isn’t it?

Our last story is related to a quite different issue - to the anitcipated behaviour of the method of
Karmarkar. The question, unformally, is as follows: we know that a step of the method decreases the
potential at least by an absolute constant; this is given by our theoretical worst-case analysis. What is
the "expected” progress in the potential?

It hardly makes sense to pose this question in the general case. In what follows we restrict ourselves
to the case of semidefinite programming, where

K =87
is the cone of positive semidefinite symmetric n X n matrices and
F(z) = —1InDet z

is the standard n-logarithmically homogeneous self-concordant barrier for the cone (Lecture 5, Example
5.3.3); the below considerations can be word by word repeated for the case of LP (K = R, F(x) =

— > Inz;).

Consider a step of the method of Karmarkar with linesearch, the method being applied to a semidef-
inite program. Let = be the current strictly feasible solution and =T be its iterate given by a single step
of the linesearch version of the method. Let us pose the following question:

(?) what is the progress a = v(z) — v(z™) in the potential at the step in question?

To answer this question, it is convenient to pass to certain ”standard configuration” - to perform
scaling. Namely, consider the linear transformation

1/2 1/2

ur— Xu=zx "“ux”
in the space of symetric n X n matrices.
Exercise 6.7.4 # Prove that the scaling X possesses the following properties:
e it is a one-to-one mapping of int K onto itself;
e it “almost preserves” the barrier:

F(Xu) = F(u) + const(x);

in particular,
|Xh|xy = |Bw, uw€int K, h €S™
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e the scaling maps the feasible set Ky of problem (Pr) onto the feasible set of another problem (Pj)
of the same type; the updated problem is defined by the subspace

M' = XM,
the normalizing equation (e’,x) = 1 with
¢ =g/ 2ex!/?
and the objective
o = ' ox!/?;

this problem also satisfies the assumptions A - C;

e let v(-) be the potential of the initial problem, and v' be the potential of the new one. Then the
potentials at the corresponding points coincide, up to an additive constant:

Domv’ = X(Domw); v'(Xu)—v(u) = const,, u € Domuv;

e X maps the point x onto the unit matriz I, and the iterate x of x given by the linesearch version
of the method as applied to the initial problem into the similar iterate I of I given by the linesearch
version of the method as applied to the transformed problem.

From Exercise it is clear that in order to answer the question (?), it suffices to answer the similar
question (of course, not about the initial problem itself, but about a problem of the same type with
updated data) for the particular case when the current iterate is the unit matrix I. Let us consider this
special case. In what follows we use the original notation for the data of the transformed problem; this
should not cause any confusion, since we shall speak about exactly one step of the method.

Now, what is the situation in our ”standard configuration” case x = I7 It is as follows:

we are given a linear subspace M passing through x = I and the objective o; what we know is thaﬂ

I. (o,u) > 0 whenever u € int K N M and there exists a nonzero matrix * € int K N M such that
(07 x*) =0

I1. In order to update = I into 2™, we compute the steepest descent direction ¢ of the Karmarkar
potential v(-) at the point x along the affine plane

E,={ye M| (F'(z),y —x) =0},

the metric in the subspace being |h|, = (F”(z)h, h)'/?, i.e., find among the unit, with respect to the
indicated norm, directions parallel to E, that one with the smallest (e.g., the most negative”) inner
product onto v'(x). Note that the Newton direction e, is proportional, with positive coefficient, to the
steepest descent direction . Note also, that the steepest descent direction of v at x is the same as the
similar direction for the function nIn((c,u)) at u = x (recall that for the barrier in question ¥ = n), since
x is the minimizer of the remaining component F(-) of v(-) along E,..

Now, in our standard configuration case x = i we have F’(z) = —I, and |h|, = (h, h)'/? is the usual
Frobenius nornﬂ thus, £ is the steepest descent direction of the linear form

¢(h) = n(o,h)/(0,1)
(this is the differential of nln((o,w)) at w = I) taken along the subspace
O=Mn{h: Trh=(F'(I),h) =0}

with respect to the standard Euclidean structure of our universe S™. In other words, £ is proportional,
with negative coefficient, to the orthogonal projection n of

S=(o,1)" o

2from now on we denote the inner product on the space in question, i.e., on the space S™ of symmetric n x n matrices,
by (z,y) (recall that this is the Frobenius inner product Tr{zy}), in order to avoid confusion with the matrix products like
T
-y
3due to the useful formulae for the derivatives of the barrier F'(u) = —InDet u: F'(u) = —u~1, F""(u)h = v~ Thu™1;
those solved Exercise [3.3.3] for sure know these formulae, and all others are kindly asked to derive them
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onto the subspace II.

From these observations we conclude that

ITI. Trnp = 0; Tr S = 1 (since n € II and II is contained in the subspace of matrices with zero trace,
and due to the origin of S, respectively);

IVa. (S,u) > 0 for all positive definite u of the form I +rn, r € R (an immediate consequence of I.);

IVb. There exists positive semidefinite matrix x* such that xy* — I € II and (S,x*) = 0 (x* is
proportional to z* with the coefficient given by the requirement that (F’'(I), x* — I) = 0, or, which is the

same, by the requirement that Tr x* = n; recall that F'(I) = —1I).

Now, at the step we choose t* as the minimizer of the potential v(I — tn) over the set ¢ of nonnegative
T such that I —tn € Dom v, or, which is the same in view of I., such that I —tn is positive deﬁniteﬂ and
define x as (e,z”)ta”, 2" = I — t*n; the normalization 2" — x+ does not vary the potential, so that
the quantity « we are interested in is simply v(I) — v(z").

To proceed, let us look at the potential along our search ray:

v(I —tn) = —InDet (I —tn) + nln((S, I —tn)).

IIT. says to us that (S,I) = 1; since 7 is the orthoprojection of S onto IT (see II.), we have also
(S,m) = (n,n). Thus,

o) =v(I —tn) = —InDet (I —tn) +nln(l —t(n,n)) = — Zln((l —tg;) +nin(l —tlgl3), (6.17)

i=1

where g = (g1, ...,gn)7 is the vector comprised of the eigenvalues of the symmetric matrix .

Exercise 6.7.5 #* Prove that
'Z) Z?:l gi = 0;
2) 19lee > n~t.

Now, from ((6.17) it turns out that the progress in the potential is given by

a=¢(0) — ming(t) = I&%[Z In(1 —tg;) — nln(1 —t|g3)], (6.18)

where T ={t>0] 1—tg; >0, i=1,...,n}.

Exercise 6.7.6 #1 Testing the value of t equal to

n

T=E——)
L+ nlgleo

demonstrate that

a>(1-1n2) <|9|2)2. (6.19)

9]0
The conclusion of our analysis is as follows:

each step of the method of Karmarkar with linesearch applied to a semidefinite program can be
associated with an n-dimensional vector g (depending on the data and the iteration number) in such a
way that the progress in the Karmarkar potential at a step is at least the quantity given by (6.19).

Now, the worst case complexity bound for the method comes from the worst case value of the right
hand side in ; this latter value (equal to 1—In 2) corresponds to the case when |g|2|g| = 7(g) attains
its minimum in g (which is equal to 1); note that 7(g) is of order of 1 only if g is an ”orth-like” vector - its
2-norm comes from O(1) dominating coordinates. Note, anyhow, that the ”typical” n-dimensional vector
is far from being an ”orth-like” one, and the ”typical” value of m(g) is much larger than 1. Namely, if g
is a random vector in R™ with the direction uniformly distributed on the unit sphere, than the ”typical
value” of 7(g) is of order of \/n/Inn (the probability for 7 to be less than certain absolute constant

4recall that e, is proportional, with positive coefficient, to £ and, consequently, is proportional, with negative coefficient,

ton
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times this square root tends to 0 as n — 00; please prove this simple statement). If (if!) we could use
this ”typical” value of 7(g) in our lower bound for the progress in the potential, we would come to the
progress per step equal to O(n/Inn) rather than to the worst-case value O(1); as a result, the Newton
complexity of finding e-solution would be proportional to Inn rather than to n, which would be actually
excellent! Needless to say, there is no way to prove something definite of this type, even after we equip
the family of problems in question by a probability distribution in order to treat the vectors g arising
at sequential steps as a random sequence. The diffuculty is that the future of the algorithm is strongly
predetermined by its past, so that any initial symmetry seems to be destroyed as the algorithm goes on.

Note, anyhow, that impossibility to prove something does not necessarily imply impossibility to
understand it. The ”anticipated” complexity of the method (proportional to Inn rather than to n)
seems to be quite similar to its empirical complexity; given the results of the above ”analysis”, one
hardly could be too surprised by this phenomenon.
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Chapter 7

The Primal-Dual potential reduction
method

We became acquainted with the very first of the potential reduction interior point methods - with the
method of Karmarkar. Theoretically, a disadvantage of the method is in not so good complexity bound -
it is proportional to the parameter ¥ of the underlying barrier, not to the square root of this parameter, as
in the case of the path-following method. There are, anyhow, potential reduction methods with the same
theoretical O(\/@) complexity bound as in the path-following scheme; these methods combine the best
known theoretical complexity with the practical advantages of the potential reduction algorithms. Our
today lecture is devoted to one of these methods, the so called Primal-Dual algorithm; the LP prototype
of the construction is due to Todd and Ye.

7.1 The idea

The idea of the method is as follows. Consider a convex problem in the conic form
(P): minimize ¢’z st. x€{b+L}NK
along with its conic dual
(D): minimize b's s.t. s€{c+ L }NK",
where
e K is a cone (closed, pointed, convex and with a nonempty interior) in R™ and
K*={secR"| s"2 >0 Vz € K}
is the cone dual to K;

e L is a linear subspace in R™, L is its orthogonal complement and ¢, b are given vectors from R"
- the primal objective and the primal translation vector, respectively.

From now on, we assume that

A: both primal and dual problems are strictly feasible, and we are given an initial strictly feasible
primal-dual pair (Z,3) [i.e., a pair of strictly feasible solutions to the problems].

This assumption, by virtue of the Conic duality theorem (Lecture 5), implies that both the primal
and the dual problem are solvable, and the sum of the optimal values in the problems is equal to ¢Z'b:

P*+D* =c"b. (7.1)
Besides this, we know from Lecture 5 that for any pair («, s) of feasible solutions to the problems one has

o(x,s) = Tr+bTs—cTb=s"2>0. (7.2)

95
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Substracting from this identity equality (|7.1]), we come to the following conclusion:

(*): for any primal-dual feasible pair (x,s), the duality gap 0(x, s) is nothing but the sum of inaccu-
racies, in terms of the corresponding objectives, of x regarded as an approximate solution to the primal
problem and s regarded as an approximate solution to the dual one.

In particular, all we need is to generate somehow a sequence of primal-dual feasible pairs with the
duality gap tending to zero.

Now, how to enforce the duality gap to go to zero? To this end we shall use certain potential; to
construct this potential, this is our first goal.

7.2 Primal-dual potential

From now on we assume that

B: we know a 9-logarithmically homogeneous self-concordant barrier F' for the primal cone K along
with its Legendre transformation

F*(s) = zesigPK[STx — F(x)].

(”we know”, as usual, means that given x, we can check whether x € Dom F' and if it is the case, can
compute F(z), F'(z), F”(z), and similarly for F*).

As we know from Lecture 5, F'* is ¥-logarithmically homogeneous self-concordant barrier for the cone
—K* anti-dual to K, and, consequently, the function

F*(s) = F*(—s)

is a ¥-logarithmically homogeneous self-concordant barrier for the dual cone K* involved into the dual
problem. In what follows I refer to I as to the primal, and to '™ - as to the dual barrier.
Now let us consider the following aggregate:

Vo(z,8) = F(x) + FT(s) +91n(s ) (7.3)

This function is well-defined on the direct product of the interiors of the primal and the dual cones, and,
in particular, on the direct product
rint K, X rint Kg

of the relative interiors of the primal and dual feasible sets
K,={b+LINK, Kg={c+L*}nK".

The function Vj resembles the Karmarkar potential; indeed, when s € rint K is fixed, this function,
regarded as a function of primal feasible z, is, up to an additive constant, the Karmarkar potential of the
primal problem, where one should replace the initial objective ¢ by the objective s E

Note that we know something about the aggregate V{: Proposition says to us that

(**) for any pair (z,s) € Dom Vy = int (K x K*), one has
Vo(z,s) > d¢Ind — 9, (7.4)
the inequality being equality if and only if ts + F'(x) = 0 for some positive t.
Now comes the crucial step. Let us choose a positive p and pass from the aggregate V; to the potential
Vi(z,8) = Vo(z,8) + pln(sTz) = F(z) + F*(s) + (9 + p) In(s" z).

My claim is that this potential possesses the same fundamental property as the Karmarkar potential:
when it is small (i.e., negative with large absolute value) at a strictly feasible primal-dual pair (z, s), then
the pair is comprised of good primal and dual approximate solutions.

by the way, this updating of the primal objective varies it by a constant (it is an immediate consequence of the fact
that s is dual feasible)
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The reason for this claim is clear: before we had added to the aggregate V; the ”penalty term”
pin(s”x), the aggregate was below bounded, as it is said by ; therefore the only way for the potential
to be small is to have small (negative of large modulus) value of the penalty term, which, in turn, may
happen only when the duality gap (which at a primal-dual feasible pair (z,s) is exactly sTz, see ) is
close to zero.

The quantitive expression of this observation is as follows:

Proposition 7.2.1 For any strictly feasible primal-dual pair (xz,s) one has
\%
O(z,s) < Fexp{M}, I = exp{—p "9(nd —1)}. (7.5)
I

The proof is immediate:
Vi(x,s) — Vo(z, s) <

(s, x) = In(sTz) = .

[due to (7.4)]
Vﬂ(fﬂ, 3)

I

< — p M(InY —1).

Thus, enforcing the potential to go to —oo along a sequence of strictly feasible primal-dual pairs, we
enforce the sequence to converge to the primal-dual optimal set. Similarly to the method of Karmarkar,
the essence of the matter is how to update a strictly feasible pair (x, s) into another strictly feasible pair
(zT,sT) with "significantly less” value of the potential. This is the issue we come to.

7.3 The primal-dual updating

The question we address to in this section is:

given a strictly feasible pair (z,s), how to update it into a new strictly feasible pair (z™,s") in a way
which ensures ”significant” progress in the potential V},?

It is natural to start with investigating possibilities to reduce the potential by changing one of our
two - primal and dual - variables, not both of them simultaneously. Let us look what are our abilities to
improve the potential by changing the primal variable.

The potential V,,(y,v), regarded as a function of the primal variable, resembles the Karmarkar po-
tential, and it is natural to improve it as it was done in the method of Karmarkar. There is, anyhow,
important difference: the Karmarkar potential was constant along primal feasible rays, and in order to
improve it, we first pass from the "unconvenient” fesible set K, of the original primal problem to a more
convenient set G (see Lecture 6), which is in fact the projective image of K. Now the potential is not
constant along rays, and we should reproduce the Karmarkar construction in the actual primal feasible
set. Well, there is nothing difficult in it. Let us write down the potential as the function of the primal
variable:

v(y) = Vi.(y,s) = F(y) + (Ins’y + const(s) : rint K, — R,

where
¢ =19+ pu, const(s)=FT(s).

Now, same as in the method of Karmarkar, let us linearize the logarithmic term in v(-), i.e., form the

function
T

ve(y) = F(y) + C% + const(z, s) : rint K, — R, (7.6)
where, as it is immediately seen,
const(z,s) = const(s) + (InsTz — (.
Same as in the Karmarkar situation, v, is an upper bound for v:

ve(y) > v(y), y € rint Ky vy (z) = v(z), (7.7)
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so that in order to update z into a new strictly feasible primal solution x* with improved value of the
potential v(-), it suffices to improve the value of the upper bound v, (:) of the potential. Now, v, is the
sum of a self-concordant barrier for the primal feasible set (namely, the restriction of F' onto this set)
and a linear form, and therefore it is self-concordant on the relative interior rint K, of the primal feasible
set; consequently, to decrease the function, we may use the damped Newton method. Thus, we come to
the following

Rule 1. In order to update a given strictly feasible pair (z,s) into a new strictly feasible pair (2, s)
with the same dual component and with better value of the potential V,,, act as follows:

1) Form the ”partially linearized” reduced potential v, (y) according to (7.6));

2) Update x into ' by damped Newton iteration applied to v, (), i.e.,

- compute the (reduced) Newton direction

1
e, = argmin{h’ Vv, (z) + 5thng(x)h | he L} (7.8)
and the (reduced) Newton decrement

w=/—el'Vyu.(z); (7.9)

1
14w

- set

¥=z+

€x-

As we know from Lecture 2, the damped Newton step keeps the iterate within the domain of the
function, so that 2’ € rint K,, and decreases the function at least by p(—w) = w — In(1 + w). This is the
progress in v,; from it follows that the progress in the potential v(-), and, consequently, in V,,, is at
least the progress in v,. Thus, we come to the following conclusion:

I. Rule 1 transforms the initial strictly feasible primal-dual pair (x,s) into a new strictly feasible
primal-dual pair (z',s), and the potential V,, at the updated pair is such that

Vi(z,s) =V, (2, s) >w—1In(1 +w), (7.10)

w being the reduced Newton decrement given by @ - (@)

Now, in the method of Karmarkar we proceeded by proving that the reduced Newton decrement is
not small. This is not the case anymore; the quantity w can be very close to zero or even equal to zero.
What should we do in this unpleasant sutiation where Rule 1 fails? Here again our experience with the
method of Karmarkar gives the answer. Look, the potential

Vily: ) = F(y) + F*(s) + (InsTy
regarded as a function of the strictly feasible primal solution y is nothing but
F(y)+ F*(s) +¢In(cTy — [¢Tb — b1 s]),

since for primal-dual feasible (y,s) the product sy is nothing but the duality gap ¢’y + bTs — c’'b
(Lecture 5). The duality gap is always nonnegative, so that the quantity

cTo—bTs

associated with a dual feasible s is a lower bound for the primal optimal value. Thus, the potential V,,,
regarded as a function of y, resembles the ”local” potential used in the sliding objective version of the
method of Karmarkar - the Karmarkar potential where the primal optimal value is replaced by its lower
bound. Now, in the sliding objective version of the method of Karmarkar we also met with the situation
when the reduced Newton decrement was small, and, as we remember, in this situation we were able to
update the lower bound for the primal optimal value and thus got the possibility to go ahead. This is
more or less what we are going to do now: we shall see in a while that if w turns out to be small, then
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there is a possibility to update the current dual strictly feasible solution s into a new solution s’ of this
type and to improve by this ”significantly” the potential.

To get the idea how to update the dual solution, consider the ”worst” for Rule 1 case - the reduced
Newton decrement w is zero. What happens in this situation? The reduced Newton decrement is zero if
and only if the gradient of v,, taken at x along the primal feasible plane, is 0, or, which is the same, if
the gradient taken with respect to the whole primal space is orthogonal to L, i.e., if and only if

F%@+C£%EL¥ (7.11)

This is a very interesting relation. Indeed, let

T
stx
sf=—-"FTF'(x) (7.12)
¢
The above inclusion says that —s* + s € Lt ie., that s* € s+ L*; since s € ¢ + L, we come to the
relation

* STJ: / 1

s :_TF (x) €c+ L. (7.13)
The latter relation says that the vector —F’(z) can be normalized, by multiplication by a positive constant,
to result in a vector s* from the dual feasible plane. On the other hand, s* belongs to the interior of
the dual cone K*, since —F'(z) does (Proposition [5.3.3). Thus, in the case in question (when w = 0),
a proper normalization of the vector —F'(z) gives us a new strictly feasible dual solution s’ = s*. Now,
what happens with the potential when we pass from s to s* (and do not vary the primal solution z)?
The answer is immediate:

Vi(z,8) = Vo(x,s) + plns’e > 9Ing — 9 + pln s’ ;

Vi(z,5%) = Vo(z,5") + pln(s*) 'z =99 — 9 + pln(s*) Tz

(indeed, we know from (**) that Vo(y,u) > JdInd — o, and that this inequality is an equality when
u = —tF’(y), which is exactly the case for the pair (z, s*)). Thus, the progress in the potential is at least
the quantity

sTa
a=plns’z —In(s*) 2] = p[lns’z —In (C(F’(x))Tz>] =
Cﬁﬁ%ﬁ?zum%:“m“+%) (7.14)

(the second equality in the chain is (7.12), the fourth comes from the identity (5.5)), see Lecture 5). Thus,
we see that in the particular case w = 0 updating

= puln

stz
(x,8) = (z,8" = ——F'(z))

¢

results in a strictly feasible primal-dual pair and decreases the potential at least by the quantity uln(1+
/).

We have seen what to do in the case of w = 0, when Rule 1 does not work at all. This is unsifficient:
we should understand also what to do when Rule 1 works, but works bad, i.e., when w is small, although
nonzero. But this is more or less clear: what is good for the limiting case w = 0, should work also when
w is small. Thus, we get an idea to use, in the case of small w, the updating of the dual solution given
by . This updating, anyhow, cannot be used directly, since in the case of positive w it results in
s* which is unfeasible for the dual problem. Indeed, dual feasibility of s* in the case of w = 0 was a
consequence of two facts:

1. Inclusion s* € int K* - since s* is proportional, with negative coefficient, to F’(x), and all vectors
of this type do belong to int K* (Proposition ; the inclusion s* € int K* is therefore completely
independent of whether w is large or small;

2. Inclusion s* € ¢+ L*. This inclusion came from , and it does use the hypothesis that w =0
(and in fact is equivalent to this hypothesis).
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Thus, we meet with the difficulty that 2. does not remain valid when w is positive, although small.
Ok, if the only difficulty is that s* given by does not belong to the dual feasible plane, we can
correct s* - replace it by a properly chosen projection s’ of s* onto the dual feasible plane. When w = 0,
s* is in the dual feasible plane and in the interior of the cone K*; by continuity reasons, for small w s*
is close to the dual feasible plane and the projection will be close to s* and therefore, hopefully, will be
still in the interior of the dual cone (so that s’, which by construction is in the dual feasible plane, will be
strictly dual feasible), and, besides this, the updating (z, s) — (z, s’) would result in ”almost” the same
progress in the potential as in the above case w = 0.

The outlined idea is exactly what we are going to use. The implementation of it is as follows.

Rule 2. In order to update a strictly feasible primal-dual pair (x,s) into a new strictly feasible
primal-dual pair (z,s’), act as follows. Same as in Rule 1, compute the reduced Newton direction e, the
reduced Newton decrement w and set

§'=———[F'(x) + F"(x)e,]. (7.15)

Note that in the case of w = 0 (which is equivalent to e, = 0), updating becomes exactly
the updating . As it can be easily seerEl, s’ is the projection of s* onto the dual feasible plane in
the metric given by the Hessian (F'T7)"(s*) of the dual barrier at the point s*; in particular, s’ always
belong to the dual feasible plane, although not necesarily to the interior of the dual cone K*; this latter
inclusion, anyhow, for sure takes place if w < 1, so that in this latter case s’ is strictly dual feasible.
Moreover, in the case of small w the updating given by Rule 2 decreases the potential ”significantly”, so
that Rule 2 for sure works well when Rule 1 does not, and choosing the best of these two rules, we come
to the updating which always works well.

The exact formulation of the above claim is as follows:

I1. (i) The point s’ given by (7.15)) always belongs to the dual feasible plane.
(ii) The point s’ is in the interior of the dual cone K* (and, consequently, is dual strictly feasible)
whenever w < 1, and in this case one has

O+
Vi(z,s) =V, (z,8) > pln ——— — p(w), p(r)=—In(1l —7r) -1, 7.16
s@9) = Vi) 2 phn Sl (), plr) = (1 1) (7.16)
and the progress in the potential is therefore positive for all small enough positive w.

Proof.
19, By definition, e, is the minimizer of the quadratic form

Q) = WT[F' (&) + 98] + ST F"(@)h,

V=g = ﬁ;m”, (7.17)
over h € L; note that
hT[F'(z) + vs] = KT Vv, (z), h € L.
Writing down the optimality condition, we come to
F'(2)e, + [F'(x) +vs] =€ € Lt (7.18)
multiplying both sides by e, € L, we come to
w? = —el Vv, (r) = —el [F'(z) + 78] = el F(x)es. (7.19)
20, From and it follows that
S = —%[F’(x) b (@)en] = s —y i € s+ L, (7.20)

2we skip verification, since we do not use this fact; those interested can make the corresponding computation
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and since s € ¢ + L (recall that s is dual feasible), we conclude that s’ € ¢+ L*, as claimed in (i).
Besides this,

1
s*=—=F'(z) (7.21)
Y
(see (7.12), (7.17))), so that the equivalence in (7.20)) says that
1
s =s5"—=F"(x)ey. (7.22)
Y

30. Since FT(u) = F*(—u) is ¥-logarithmically homogeneous self-concordant barrier for K* (Propo-

sition [5.3.3)), we have
(FF) (tu) =t (F*) (u), u € int K, t>0

(see , Lecture 5); differentiating in u, we come to

(FF)"(tu) = t72(F)" (u).
Substituting u = —F’(s) and ¢ = 1/~ and taking into account the relation between F* and the Legendre
transformation F'* of the barrier F', we come to

(FH)"(s7) = 2*(FY)"(=F'(x)) = v*(F")" (F'()).

But F* is the Legendre transformation of F', and therefore (see (L.3), Lecture 2)

(F*)"(F' () = [F"(x)] 7
thus, we come to

(FF)"(s%) = *[F" ()] 7. (7.23)
Combining this observation with relation , we come to

[ — )T () ()8 — %] = [F" (@)ea) T [F(2)] M [F" (@)es] = €L F" (2)es = w?

(the concluding equality is given by ) Thus, we come to the following conclusion:

ITa. The distance |s" — s*|p+ 4« between s* and s’ in the Euclidean metric given by the Hessian
(F+)"(s*) of the dual barrier F* at the point s* is equal to the reduced Newton decrement w. In
particular, if this decrement is < 1, s’ belongs to the centered at s* open unit Dikin ellipsoid of the
self-concordant barrier F+ and, consequently, s' belongs to the domain of the barrier (1., Lecture 2), i.e.,
to int K*. Since we already know that s’ always belongs to the dual feasible plane (see 2°), s’ is strictly
dual feasible whenever w < 1.

We have proved all required in (i)-(ii), except inequality (7.16)) related to the progress in the potential.
This is the issue we come to, and from now on we assume that w < 1, as it is stated in (7.16]).
49, Thus, let us look at the progress in the potential

xTs!

a =V, (x,s) = Vu(x,s") = Vo(x,s) = Vo(,5") — pIn ——. (7.24)
zTs
We have
Vo(z,s') = F(z) + F(s') + 9Ina’s' = [F(z) + F*(s*) + 9Inaz’ s*] .t
Y N 91 T

F — FT(s* —| 7.25
[P P o) (7.25)

since s* = —tF’(x) with some positive ¢, (**) says to us that
[]; =9Ind — 9. (7.26)

Now, s’, as we know from IlIa., is in the open unit Dikin ellipsoid of F' centered at s*, and the
corresponding local distance is equal to w; therefore, applying the upper bound (2.4 from Lecture 2
(recall that F'T is self-concordant), we come to

FH(s') = FH(s) < [ = ' (F*) (s") + plw), p(r) = —In(1—7) — 1. (7.27)
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We have s* = —y~1F/(z), and since F'T is ¥-logarithmically homogeneous,
(FF) (s7) = y(F*) (- F'(2))

((5.3)), Lecture 5); since F'T(u) = F*(—u), F* being the Legendre transformation of F, we have

(FF) (=F'(z)) = =(F") (F'(2)),
and the latter quantity is —z ((L.2), Lecture 2). Thus,

(F)(s7) = —ye.

Now, by we have s’ — s* = —y~1F"(x)e,, so that

[s" — s*|T(FYY (s*) = 2T F"(2)e,.
From this observation and we conclude that

xTs!

[, <aTF"e, + p(w) +I1n g

which combined with (|7.25|) and (|7.26]) results in

xTs

Vo(z,s") <9Ind — 0 + 2T F"(x)e, + p(w) + 9 1n gl

(7.28)

On the other hand, we know from (**) that Vy(z,s) > ¢Ind — 9; combining this inequality, (7.24) and
(7.28)), we come to

T o/ T

a> -zt F"(z)e, — p(w) —91n ;CT; —pln T (7.29)

xTs’
5%. Now let us find appropriate representations for the inner products involved into ((7.29)). To this

end let us set
7 =—al F"(z)e,. (7.30)

In view of (7.22) we have
1
als =aTs* — —2TF"(z)e, = 275" + T
Y
and, besides this,

1 U
2ls* = =2l F'(z) = -

v v
(see ([7.21) and (5.5), Lecture 5). We come to
Y 9
P s G U
v

b

)

Y
whence o
zts T
—_— =14 7.31
QCTS* + 19’ ( )
and Ty g p
ve _vam_vam (7.32)

2Ts  ~rxTs  d+p
(the concluding equality follows from the definition of ~, see ((7.17)).

Substituting (7.31) and (7.32) into (7.29), we come to the following expression for the progress in
potential:

0,
azwfp(w)fﬂln(lJr%)fulnﬁiz. (7.33)
Taking into account that In(1 + z) < z, we derive from this inequality that
0,
a> uln Rl p(w). (7.34)

Y+ 7
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Our last task is to evaluate 7, which is immediate:

|| = |27 F"(2)e,| < \/xTF”(x)x\/e;{F”(x)em <wVd
we have use . and 1dentity (5.5)), Lecture 5). With this estimate we derive from ({7. that
h d (7.19) and identity (5.5)), L 5). With thi i derive fi (7.34) th

a>pln (), (7.35)

R
9+ wVi P

as claimed in I1. m

7.4 Overall complexity analysis

We have presented two rules - Rule 1 and Rule 2 - for updating a strictly feasible primal-dual pair (z, )
into a new pair of the same type. The first of the rules always is productive, although the progress in the
potential for the rule is small when the reduced Newton decrement w is small; the second of the rules,
on contrary, is for sure productive when w is small, although for large w it may result in an unfeasible s’.
And, of course, what we should do is to apply both of the rules and choose the best of the results. Thus,
we come to the

Primal-Dual Potential Reduction method PD(u):

form the sequence of strictly feasible primal-dual pairs (z;,s;), starting with the initial pair (zo =
Z,80 = §) (see A), as follows:

1) given (z;-1,8i—1), apply to the pair Rules 1 and 2 to get the updated pairs (z;_;,s;—1) and
(xi-1,8,_q), respectively.

2) Check whether s}_, is strictly dual feasible. If it is not the case, forget about the pair (x;_1,5;_;)
and set (z},s]) = (x,_1,si_1), otherwise choose as (z],s;) the best (with the smallest value of the

potential V,,) of the two pairs given by 1).

3) The pair (xj', sj) for sure is a strictly feasible primal-dual pair, and the value of the potential V,, at
the pair is less than at the pair (x;_1,s;—1). Choose as (x;,s;) an arbitrary strictly feasible primal-dual
pair such that the potential V,, at the pair is not greater than at (z},s]) (e.g., set x; = ", s; = sI)
and loop.

i 091

The method, as it is stated now, involves the parameter p, which in principle can be chosen as an
arbitrary positive real. Let us find out what is the reasonable choice of the parameter. To this end let
us note that what we are intersted in is not the progress p in the potential V,, per step, but the quantity
B = mw/u, since this is this ratio which governs the exponent in the accuracy estimate ([7.5)). Now, at a
step it may happen that we are in the situation w = O(1), say, w = 1, so that the only productive rule
is Rule 1 and the progress in the potential, according to I., is of order of 1, which results in 8 = O(1/pn).
On the other hand, we may come to the situation w = 0, when the only productive rule is Rule 2, and
the progress in the potential is p = pIn(1 + p/9), see (7.16)), i.e., 8 = In(1 + /). A reasonable choice
of p should balance the values of 8 for these two cases, which leads to

=V,

% being of order of 1. The complexity of the primal-dual method for this - "optimal” - choice of pu is
given by the following

Theorem 7.4.1 Assume that the primal-dual pair of conic problems (P), (D) (which satisfies assump-
tion A) is solved by the primal-dual potential reduction method associated with ¥-logarithmically self-
concordant primal and dual barriers F and Ft, and that the parameter u of the method is chosen ac-

cording to
1= kv,
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with certain k > 0. Then the method generates a sequence of strictly feasible primal-dual pairs (x;,s;),
and the duality gap 6(x;,x;) (equal to the sum of residuals, in terms of the corresponding objectives, of
the components of the pair) admits the following upper bound:

Viu(@,5) = Vi(i, si)

(i, 8;) < Vexp{——L — iQ(k)

rV9

} <Vexp{— 1, (7.36)

where

Q(k) = min {1 —In2; ogigf< max{w — In(1+w);kIn(l 4+ k) — (k — Dw + In(1 — w)}} (7.37)

1

is positive continuous function of k > 0; the data-dependent scale factor V is given by
Vo(Z,5) — [WInd — ]
NG

In particular, the Newton complexity (# of iterations of the method) of finding e-solutions to the primal
and the dual problems does not exceed the quantity

V = 5(2,3) exp{ 1. (7.38)

Nppi(e) < Ok (1)VD In <1; + 1) +1, (7.39)

with the constant factor O (1) depending on k only.
The proof is immediate. Indeed, we know from Proposition that

S(or,s1) < Texp{ T2} e B0y D05 = Tulrioni)y

which, after substituting the value of I" from , results in the first inequality in , with V given
by .

To prove the second inequality in , it suffices to demonstrate that the progress in the potential
V. at a step of the method is at least the quantity Q(x) given by (7.37). To this end let us note that, by
construction, this progress is at least the progress given by each of the rules 1 and 2 (when Rule 2 does
not result in a strictly feasible dual solution, the corresponding progress is —co). Let w be the reduced
Newton decrement at the step in question. If w > 1, then the progress related to Rule 1 is at least 1 —1n 2,
see 1., which clearly is > (k). Now consider the case when w < 1. Here both of the rules 1 and 2 are
productive, and the corresponding reductions in the potential are, respectively,

p1=w—In(1+w)
(see I.) and

1+ x/V9
1+ w/V9

Dy = IHM
2= H 9+ wVd

(see I1.). We clearly have
p2 = kVII(1 + k/VY) — kVIIn(1 + w/VY) +In(1 — w) +w >

[since In(1 + 2) < Z]

+In(1 —w) +w=rVdIn +In(l —w)+w

> kVOIn(1 4 k/V0O) — kw +In(1 — w) 4+ w >
[since, as it is immediately seen, zIn(1 + a/z) > In(1 4+ a) whenever z > 1 and a > 0]
>kIn(l+ k) — kw+1In(l —w) +w,
and we come to the inequality
max{p1,p2} > max{w —In(1 +w);kIn(l1 +x) — (k — Dw + In(1 —w)},

so that the progress in the potential in the case of w < 1 is at least the quantity given by (7.37).
The claim that the right hand side of ([7.37)) is a positive continuous function of £ > 0 is evidently
true. The complexity bound ([7.39) is an immediate consequence of ([7.36)). m
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7.5 Large step strategy

To conclude the presentation of the primal-dual method, let me briefly outline how one could exploit
the advantages of the potential reduction nature of the method. Due to this nature, the only thing we
are interested in is ”significant” progress in the potential at a step, same as it was in the method of
Karmarkar. In this latter method, the simplest way to get a better progress than that one given by
the ”default” theoretical step, was to perform linesearch in the direction of this default step and to find
the best, in terms of the potenital, point in this direction. What is the analogy of linesearch for the
primal-dual method? It is as follows. Applying Rule 1, we get certain primal feasible direction x’ — x,
which we can extend in the trivial way to a primal-dual feasible direction (i.e., a direction from L x L)
dy = (2' — z,0); shifting the current strictly feasible pair (z, s) in this direction, we for sure get a strictly
feasible pair with better (or, in the case of w = 0, the same) value of the potential. Similraly, applying
Rule 2, we get another primal-dual feasible direction dy = (0,5 — s); shifting the current pair in this
direction, we always get a pair from the primal-dual feasible plane £ = {b+ L} x {c+ L*}, although not
necessarily belonging to the interior of the primal-dual cone I = K x K*, What we always get, is certain
2-dimensional plane D (passing through (z, s) parallel to the directions d, d2) which is contained in the
primal-dual feasible plane £, and one (or two, depending on whether Rule 2 was or was not productive)
strictly feasible primal-dual pairs - candidates to the role of the next iterate; what we know from our
theoretical analysis, is that the value of the potential at one of the candidate pairs is ”significantly” -
at least by the quantity Q(x) - less that the value of the potential at the previous iterate (x,s). Given
this situation, a resonable policy to get additional progress in the potential at the step is 2-dimensional
minimization of the potential over the intersection of the plane D with the interior of the cone K x K*.
The potential is not convex, and it would be difficult to ensure a prescribed quality of its minimization
even over the 2-dimensional plane D, but this is not the point where we must get a good minimizer; for
our purposes it suffices to perform a once for ever fixed (and small) number of steps of any relaxation
method for smooth minimization (the potential is smooth), running the method from the best of our
candidate pairs. In the case of LP, same as in some other interesting cases, there are possibilities to
implement this 2-dimensional search in a way which almost does not increase the total computational
effort per stepP] and at the same time accelerates the method dramatically.

3this total effort normally is dominated by the cost of computing the reduced Newton direction ey
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7.6 Exercises: Primal-Dual method

The subject of the forthcoming problems is implementation of the primal-dual method. We shall start
with some remarks related to the general situation and then consider a particular problem coming from
Control.

When speaking about implementation, i.e., about algorithmical issues, we should, of course, fix some-
how the way the data are represented; for a conic problem, this is, basically, the question of how the fea-
sible subspace L is described. In most of applications known to me the situation is as follows. b+ L C R"
is defined as the image of certain subspace

{¢eR! | P(¢-p) =0}
(¢ is the vector of the design variables) under a given affine mapping
r=A() = A+,

A being n x [ and P being k X [ matrices; usually one can assume that A is of full column rank, i.e.,
that its columns are linearly independent, and that P is of full row rank, i.e., the rows of P are linearly
independent; from now on we make this regularity assumption. As far as the objective is concerned, it is
a linear form x7'¢ of the design vector.

Thus, the typical for applications form of the primal problem is

(P) : minimize \T¢ st. €€RL P(E—p) =0, x= Al +beK,

K being a pointed closed and convex cone with a nonempty interior in R™. This is exactly the setting

presented in Section
As we know from Exercise [5.4.11] the problem dual to (P) is

(D) : minimize f7s st. ATs=x+ PTr, sec K*,

where the control vector is comprised of s € R™ and r € RF, K* is the cone dual to K, and 3 = A(p).
In what follows F' denotes the primal barrier - ¥-logarithmically homogeneous self-concordant barrier
for K, and F'* denotes the dual barrier (see Lecture 7).

Let us look how the primal-dual method could be implemented in the case when the primal-dual pair
of problems is in the form (P) - (D). We should answer the following basic questions

e how to represent the primal and the dual solutions;
e how to perform the updating (z;, ;) — (Zi41, Sit+1)-
As far as the first of this issues is concerned, the most natural decision is

to represent xz’s of the form A(£) (note that all our primal feasible z’s are of this type) by storing
both z (as an n-dimensional vector) and £ (as an I-dimensional one);

to represent s’s and r’s ”as they are” - as n- and k-dimensional vectors, respectively.

Now, what can be said about the main issue - how to implement the updating of strictly feasible primal-
dual pairs? In what follows we speak about the basic version of the method only, not discussing the large
step strategy from Section since implementation of the latter strategy (and even the possibility to
implement it) heavily depends on the specific analytic structure of the problem.

Looking at the description of the primal-dual method, we see that the only nontrivial issue is how to
compute the Newton direction

1
e, = argmin{h’ g + §hTF”(:1c)h | he L},

where (z, ) is the current iterate to be updated and g = F'(z) + ’zTifs Since L is the image of the linear
space
L'={¢eR'| P(=0}

under the mapping ¢ — A(, we have
e = An,

for certain 7, € L', and the problem is how to compute 7.
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Exercise 7.6.1 # Prove that n, is uniquely defined by the linear system of equations
Q P\ (n\_ (-4
(P 0 u) \ 0 (7.40)

Q=ATF"(x)A, q= ATy, (7.41)

where

so that n, is given by the relation
ne=-Q ' [ATg— PT[PQ™'PT]'PQ 'ATg]; (7.42)
in the particular case when P is absent (formally, k =0), n, is given by
ne =—Q ATy, (7.43)

Note that normally k is a small integer, so that the main effort in computing 7, is to assemble and to
invert the matrix (). Usually this is the main part of the overall effort per iteration, since other actions,
like computing F(x), F'(z), F"(x), are relatively cheap.

7.6.1 Example: Lyapunov Stability Analysis

The goal of the forthcoming exercises is to develop the (principal elements of) algorithmic scheme of the
primal-dual method as applied to the following interesting and important problem coming from Control
theory:

(C) given a ”polytopic” linear time-varying v-dimensional system
V'(t) = V(#)v(t), V(t) € Conv{Vy,....,Vinl},

find a quadratic Lyapunov function v" Lv which demonstrates stability of the system.

Let us start with explaining what we are asked to do. The system in question is a time-varying linear
dynamic system with uncertainty: v(t) is v-dimensional vector-function of time ¢ - the trajectory, and
V(t) is the time-varying matrix of the system. Note that we do not know in advance what this matrix
is; all we know is that, for every ¢, the matrix V'(¢) belongs to the convex hull of a given finite set of
matrices V;, i = 1,...,m.

Now, the system in question is called stable, if v(t) — 0 as t — oo for all trajectories. A good
sufficient condition for stability is the existence of a positive definite quadratic Lyapunov function v’ Lv
for the system, i.e., a positive definite symmetric v x v matrix L such that the derivative in ¢ of the
quantity vT (t)Lwv(t) is strictly negative for every t and every trajectory v(t) with nonzero v(t). This
latter requirement, in view of v'(¢t) = V(t)v(t), is equivalent to

[V(t)v(t)]T Lu(t) < 0 whenever v(t) #0 and V(t) € Conv{Vi,...,V;,},

or, which is the same (since for a given ¢t v(t) can be an arbitrary vector and V (t) can be an arbitrary
matrix from Conv{Vi,...,V,,}), is equivalent to the requirement

1
IV Ly = 5UT[VTL + LV <0, v#0,V € Conv{Vi,...,Vp}.

In other words, L should be a positive definite symmetric matrix such that all the matrices of the form
VTL + LV associated with V' € Conv{Vi,...,V,,} are negative definite; matrix L with these properties
will be called appropriate.

Our first (and extremely simple) task is to characterize the appopriate matrices.

Exercise 7.6.2 # Prove that a symmetric v x v matriz L is appropriate if and only if it is positive
definite and the matrices
VIL+LV;, i=1,...m

are negative definite.
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We see that to find an appropriate matrix (and to demonstrate by this stability of (C) via a quadratic
Lyapunov function) is the same as to find a solution to the following system of strict matrix inequalities

L>0;VIL+LV;<0,i=1,...,m, (7.44)

where inequalities with symmetric matrices are understood as positive definiteness (for strict inequalities)
or semidefiniteness (for non-strict ones) of the corresponding differences.

We can immediately pose our problem as a conic problem with trivial objective; to this end it suffices
to treat L as the design variable (which varies over the space S” of symmetric ¥ X v matrices) and
introduce the linear mapping

B(L) = Diag{L; V'L — LVy; ..., -V.'L — LV,,,}

m

from this space into the space (S¥)™*! - the direct product of m + 1 copies of the space S”, so that

(S¥)™*+! is the space of symmetric block-diagonal [(m + 1)v] x [(m + 1)v] matrices with m + 1 diagonal
blocks of the size v x v each. Now, (S*)™*! contains the cone K of positive semidefinite matrices of the
required block-diagonal structure; it is clearly seen that L is appropriate if and only if B(L) € int K,
so that the set of appropriate matrices is the same as the set of strictly feasible solutions to the conic
problem

minimize 0 s.t. B(L) € K

with trivial objective.

Thus, the problem in question is reduced to a conic problem involving the cone of positive semidefinite
matrices of certain block-diagonal structure; the problems of this type are called semidefinite programs
or optimization under LMI’s (Linear Matrix Inequality constraints).

Of course, we could try to solve the problem by an interior point potential reduction method known
to us, say, by the method of Karmarkar or by the primal-dual method; we immdeiately discover, anyhow,
that the technique developed so far cannot be applied to our problem - indeed, in all methods known to us
it was required at least to know in advance a strictly feasible solution to the problem, and in our particular
case such a solution is exactly what should be finally found. There is, anyhow, a straightforward way to
avoid the difficulty. First of all, our system is homogeneous in L; therefore we can normalize L to
be < I (I stands for the unit matrix of the context-determined size) and pass from the initial system to
the new one

L>0;, L<I, VL+LV;<0,i=1,...m. (7.45)

Now let us extend our design vector L by one variable ¢, so that the new design vector becomes
E=(t,L)e E=R x S",
and consider the semidefinite program
minimize t st. L+tI>0; I —L>0; tI -V L—-LV;>0,i=1,...,m. (7.46)

Clearly, to solve system is the same as to find a feasible solution to optimization problem
with negative value of the objective; on the other hand, in we have no difficulties with an initial
strictly feasible solution: we may set L = %I and then choose t large enough to make all remaining
inequalities strict.

It is clear that is of the form (P) with the data given by the affine mapping

A(€) = A(t,L) = Diag{L + tI; I — L;tI — VL — LVy;..;tI -V L - LV,,} : E — &,
€ being the space (S*)™*+2 of block-diagonal symmetric matrices with m + 2 diagonal blocks of the size
v X v each; the cone K in our case is the cone of positive semidefinite matrices from £, and matrix P is
absent, so that our problem is

(Pr) minimize t s.t. A(t,L) € K.

Now let us form the method.
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Exercise 7.6.3 #* Prove that
1) the cone K is self-dual;
2) the function
F(z) = —1InDet z

is a (m + 2)v-logarithmically homogeneous self-concordant barrier for the cone K ;
3) the dual barrier FT associated with the barrier F is, up to an additive constant, the barrier F

itself:
F*(s) = —InDet s — (m + 2)v.

Thus, we are equipped with the primal and the dual barriers required to solve (Pr) via the primal-dual
method. Now let us look what the method is. First of all, what is the dual to (Pr) problem (D1)?

Exercise 7.6.4 # Prove that when the primal problem (P) is specified to be (Pr), the dual problem (D)
becomes

(D]) minimize Tr{sg} under choice of m + 2 symmetric v X v matrices s_i, ..., Sy, S.t.

m
S_1— 80 — Z[Visi + 5, V'] = 0;
i=1
m

Tr{s_1} + ZTr{si} =1.

It is time now to think of the initialization. Could we in fact point out strictly feasible solutions Z
and s to the primal and to the dual problems? As we just have mentioned, as far as the primal problem
(Pr) is concerned, there is nothing to do: we can set

=A@ L),

where L is < I,eg., L= %I, and ¢ is large enough to ensure that L+¢I > 0, tI > VZ-TE+EW, i=1,...,m.

Exercise 7.6.5 # Point out a strictly feasible solution § to (DI).
It remains to realize what are the basic operations at a step of the method.

Exercise 7.6.6 # Verify that in the case in question the quantities involved into the description of the
primal-dual method can be specified as follows:
1) The quantities related to F are given by

F'(z) = -z~ Y F"(2)h =2 tha™;

2) The matriz Q involved into the system for finding n, (see Exercise , taken with respect to
certain orthonormal basis {€q }a=1,....N in the space E, is given by

Qap = Tr{Aax_lA/gm_l}, A, = Ae,.

Think about the algorithmic implementation of the primal-dual method and, in particular, about the
following issues:

e What is the dimension N of the "design space” E? What is the dimension M of the "image space”
E?

e How would you choose a "natural” orthonormal basis in E?

e Is it necessary/reasonable to store F"'(x) as an M x M square array? How to assemble the matriz
Q¢ What is the arithmetic cost of the assembling?

o [s it actually necessary to invert Q explicitly? Which method of Linear Algebra would you choose
to solve system 7



110 CHAPTER 7. THE PRIMAL-DUAL POTENTIAL REDUCTION METHOD

e What is the arithmetic cost of the step in the basic version of the primal-dual method? Where the
dominating expenses come from?

e Are there ways to implement at a relatively low cost a large step strategy? How would you do it?

o When would you terminate the computations? How could you recognize that the optimal value in
the problem is positive, so that you are unable to find a quadratic Lyapunov function which proves
the stability? Is it possible that running the method you never will be able neither to present an
appropriate L nor to come to the conclusion that it does not exist?

Last exercise is as follows:
Exercise 7.6.7 #* Is it reasonable to replace (Pr) by "less redundant” problem
(Pr') minimize t s.t. L>1;tI —VIL—-LV;>0,i=1,...m

(here we normalize L in by L > I and, same as in (Pr), add the 7slack” variable t to make the
problem "evidently feasible”)?



Chapter 8

Long-Step Path-Following Methods

To the moment we are acquainted with three particular interior point algorithms, namely, with the short-
step path-following method and with two potential reduction algorithms. As we know, the main advantage
of the potential reduction scheme is not of theoretical origin (in fact one of the potential reduction
routines, the method of Karmarkar, is even worse theoretically than the path-following algorithm), but
in possibility to implement ”long step” tactics. Recently it became clear that such a possibility also exists
within the path-following scheme; and the goal of this lecture is to present to you the ”long step” version
of the path-following method.

8.1 The predictor-corrector scheme
Recall that in the path-following scheme (Lecture 4) we were interested in the problem
minimize ¢’z s.t. x € G, (8.1)

G being a closed and bounded convex domain in R™. In order to solve the problem, we take a v)-self-
concordant barrier F' for the feasible domain G and trace the path

z*(t) = argmin Fy(x), Fy(z) = tc’ 2 + F(z), (8.2)
z€int G

as the penalty parameter ¢ tends to infinity. More specifically, we generate a sequence of pairs (¢, z°)
k-close to the path, i.e., satisfying the predicate

{t> 0V & {z € int G} & {\(F,,z) = \/ [VoFy(2)|TV2F(2) Vo Fy(z) < k), (8.3)

the path tolerance k < 1 being the parameter of the method. The policy of tracing the path in the basic
scheme of the method was very simple: in order to update (t,z) = (¢#'~1,2°71) into (t*,27) = (¢, 2%),
we first increased, in certain prescribed ratio, the value of the penalty, i.e., set

=t 46t dt = ¢, (8.4)

Vi

and then applied to the new function Fy+(-) the damped Newton method in order to update = into z*:

1
l_ e —
1+ )\(Ft+,yl)

y =y

[VEE(Y)] ' VaFir (4); (8.5)
we initialized this reccurency by setting y° = x and terminated it when the closeness to the path was
restored, i.e., when A(F,+,y') turned out to be < x, and took the corresponding y' as z™.

Looking at the scheme, we immediately see at least two weak points of it: first, we use a once for ever
fixed penalty rate and do not try to use larger dt’s; second, when applying the damped Newton method
to the function F}+, we start the reccurency at y° = z; why do not we use a better forecast for our target
point 2*(t 4+ dt)? Let us start with discussing this second point. The path z*(-) is smooth (at least two

111
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times continuously differentiable), as it is immediately seen from the Implicit Function Theorem applied
to the equation
tc+ F'(z) =0 (8.6)

which defines the path. Given a tight approximation x to the point z*(¢) of the path, we could try to
use the first-order prediction
o (dt) = x + 2/ dt

of our target point z* (¢ + dt); here 2’ is some approximation of the derivative %x*() at the point t. The
simplest way to get this approximation is to note that what we finally are interested in is to solve with
respect to y the equation

(t+dt)e+ F'(y) = 0;

a good idea is to linearize the left hand side at y = x and to use, as the forecast of x* (¢ + dt), the solution
to the linearized equation. The linearized equation is

(t+dt)e+ F'(z) + F"(z)[y — 2] =0,

and we come to

de(dt) =y —x = —[F"(2)] "'V Fypa(z). (8.7)

Thus, it is reasonable to start the damped Newton method with the forecast
2l (dt) = 2 + da(dt) = x — [F"(2)] "'V Frya(x). (8.8)

Note that in fact we do not get anything significantly new: 27 (dt) is simply the Newton (not the damped
Newton) iterate of x with respect to the function Fi+(-); nevertheless, this is not exactly the same as the
initial implementation. The actual challenge is, of course, to get rid of the once for ever fixed penalty
rate. To realize what could be done here, let us write down the generic scheme we came to:

Predictor-Corrector Updating scheme:
in order to update a given k-close to the path z*(-) pair (t,z) into a new pair (t*,z") of the same
type, act as follows

e Predictor step:

1) form the primal search line
P={X(dt) = (t+dt,z + dz(dt) | dt € R}, (8.9)
dz(dt) being given by ;

2) choose stepsize 6t > 0 and form the forecast

tT =t +6t, 2l =z + dx(dt); (8.10)

e Corrector step:

3) starting with y° = 2/, run the damped Newton method (8.5) until A(t*, ') becomes < &; when
it happens, set 2 = 3!, thus completing the updating (t,z) — (t,27).

Now let us look what are the stepsizes dt acceptable for us. Of course, there is an immediate re-
quirement that / = x + da(6t) should be strictly feasible - otherwise we simply will be unable to start
the damped Newton method with 2f. There is, anyhow, a more severe restriction. Remember that the
complexity estimate for the method in question heavily depended on the fact that the ”default” stepsize
results in a once for ever fixed (depending on the penalty rate v and the path tolerance x only)
Newton complexity of the corrector step. If we wish to preserve the complexity bounds - and we do wish
to preserve them - we should take care of fixed Newton complexity of the corrector step. Recall that
our basic results on the damped Newton met