Numerical optimization, Additional problem sheet

1. Assume that f is Lipschitz continuous with constant M and that Sis closed. Show that for $\lambda > M$ problem of minimizing $f(x) + \lambda d(x, S)$ where d(x, S) is distance from x to S have the same solutions as problem of minimizing f(x) over S.

2. Compute conjugate (Legendre transform) of max function: f(x) = $\max_{i=1,\ldots,n} x_i.$

3. Find formula for projection onto $[0,\infty)^n$. Justify.

4. Find formula for projection onto a convex cone C in \mathbb{R}^2 . Boundary of C consists of two half-lines, write formula in terms of those half-lines. Give geometric illustration of the formula.

5. Directly from definition compute $\operatorname{prox}_f(x)$ for $f(x) = -\log(x)$ and f(x) = $\max(x^3, 0).$

6. Let C be closed convex set. Directly from definitions check that $I_C^* = S_C$.

7. Fix nonzero $a \in \mathbb{R}^n$. Let $f(x) = \langle a, x \rangle$. Find $\operatorname{prox}_f(z)$. Use result to show that simple iteration of proximal operator (that is sequence $x_{i+1} = \text{prox}_f(x_i)$) does not need to converge.

8. Let

$$f(x) = g(x) + \frac{c}{2} ||x - a||^2.$$

Show that

$$\operatorname{prox}_{\lambda f}(x) = \operatorname{prox}_{\bar{\lambda}g}(\frac{\bar{\lambda}}{\lambda}x + c\bar{\lambda}a)$$

where $\bar{\lambda} = \frac{\lambda}{1+c\lambda}$. Hint: Normalize function to minimize to have equal coefficient before g. Show that after such normalization gradients of quadratic terms are equal.