
Numerical optimization, lecture 1

W. Hebisch

Februray 22, 2023

1 Books

• Stephen Boyd, Lieven Vandenberghe, Convex Optimization, available on-
line at http://web.stanford.edu/~boyd/cvxbook/

• David G. Luenberger, Yinyu Ye, Linear and Nonlinear Programming,
Springer 2008

• Yurii Nesterov, Introductory lectures on convex optimization, Springer
2004

• Jorge Nocedal, Stephen J. Wright, Numerical Optimization, Springer 2006

2 Introduction

General optimization problem: given a set S and a function f : S → R �nd
x0 ∈ S such that

f(x0) = max
x∈S

f(x).

In such case we write
x0 = argmax f(x).

Similarly, for minimal value we have min and argmin.

2.1 Why optimization?

Classical: decision making. We want maximal e�ect from given resources. Or
to get desired e�ect at minimal cost.

This studies: most statistical estimation and machine learning uses opti-
mization.

Approximation problem: if y /∈ S we want to �nd best approximation in S.
If d measures quality of approximation we want to �nd

argminx∈S d(y, x).

1

Least square linear regression: given xi ∈ Rk, yi ∈ Rl, i = 1, . . . n we want
to �nd best linear approximation, that is �nd matrix A which minimizes

n∑
i=1

‖yi −Axi‖2.

Regularization of ill posed problems: we want to solve equation

f(x) = y.

When f is not invertible or inverse is badly behaved (for example discontinuous)
natural approach requires some regularity of solution. If P measures regularity
we minimize

d(f(x), y) + P (x).

where d is a distance function in the image. In simplest case we use square of
euclidean norm

d(x, y) = ‖x− y‖2,

P (x) = ‖x‖2.

Important special case: LASSO. Given λ ∈ R, λ > 0, xi ∈ Rk, yi ∈ R for
i = 1, . . . , n �nd

argminb,c
∑
|yi − c− 〈b, xi〉|2 + λ‖b‖1

where b ∈ Rk, c ∈ R and ‖b‖1 =
∑k

j=1 |bj |. Using ‖b‖1 tends to promote sparse
solutions.

Typically there are ready to use implementations of optimization methods,
why we can not just use them?

• di�erent methods have di�erent properties, we need to choose one good
for speci�c problem

• we need understanding to combine/tweak methods in useful ways

• we need understanding for troubleshooting (when creating complex sys-
tems something will go wrong)

• we may need to change inner working to get gain from properties of speci�c
problem (like sparsity)

2.2 Narrowing problem

General optimization problem stated before is too general. For example, let A
be any logical formula on S. Let f(x) = 1 when A(x, y) is true and f(x, y) = 0
otherwise. Clearly maxx f(x, y) = 1 if and only if for given y there exists x such
that A(x, y) is true. In other words, using optimization procedure on f we can
solve validity of formula B(y) = ∃xA(x, y). Such problem may be arbitrarily

2

hard, in particular there is computable A such that B is not computable. Easy
A may lead to NP-complete problem for B.

In the future we will work mostly with rather regular subsets of Rk and
reasonably regular functions. In particular we will assume that functions are
almost everywhere di�erentiable, but we allow nondi�erentiability like |x|.

However, there exists polynomials P and Q with integer coe�cients such
that parametric problem

argminx P (x, y) +Q(x, y)

k∏
i=1

sin2(πxi)

is unsolvable. Above, di�culty appears because ‖x‖ may be huge and there is
no computable bound on ‖x‖. If we limit x to a bounded set one can easily get
NP-hard problem.

Remark. Di�culty above is related to di�culty of �nding integer solutions.
Namely, for given polynomial S we can build polynomial Q such that problem
above with P = S2 for any integer vector y has minimum 0 if and only if
there is integer vector x such that P (x, y) = 0. Yuri Matiyasevich showed that
�nding integer solutions to polynomial equations is uncomputable, so also our
optimization problem is uncomputable. Easy example

S(x, y) = x21 − yx22 − 1

already shows that for moderate y solution may be quite large.
We can also get NP hard problems.
Example: Let

s1 = x1 + x2 + x3,

s2 = x1x2 + x1x3 + x2x3,

s3 = x1x2x3,

Q = 1− (s21 − 3s2 + s3).

One can check that for x ∈ [0, 1]3 we have 0 ≤ Q ≤ 1 with equality only at
vertices of the cube. Moreover Q(0, 0, 0) = 1 and at other vertices Q = 0.

Consider boolean formulas in variables x1, . . . , xk. Let xi+k be negation of
xi (this is to avoid explicitly writing negations). Given boolean formula

B = (xj1,1 ∨ xj2,1 ∨ xj3,1) ∧ · · · ∧ (xj1,m ∨ xj2,m ∨ xj3,m)

we build polynomial f in y1, . . . , yk as

f = Q(yj1,1 , yj2,1 , yj3,1) + · · ·+Q(yj1,m , yj2,m , yj3,m)

where yi+k = 1 − yi. Let S be unit hypercube, that is set of y such that
0 ≤ yi ≤ 1 for i = 1, . . . , k. One can show that min f on S is zero if and only if
there is substitution of truth values for variables in B which makes B true.

3

Discrete problem above is usually called 3-SAT. It is NP-complete problem.
However, many instances of 3-SAT are easily solvable. Trying projected gradient
descent (which is one of methods that we will study later) on easily solvable
3-SAT instances sometimes gives correct answer, but frequently converges to
non-optimal point (local minimum).

We will later study convex and concave function. The Q above is concave.
But we could use di�erent building block Q, namely

Q = 1− (s1 − s2 + s3)

Experiments show that for purpose of �nding solution to 3-SAT concave version
behaves worse the second one.

Actually, using non-smooth function one can do much better than the nice
Q-s that we gave.

In practice local minimum may be good enough, in particular this is the case
in neural network training.

We need to limit to more special problems. One condition which assures
good properties is convexity. On nonconvex problems there may be di�erence
between local minimum and global minimum and we typically must be satis�ed
with local minimum.

2.3 Desired features of solution method

We need following feature from solution method:

• e�ciently handle problems of high dimension

• in many cases low accuracy solution is good enough

• robust (can cope with errors in input data)

Sometimes we need methods which tolerate points with no derivative.

2.4 Discrete optimization

For optimization on discrete sets we need di�erent methods, most is outside
scope for this course.

2.5 Equivalent problems

We frequently transfer problems to di�erent, more convenient form in such a
way that we can easily recover solution of original problem from solution of
transformed problem. In such case we say that the two problems (original one
and transformed problem) are equivalent.

We do not give precise de�nition of equivalent problems. Any simple de�-
nition risk missing some way of transforming problems or allowing too general
transformations. Rather, we will give several examples of transformations.

4

For example, problem of maximizing f may be replaced by problem of mini-
mizing −f . More generally, we may replace f by composition with a monotonic
function.

Or we may add extra variables and rewrite problem in terms of new variables.
In particular, by adding extra variable and changing set we can �nd equiv-

alent problem with linear goal function. Namely, put T = {(t, x) : x ∈ S, t ≥
f(x)}. Then

min
x∈S

f(x) = min
(t,x)∈T

t,

so we replaced problem of minimizing f on S by problem of minimizing t on T .

5

