
Lecture 14

Waldemar Hebisch

May 31, 2023

1 Conjugate function

Example: Consider (trivial) problem of minimizing f(x) under constraint x = 0.
Lagrange function is

L(x, λ) = f(x) + 〈x, λ〉

and
h(λ) = inf

x
(f(x) + 〈x, λ〉) = − sup(〈x,−λ〉 − f(x)).

The function
f∗(λ) = sup

x
(〈x, λ〉 − f(x))

is called Legendre transform or conjugate of f . With this notation we have

h(λ) = −f∗(−λ)

To get more explicit example, consider single variable f(x) = x log(x). To
maximize 〈x, λ〉 − f(x) compute derivative

∂x(〈x, λ〉 − f(x)) = λ− log(x)− 1.

Hence, for optimal x we have

log(x) = λ− 1

that is
x = exp(λ− 1).

Now

〈x, λ〉 − f(x) = exp(λ− 1)λ− exp(λ− 1) log(exp(λ− 1))

= exp(λ− 1)λ− exp(λ− 1)(λ− 1) = exp(λ− 1)

so
f∗(λ) = exp(λ− 1)

1

Similar, calculation shows that for p > 1 and f(x) = 1
px

p we have

f∗(λ) =
1

q
λq

where q solves 1
p + 1

q = 1, that is q = p
p−1 .

For f(x) = |x|, when |λ| > 1 the expression

〈x, λ〉 − f(x) = xλ− |x|

is unbounded, so λ is not in domain of f∗. When λ ∈ [−1, 1], then expression
above is non-positive and maximum is attained for x = 0, so f∗(λ) = 0.

For f(x) = 0 with domain [−1, 1], we get

f∗(λ) = sup
x∈[−1,1]

xλ.

When λ ≥ 0 maximum is at x = 1, so f∗(λ) = λ. When λ ≤ 0 maximum is at
x = −1 so f∗(λ) = −λ. In other words

f∗(λ) = |λ|.

Recalling previous example, we get

(f∗)∗ = f.

This in fact is general equality for convex f .
Let B = {x : ‖x‖ ≤ 1} be unit ball in Rn and let f(x) = 0 with domain B.

We have
f∗(λ) = sup

x∈B
〈x, λ〉

Clearly,
〈x, λ〉 ≤ ‖x‖‖λ‖ ≤ ‖λ‖.

For nonzero λ taking x = λ
‖λ‖ we have

〈x, λ〉 = 〈 λ
‖λ‖

, λ〉 =
‖λ‖2

‖λ‖
= ‖λ‖

so
f∗(λ) = ‖λ‖

(it is easy to check that this equality is also true for λ = 0).

2 Proximal methods

Assume that f(x) = g(x) + h(x) where g is smooth and h is convex.
Example:

g(x) + ‖x‖1

2

(l1 norm promotes sparsity). In particular LASSO problem is of this form.
Example: For matrices instead of l1 norm it is natural to use nuclear norm.

For positive de�nite matrices nuclear norm is just sum of eigenvalues. In general
one can compute nuclear norm using singular value decomposition. We use

g(X) + ‖X‖∗

where X goes over matrices and ‖X‖∗ is nuclear norm to promote low rank
matrices as solutions.

For di�erentiable f steepest descent is

xi+1 = xi − αi∇f(xi).

We can think that steepest descent minimizes quadratic approximation to f :

xi+1 = argminx f(xi) + 〈∇f(xi), x〉+
1

2αi
‖x− xi‖2.

When h is nonsmooth natural idea is to take quadratic approximation to g
and leave h as is. That is

xi+1 = argminx g(xi) + 〈∇g(xi), x〉+
1

2αi
‖x− xi‖2 + h(x)

= argminx
αi
2
‖∇g(xi)‖2 + 〈∇g(xi), x− xi〉+

1

2αi
‖x− xi‖2 + h(x)

= argminx
1

2
‖x− xi‖2 + 〈αi∇g(xi), x− xi〉+

1

2
‖αi∇g(xi‖2 + αih(x)

= argminx
1

2
‖x− xi + αi∇g(xi)‖2 + αih(x).

where we obtained second equality by changing constant term and third equality
multiplying by αi.

The last expression is called proximal operator. More formally for arbitrary
convex function h : Rn 7→ R ∪∞ we de�ne

proxh(x) = argminy(
1

2
‖y − x‖2 + h(y)).

With such notation we have

xi+1 = proxαih(x)(xi − αi∇g(xi)).

Resulting algorithm is called proximal gradient algorithm.
Why this is good?

• (con) above each step requires minimization of auxiliary function which
in principle can be expensive.

• there are examples where proximal operator can be computed in closed
form and is quite cheap to evaluate.

3

• proximal operator has nice theoretical properties, in particular satis�es
remarkable equalities.

• some other algorithms can be viewed as proximal gradient algorithm with
appropriate h.

Example: h(x) = ‖x‖1 =
∑n
j=1 |xj |. Then

proxλh(x) = argminy(
1

2
‖y − x‖2 + λ‖y‖1)

= argminy(

n∑
j=1

(
1

2
(yj − xj)2 + λ|yj |)).

This is sum of functions of separate variables, so it is enough to minimize each
term separately, that is compute

argminz
1

2
(z − xj)2 + λ|z|.

Now, φt,λ(z) = 1
2 (z − t)2 + λ|z| is di�erentiable when z 6= 0, so optimum is

attained either at z = 0 or at point where derivative is 0.
Di�erentiating we get

φ′t,λ(z) = z − t+ λ

for z > 0 and
φ′t,λ(z) = z − t− λ

for z < 0.
The �rst gives condition

z − t+ λ = 0

that is z = t− λ. Similarly the second expression gives z = t+ λ. Since φt,λ is
convex when one of conditions above hold, than this gives minimum. Otherwise,
minimum is a 0. So

argminz φt,λ =


t− λ when t > λ

0 when t ∈ [−λ, λ]

t+ λ when t < −λ

For original problem we get

proxλh(x) = Sλ(x)

where

Sλ(x)j =


xj − λ when xj > λ

0 when xj ∈ [−λ, λ]

xj + λ when xj < −λ

is called soft thresholding.

4

For LASSO problem, that is minimizing f(x) + λ‖x‖1 where

f(x) =
1

2
‖Ax− y‖2

proximal gradient algorithm now is:

xi+1 = Sαiλ(xi − αiAT (Ax− y)).

This is called ISTA (iterative soft thresholding).
Example: When C is closed convex set and h(x) = 0 for x ∈ C and h(x) =∞

otherwise, we get

proxh(x) = argminy∈C
1

2
‖y − x‖2 = ProjC(x).

So corresponding proximal gradient algorithm is just projected gradient al-
gorithm.

Proximal operator is nonexpansive:

Lemma 2.1

‖ proxh(x2)− proxh(x1)‖2 ≤ 〈proxh(x2)− proxh(x1), x2 − x1〉,

‖ proxh(x2)− proxh(x1)‖ ≤ ‖x2 − x1‖.

Remark: In particular projection operator is nonexpansive.
Proof: Second inequality follows from the �rst using Schwartz inequality, so

it is enough to prove the �rst.
By de�nition

proxh(x) = argminz
1

2
‖z − x‖2 + h(z)

so when z0 = proxh(x) than for any z we have

1

2
‖z − x‖2 + h(z) ≥ 1

2
‖z0 − x‖2 + h(z0).

We have
‖z − x‖ = ‖z − z0‖2 + 2〈z − z0, z0 − x〉+ ‖z0 − x‖2

so
1

2
‖z − z0‖2 + 〈z − z0, z0 − x〉+ h(z) ≥ h(z0).

Since h is convex we can drop ‖z − z0‖2 from the left hand side.
Namely

〈z − z0, z0 − x〉+ h(z) ≥ h(z0)− 1

2
‖z − z0‖2.

Graph of convex function has supporting hyperplane at z = z0, but due to
inequality above the only possible supporting plane is t = h(z0). So, we have

〈z − z0, z0 − x〉+ h(z) ≥ h(z0).

5

Now, applying this to x = x1, z0 = z1 = proxh(x1) and z2 we get

〈z2 − z1, z1 − x1〉+ h(z2) ≥ h(z1).

By symmetry, when z2 = proxh(x2) we get

〈z1 − z2, z2 − x2〉+ h(z1) ≥ h(z2).

Adding both together we get

〈z2 − z1, (z1 − x1)− (z2 − x2)〉+ h(z2) + h(z1) ≥ h(z1) + h(z2)

so
〈z2 − z1, (z1 − z2) + (x2 − x1)〉 ≥ 0

so
〈z2 − z1, x2 − x1〉 − ‖z2 − z1‖ ≥ 0

and indeed
〈z2 − z1, x2 − x1〉 ≥ ‖z2 − z1‖2

�

Lemma 2.2 Let h∗(x) = supz〈x, z〉 − h(z) is Legendre transform of h. Then

x = proxh(x) + proxh∗(x)

Proof: When u = proxh(x), then as in previous lemma we have

〈z − u, u− x〉+ h(z) ≥ h(x)

that is
〈x− u, u〉 − h(x) ≥ 〈x− u, z〉 − h(z)

so supremum in de�nition of h∗(x− u) is attained at z = u.
Moreover

h∗(z) ≥ 〈z, u〉 − h(u) = 〈z − (x− u), u〉+ h∗(x− u).

We have z − x = (z − (x− u))− u so

1

2
‖z − x‖2 =

1

2
‖z − (x− u)‖2 − 〈z − (x− u), u〉+

1

2
‖u‖2.

Adding inequality for h∗(z) we get

1

2
‖z − x‖2 + h∗(z) ≥ 1

2
‖z − (x− u)‖2 +

1

2
‖u‖2 + h∗(x− u).

≥ 1

2
‖u‖2 + h∗(x− u).

6

We have equality when z = x− u, so

proxh∗(x) = x− u

and
proxh(x) + proxh∗(x) = u+ x− u = x.

�

Example: When C is a convex cone, than I∗C = I−C∗ where C
∗ is dual cone:

C∗ = {z : 〈z, x〉 ≥ 0 for all x ∈ C}. So we get

x = ProjC(x) + Proj−C∗(x).

Example: When C is closed and convex we de�ne support function SC as

SC(x) = sup
z∈C
〈x, z〉.

Then
proxSC

(x) = x− ProjC(x)

Namely, SC = I∗C so

x = proxSC
(x) + proxIC (x) = proxSC

(x) + ProjC(x).

Example: prox‖·‖1(x) = x − ProjB∞(x) where B∞ is unit ball in l∞ norm.
This is easy to compute explicitly and gives another derivation of soft thresh-
olding operator.

Example: prox‖·‖∞(x) = x − ProjB1
(x) where B1 is unit ball in l1 norm.

Projection onto B1 can be computed e�ciently.
Note: in general when B is unit ball in some norm, then SB is the norm.
Example: Let h(x) = max{x1, . . . , xn}. Then

proxh(x) = x− Proj∆(x)

where

∆ = {t : t ≥ 0,

n∑
j=1

tj = 1}

is probability simplex.
Indeed, again h = S∆.
Example: Let

∆ = {t : t ≥ 0,

n∑
j=1

tj = 1}

be probability simplex. Recall that

Proj∆(x) = argminz∈∆

1

2
‖z − x‖2.

7

We claim that optimality condition in minimization above is

z = (x− λ1)+

where 1 is vector with all coordinates equal to 1 and (x− λ1)+ means that we
replace negative coordinates of x−λ1 by 0. λ can be determined from condition

‖(x− λ1)+‖1 = 1.

Namely, let I = {i : zi = 0}. Write

f(z) =
1

2
‖z − x‖2,

g0(z) = −1 +

n∑
i=1

zi = 〈z, 1〉 − 1,

gi(z) = −zi.

Clearly, �nding Proj∆(x) is equivalent to �nding z which minimizes f(z) under
constraints g0(z) = 0, gi(z) ≤ 0 for i = 1, . . . , n. I is set of active inequality
constraints. Since

∑n
i=1 zi = 1 at least one inequality constraint is inactive.

Hence, ∇gi(z) with i ∈ {0} ∪ I are linearly independent. By KKT conditions
we have

∇f(z)− c0∇g0(z) +
∑
i∈I

ci∇gi(z) = 0

Since ∇f(z) = z − x, in coordinates we have:

zi − xi − c0 = 0

for i /∈ I and
zi − xi − c0 − ci = 0

for i ∈ I. Since ci ≥ 0 and zi = 0 for i ∈ I this implies

−xi ≥ c0

so
xi ≤ −c0.

Put λ = −c0. By inequality above for i ∈ I we have

(xi − λ)+ = 0 = zi

For i /∈ I we have
zi − xi − c0 = zi − xi + λ.

Hence, for i /∈ I
zi = xi − λ

For i /∈ I we have zi > 0 so
zi = (xi − λ)+.

8

So, we proved that
z = (x− λ1)+.

Note that
n∑
i=1

(xi − λ)+

decreases when λ is increased, so λ is uniquely determined by condition

n∑
i=1

(xi − λ)+ = 1

It remains to give e�cient method to �nd λ. Note that

n∑
i=1

(xi − λ)+ =
∑
i/∈I

(xi − λ) = −λ(n− |I|) +
∑
i/∈I

xi

where |I| denotes number of elements of I. So once I is known we can easily
compute λ. To �nd I we use bisection. More precisely, we take trial value of
λ. For correct λ we have I = {i : zi ≤ λ}. If trial λ gives too large sum,
then we need to increase λ, when sum is too small we need to decrease λ. We
take one of xi as trial value, starting from median. Median and sums can be
computed in linear time and after single trial problem size is reduced by half
so whole computation can be done in linear time (one needs to reuse previously
computed sums).

Example: Let C = {t : tj ≥ 0,
∑n
j=1 tj ≤ 1}. This can be reduced to

previous one. Procedure is as follows:

1. Let y be x with negative coordinates replaced by 0

2. If y is in C then return it, otherwise return Proj∆(y)

To justify this, �rst note that when for some i coordinate xi is negative, then
(ProjC(x))i = 0. Namely, if (ProjC(x))i were positive, then replacing (ProjC(x))i
by 0 we would get point in C which is closer to x. So ProjC(x) = ProjC(y). Of
course, when y ∈ C, then ProjC(y) = y. Otherwise line joining y and ProjC(y)
must have common point with hyperplane given by equation

∑n
j=1 yj = 1. Since

distance of this point to y is not bigger than distance between ProjC(y) and y,
the common point is ProjC(y), that is ProjC(y) ∈ ∆, so ProjC(y) = Proj∆(y).

Example: Projection onto l1 unit ball. Let si = 1 when xi ≥ 0 and si = −1
when xi < 0. Let operator S be de�ned by equality S(z)i = sizi. We have
S(x) ≥ 0. But we also have S(B1) = B1 where B1 is unit ball in l

1 norm. Since
‖S(x)− S(y)‖2 = ‖x− y‖2 we have

ProjB1
(S(z)) = S(ProjB1

(z))

Put y = S(x). We have x = S(y) so

ProjB1
(x) = S(ProjB1

(y)).

To compute ProjB1
(y) note that ProjB1

(y) = ProjC(y) (this is similar to what
happened for C).

9

Lemma 2.3 When gradient g is Lipschitz continuous with constant M , with

constant step αi = 1
M we have

f(xi+1) ≤ f(xi).

Assuming optimal point x∞ exist we have

‖xi+1 − x∞‖ ≤ ‖xi − x∞‖

f(xi)− f(x∞) ≤ M‖x0 − x∞‖2

2i
.

In other words both objective function and distance to optimum is nonin-
creasing and we have convergence.

Lemma 2.4 If mI ≤ ∇2g(x) ≤MI, with constant step αi = 1
M we have

‖xi − x∞‖2 ≤ (1− m

M
)i‖x0 − x∞‖2

Remark: This estimate is essentially the same as for steepest descent.
Convergence analysis of proximal gradient algorithm is based on following

lemma:

Lemma 2.5 If gradient of g is Lipschitz continuous with constant M , z =
prox 1

M h(y − 1
M∇g(y)), then for all x

f(z)− f(x) ≤ M

2
‖x− y‖2 − M

2
‖x− z‖2 − r(x, y)

where r(x, y) = g(x)− g(y)− 〈∇g(y), x− y〉 ≥ 0.

Proof: r(x, y) ≥ 0 by convexity. Put

φ(t) = g(y) + 〈∇g(y), t− y〉+
M

2
‖t− y‖2 + h(t)

= g(y)− M

2
‖ 1

M
∇g(y)‖2 +

M

2
‖t− (y − 1

M
∇g(y))‖2 + h(t)

so z = argmint φ(t). We can rewrite φ as

φ(x) = ψ(x) +
M

2
‖x− z‖2

with convex ψ. Note that ψ must have minimum at z. Namely, in opposite case
there would be v such that

ψ(z + v) < ψ(z).

By convexity for 0 < t < 1 we have

ψ(z + tv) ≤ tψ(z + v) + (1− t)ψ(z)

10

= t(ψ(z + v)− ψ(z)) + ψ(z).

If ψ(z + v) − ψ(z) < 0, then for small positive t term t(ψ(z + v) − ψ(z)) has
bigger absolute value than ‖z + tv − z‖2 = t2‖v‖2, so also φ(z + tv) would be
smaller than φ(z).

Hence, we have

φ(x) ≥ φ(z) +
M

2
‖x− z‖2.

On the other hand

g(z) ≤ g(y) + 〈∇g(y), t− y〉+
M

2
‖t− y‖2

so
f(z) ≤ φ(z).

Together we get

φ(x) ≥ f(z) +
M

2
‖x− z‖2.

Now, by de�nition of φ:

g(y) + (〈∇g(y), x− y〉+
M

2
‖x− y‖2 + h(x) ≥ f(z) +

M

2
‖x− z‖2.

But
g(y) + 〈∇g(y), x− y〉+ h(x)

= g(x) + h(x) + (g(y)− g(x) + 〈∇g(y), x− y〉) = f(x)− r(x, y)

so

f(x)− r(x, y) +
M

2
‖x− y‖2 ≥ f(z) +

M

2
‖x− z‖2

and �nally

f(z)− f(x) ≤ M

2
‖x− y‖2 − M

2
‖x− z‖2 − r(x, y)

Taking x = y = xi in the lemma we get z = xi+1 and

f(xi+1)− f(xi) ≤ −
M

2
‖xi − xi+1‖2 − r(x, y) ≤ 0

so
f(xi+1) ≤ f(xi)

Taking x = x∞, y = xi we get z = xi+1 and

f(xi+1)− f(x∞) ≤ M

2
‖xi − x∞‖2 −

M

2
‖xi+1 − x∞‖2 − r(x, y)

so

0 ≤ M

2
‖xi − x∞‖2 −

M

2
‖xi+1 − x∞‖2

11

so
‖xi+1 − x∞‖ ≤ ‖xi − x∞‖.

Using estimate above in better way we get

f(xi+1)− f(x∞) ≤ M

2
‖xi − x∞‖2 −

M

2
‖xi+1 − x∞‖2

Adding up inequalities for j = 0, . . . , i− 1 we get

i−1∑
j=0

(f(xj+1)− f(x∞)) ≤ M

2
‖x0 − x∞‖2 −

M

2
‖xi − x∞‖2.

But we know f(xi) ≤ f(xj+1) so

f(xi)− f(x∞) ≤ M

2i
‖x0 − x∞‖2

Using assumption mI ≤ ∇2g(x) we see that

r(x, y) ≥ m

2
‖x− y‖2

so main lemma gives

f(xi+1)− f(x∞) ≤ M

2
‖xi − x∞‖2 −

M

2
‖xi+1 − x∞‖2 −

m

2
‖xi − x∞‖2

so

0 ≤ M −m
2
‖xi − x∞‖2 −

M

2
‖xi+1 − x∞‖2

that is

‖xi+1 − x∞‖2 ≤
M −m
M

‖xi − x∞‖2 = (1− m

M
)‖xi − x∞‖2

which proves rate of convergence in strictly convex case.
There are similar results for proximal gradient algorithm with line search.

In line search we start with reasonably large α, check if

g(xi − αdi) ≤ g(xi)− α〈∇g(xi), di〉+
α

2
‖di‖2

where di is direction and otherwise we shrink α. The condition above allows
proofs of convergence rate (with slightly worse constant) to go on.

2.1 References

This material is relatively new and most is not present in the books we use.
More examples of support functions, Legendre transform and projection is in:

Stephen Boyd, Lieven Vandenberghe, Convex Optimization, chapter 2, 3, 5
and 8.

Research level survey:
Neal Parikh, Stephen Boyd, Proximal Algorithms, Foundations and Trends

in Optimization Vol. 1, No. 3 (2013) 123�231.

12

