
Lecture 15

Waldemar Hebisch

June 14, 2023

1 Proximal methods

Example: Let h(s) = ‖s‖∗ (nuclear norm of s). On space of square n by n
matices we consider euclidean distance in terms of coordinates (which is called
Hilbert-Schmidt norm). Both nuclear norm and Hilbert-Schmidt norm does not
change when we multiply s from the left or from the right by an orthogonal
matrix. So it is enough to compute proximal operator when s diagonal matrix.
Morover,

argminy(
1

2
‖y − s‖22 + ‖y‖∗

it is enough to consider diagonal y. Namely, nuclear norm of orthogonal pro-
jection of y onto diagonal matrices is less or equal to nuclear norm of y, so
orthogonal projection of y onto diagonal matrices can not increase any of term
above.

For diagonal matrices nuclear norm is just sum of absolute values of entries
on diagonal, that is nuclear norm equals L1 of vector formed from diagonal
entries. So, we get the following algorithm to compute proxαh(s) where h is
nuclear norm:

• write s = UDV where U and V are orthogonal and D is diagonal (SVD
decomposition),

• form vector t from diagonal entries of D,

• compute r = proxαh1
(t) where h1 is L

1 norm,

• form diagonal matrix p from entires of r,

• compute UpV .

The following lemma helps with computing projections onto intersection of
sets:

Lemma 1.1 Assume that C1 and C2 are closed convex sets, and let F = C1 ∩
C2. If y = ProjC1

(x) ∈ C2, then ProjF (x) = y.

1

Proof: Since F ⊂ C1 we have

min
z∈F

1

2
‖z − x‖2 ≥ min

z∈C1

1

2
‖z − x‖2.

By assumption

min
z∈C1

1

2
‖z − x‖2 =

1

2
‖y − x‖2

and since y ∈ C2 we also have y ∈ F , so
1

2
‖y − x‖2 ≥ min

z∈F

1

2
‖z − x‖2.

Together this means

min
z∈F

1

2
‖z − x‖2 = min

z∈C1

1

2
‖z − x‖2.

But ‖z − x‖2 is strictly convex, so minimum is attained is single point, so also

ProjF (x) = argminz∈F
1

2
‖z − x‖2 = argminz∈C1

1

2
‖z − x‖2 = ProjC1

(x).

�

Example: Consider half of unit ball, that is subset of B = {x : ‖x‖ ≤ 1}
consisting of elements with x1 ≥ 0. More precisely, we consider intersection F of
B with H = {x : x1 ≥ 0}. When x ∈ H it is easy to see that also ProjB(x) ∈ H,
so by the lemma ProjF (x) = ProjB(x). When x /∈ H we get projection onto F
by �rst projecting onto P = {x : x1 = 0} and then projecting onto F ∩P which
is ball in P .

1.1 Acceleration

We can improve convergence using variant of Nesterov acceleration. Put x−1 =
x0 and

vi = xi +
i− 1

i+ 2
(xi − xi−1)

xi+1 = proxαih(vi − αi∇g(vi))
First two steps are just usual proximal proximal gradient steps, other contain
momentum term.

Accelerated proximal gradient algorithm applied to LASSO problem is called
FISTA

1.2 Proximal Newton method

Simply applying proximal operator to Newton step does not work. But if we
recall that Newton method is equvalent to steepest descent with rescaled metric,
we can get correct proxmal variant of Newton method: we need to compute
proximal operator with respect to rescaled metric. Unfortunately, this is usually
quite expensive so this is of limited use.

2

2 Barrier methods

Recall constrained optimization:

min
x∈S

f(x)

Instead of minimizing f in barrier methods we optimize

f(x) + λh(x)

where h(x) ≥ 0 and h(x) goes to in�nity when x goes to boundary of S for
sequence of λ > 0 going to 0. h above is called barrier function. In pure barrier
methods S must be closure of its interior, so we do not allow equality constraints
(they must be handled separately).

Classicaly S = {x : ∀i=1,...,Ngi(x) < 0}. In such case popular choice of
barrier function h are

h(x) =
∑
i∈I

1

g2i (x)

and
h(x) = −

∑
i∈I

log(−gi(x)).

There are advantages of use of self-concordant barrier functions. For many
important convex S self-concordant barrier functions are easy to construct.

When using barrier function we can use unconstained method to optimize
f(x) + λh(x), in particular we can use Newton method.

Correctness of of barrier methods follows from the following lemma

Lemma 2.1 If f is continous, h is �nite in interior of S, S is equal to closure

of its interior,

xλ = argminx∈S(f(x) + λh(x)),

xλ → x∞,

then

x∞ = argminx∈S f(x).

Proof: Fix ε > 0. By de�nition of inf there exists y ∈ S such that

f(y) ≤ inf
x∈S

f(x) + ε.

y may be on boundary of S, but since f is continuous and S is closure of its
interor there exists z in interior of S such that

f(z) ≤ inf
x∈S

f(x) + 2ε.

Since h(z) is �nite for small λ we have

f(z) + λh(z) ≤ inf
x∈S

f(x) + 3ε

3

so
f(xλ) ≤ f(xλ) + λh(xλ) = min

x∈S
(f(x) + λh(x))

≤ f(z) + λh(z) ≤ inf
x∈S

f(x) + 3ε.

Since xλ → x∞ and f is continous also

f(x∞) ≤ inf
x∈S

f(x) + 3ε.

Since ε > 0 were arbitrary we have

f(x∞) ≤ inf
x∈S

f(x)

so
f(x∞) = min

x∈S
f(x).

�

Features of barrier methods:

• need feasible starting point

• goes only trough feasible points

• can use e�cient unconstrained method like Newton method

• barrier function is typically badly conditioned in classical sense

• self-concordant barriers have very good convergence properties with New-
ton method

Interior point method for linear programming is an example of barrier method.
In case of linerar programming crucial point is that goal function is linear (a�ne)
and

h(h) = −
∑

log(xi)

is self-concordant. However, several problems may be converted to form with
linear goal function on set S having self-concordant goal function.

Example: In semide�nite programming goal function is linear and con-
straints have form gi(x) ∈ Pi where gi is a�ne function and Pi is cone of
positive de�nite matrices (we use index i because dinension of matrices may
depend on i). Recall, that on positive de�nite matrices

h(S) = − log(det(S))

is self-concordant. So each constraint of form gi(x) ∈ Pi can be replaced by
self-concordant barrier and all such constraints by sum (which again is self-
concordant).

4

Computing such barrier function is more expensive than in case of linear pro-
gramming (because simple way to compute barrier function need to diagonalize
corresponding matrices) and some speci�c optimizations for linear programming
do not apply. By we can solve semide�nite problems by method which is essen-
tially the same as interior point method for linear programming.

Semide�nite programming may look special, but in fact some popular prob-
lems are special cases of semide�nite programming:

• quadratic problems: constraints are a�ne, goal function is convex quadratic

• quadratically constrained quadratic problems: constraints and goal func-
tion are convex quadratic

• second order cone problems

Clearly, quadratically constrained quadratic problems are more general than
quadratic problems.

Second order cone problems have a�ne goal function and constraints of form

‖Ax+ b‖ ≤ 〈c, x〉+ d.

If needed adding extra variables we can transform convex quadratic constraints
into second order cone constraints. Also, by adding extra variable t and con-
straint f − t ≤ 0 we can transform problem into problem with linear goal
function. So in this sense second order cone problems are more general than
quadratically constrained quadratic problems.

Note that
‖x‖ ≤ t

is equivalent to

0 ≤
(

tI x
xT t

)
so we can rewrite second order cone constraints as semi-de�nite constraints.

References

Literature about interior point methods is quite extensive, most of it is also
quite advanced. Resonable introduction is given in Nemirovski lectures (linked
from course web page).

3 Practical aspects

3.1 3-SAT

In the �rst lecture we had the following example. Let

s1 = x1 + x2 + x3,

s2 = x1x2 + x1x3 + x2x3,

s3 = x1x2x3,

5

Q = 1− (s21 − 3s2 + s3).

One can check that for x ∈ [0, 1]3 we have 0 ≤ Q ≤ 1 with equality only at
vertices of the cube. Moreover Q(0, 0, 0) = 1 and at other vertices Q = 0.

Consider boolean formulas in variables x1, . . . , xk. Let xi+k be negation of
xi (this is to avoid explicitly writing negations). Given boolean formula

B = (xj1,1 ∨ xj2,1 ∨ xj3,1) ∧ · · · ∧ (xj1,m ∨ xj2,m ∨ xj3,m)

we build polynomial f in y1, . . . , yk as

f = Q(yj1,1 , yj2,1 , yj3,1) + · · ·+Q(yj1,m , yj2,m , yj3,m)

where yi+k = 1 − yi. Let S be unit hypercube, that is set of y such that
0 ≤ yi ≤ 1 for i = 1, . . . , k. One can show that min f on S is zero if and only if
there is substitution of truth values for variables in B which makes B true.

Discrete problem above is usually called 3-SAT. It is NP-complete problem.
However, random instances of 3-SAT with m < 3k tend to be easily solvable.
So it makes sense to check how our methods work.

Trying projected gradient descent with learning rate α = 0.3 and with ran-
dom starting point in [0, 1]k converges to local minimum in relatively small
number of iterations: of order 7 when k = 350 and m = 820 growing to about
20 when k = 80000 and m = 150000. But values at local minimum are rather
large and even large number of trials like 2000 did not give 0 as minimal value.

When we want to solve 3-SAT we can try di�eren function:

P = 1− (s1− s2 + s3).

One can show that P for x ∈ [0, 1]3 satis�es 0 ≤ P ≤ 1. Morover P (0, 0, 0) = 1
and at over vertices P = 0. So instead of Q we could try P .

This time convergence needs more iterations, of order 30 when k = 350 and
m = 820 and of order 150 when k = 80000 and m = 150000. But when k = 350
and m = 820 in moderate number of trials we get value 0 (that is satisfying
substitution). Unfortunately, when k = 80000 and m = 150000 we get relatively
small values but probablity of getting 0 seem to be quite small.

The full program is example sat3.c, below is projected gradient part:

float

pgd(struct form * f, float * x, float alpha, int N) {

int m = f->nv;

float * dx = my_malloc(m*sizeof(*dx));

int l;

float res;

for (l=0;l < N; l++) {

res = eval_form(f, x, dx);

int i;

float del2 = 0;

for(i = 0; i < m; i++) {

6

float nx = x[i] - alpha*dx[i];

/* Compute projection */

nx = (nx < 0)?0:nx;

nx = (nx > 1)?1:nx;

/* Add contribution to norm of projected gradient */

float di = x[i] - nx;

del2 += di*di;

x[i] = nx;

}

if (del2 < 0.00001) {

break;

}

return res;

}

3.2 Beck and Teboulle method

Beck and Teboulle method is releated to ADMM and proximal methods. We
want to compute

argminx ‖Ax− b‖2 + 2λ‖x‖TV
where ‖ · ‖ is l2-type norm and ‖ · ‖TV is discrete total-variation seminorm, x is
image to be recovered, b is observed noisy image and A is transformation matrix
representing blurring (in simplest case A = I is identity matrix). For in�nite
grayscale images

‖x‖TV =
∑
i,j

|xi+1,j − xi,j |+ |xi,j+1 − xi,j |.

For �nite images we skip di�erences when one of elements is outside. For color
images we can compute total variation separately for each color component (as
done in example program), or (better) treat each pixel as vector and compute
euclidian norm of di�erence.

Like in ADMM Beck and Teboulle use duality. However, since dual problem
is strongly conves they use accelerated projected gradient method to solve the
dual problem.

Their method converges in small number of iterations. Due to non-smoothness
and high dimensions methods like gradient descent are likely to converge very
slowly (and the same for conjugate gradient). ADMM is likely to work well too,
but Beck and Teboulle method has small per-iteration cost, so it is hard to beat.

7

