
Lecture 5

W. Hebisch

March 22, 2023

1 Convex optimization

When gi : Rn → R ∪ {∞} are convex functions, then S = {x : gi(x) ≤ 0} is a
convex set. When f is de�ned and convex on S then problem

minimize f(x)
subject to gi(x) ≤ 0

is called (constrained) convex optimization problem. For linear (more precisely
a�ne) function gi we can use equality constraint gi(x) = 0, namely we write
equality as conjunction of two inequalities gi(x) ≤ 0 and −gi(x) ≥ 0 (for a�ne
gi both gi and −gi is convex, otherwise w could not do this).

Example: linear programming problem, LASSO.
Frequently constraints and goal function have very special form, for example

quadratic goal function and linear constraints (quadratic optimization).

1.1 More examples of convex problems

Example: SVM. We want to �nd plane that best separates two �nite sets A and
B. We can write equation of separating plane P as P = {x : f(x) = 0} where

f(x) = 〈x, β〉+ β0.

Distance to the plane is

d(x, P) =
1

‖β‖
|f(x)|

with sign of f(x) deciding which half-space contains x. So, �nding plane which
maximizes which separates A and B and maximizes distance to A and B leads
to problem

minimize ‖β‖2
subject to 〈x, β〉+ β0 ≥ 1, for x ∈ A

and 〈x, β〉+ β0 ≤ −1, for x ∈ B

Here we minimize quadratic function with linear constrants.
Note: this problem has solution only when separating plane exists.

1

Example: robust linear programming. Suppose that constraints are known
only approximately and we want to make sure that problem is feasible for all
possible constraints. Reasonable assumption is that in constraint 〈ai, x〉 ≤ bi we
know that ai belongs to some ellipsoid. That is ai = wi + Piui where ‖ui‖ ≤ 1.
Here wi is center and Pi is a positive de�nite matrix. Then

〈ai, x〉 = 〈wi, x〉+ 〈Piui, x〉 = 〈wi, x〉+ 〈ui, Pix〉

and maximal value of 〈ui, Pix〉 term (as a function of ui) is clearly ‖Pix‖2. So
we can rewrite problem as: minimize 〈c, x〉 under constraints

〈wi, x〉+ ‖Pix‖2 − bi ≤ 0.

This is so called second order cone constraint.
Example: geometric programming. Consider problem of minimizing f0 un-

der constraints fi ≤ 1 for i = 1, . . . ,m, gi = 1 for i = 1, . . . , l and xi > 0,
i = 1, . . . , n where each fi is of form

fi(x) =
∑

ci,αx
α

and gi is of form
dix

β
i

where α and βi have real coordinates and di > 0, ci,α > 0. This usually is
non-convex problem. However, replacing xi by exp(yi) we can write in new
coordinates:

fi(y) =
∑

ci,α exp(〈α, y〉)

gi(y) = di exp(〈βi, y〉).

Taking logarithms we get new problem: minimize log(f0) under constraints

log(fi) ≤ 0,

and 〈βi, y〉+log(di) = 0. One can check that log(fi) is convex, so this is convex
problem.

Example: In IBM Model 1 we are given set of pairs of sentences in native
language N and foreign language F . Sentence F is assumed to be good trans-
lation of sentence N . For technical reasons we add a �ctional empty word at
start of N . We assume that a word from F may be translated from any word
in N , with probability that depends on word in N , but does not depend on
position. We want to estimate probabilities P (f |n) where f is foreign word and
n is native word. Our assumptions lead to formula

P (F |N) =
ε

(1 + lN)lF

lF∏
j=1

lN∑
i=0

P (Fj |Ni).

where lF is length of F , lN is length of N and ε is a normalizing parameter.

2

In IBM Model 1 we maximize∏
(F,N)∈T

P (F |N)

where T is set of pairs used for training.
Passing to logarithms, we maximize

L =
∑

(F,N)∈T

log(P (F |N)).

We have

P (F |N) = cF,N

lF∏
j=1

lN∑
i=0

P (Fj |Ni)

which gives

log(P (F |N)) = dFN
+

lF∑
j=1

log(

lN∑
i=0

P (Fj |Ni))

and

L = c+
∑

(F,N)∈T

lF∑
j=1

log(

lN∑
i=0

P (Fj |Ni)).

Since log is strictly concave this is equivalent to minimizing convex function
−L. Note: in older literature there is wrong claim that this is strictly convex
problem and solution is unique.

Maximizing f in general is di�erent (non convex) problem.
Many important problems, in particular problems appearing in training neu-

ral nets are non convex. Still, methods developed for convex problems frequently
work (but there is no warranty).

1.2 Unconstrained optimization, optimality conditions

Consider case when there is no side conditions, that is feasible set is whole Rn.
Recall multivariate calculus:

Lemma 1.1 Assume that x0 is interior point of feasible set. If f attains local
minimum at x0 and f is di�erentiable at x0, then f ′(x0) = 0. If f is twice
di�erentiable at x0, then f

′′(x0) is positive de�nite. If f is convex and f ′(x0) =
0, then x0 is global minimum of f .

Remark: Since we allow ∞ as a value, set of points where f is �nite may
be smaller than whole Rn. So while we have no explicit constraints, we obtain
equivalent e�ect by making f in�nite where it would be otherwise unde�ned.
In other words, our results will be applicable also to some problems with con-
straints. In particular the lemma above works when feasible set is convex and
open.

3

1.3 Quadratic problem

Unconstrained linear problem is either trivial (that is f is constant) or un-
bounded. So the simplest nontrivial example is quadratic.

Consider minimization of quadratic function

f(x) =
1

2
〈Ax, x〉+ 〈b, x〉+ c.

If x0 is an optimal solution, then

0 = ∇f(x0) = Ax0 + b

so
Ax0 = −b.

If A is strictly positive de�nite, then A is invertible and

x0 = −A−1b

is an optimal solution.
If A is only weakly positive de�nite, then any solution to Ax0 = −b is

optimal. If Ax0 = −b has no solution or A is not positive de�nite, then problem
is unbounded from below and there is no optimal solution. In all cases solution
reduces to numerical linear algebra: equation solving and possibly checking if
A is positive de�nite.

However, for large problems exactly solving linear equations may be too
expensive. In fact, optimization methods lead to one widely used method for
approximate solving of linear equations (conjugate gradient method).

1.4 Example: least squares regression

We are given approximate values yi, i = 1, . . . ,m of an unknown function at
points xi respectively. We want to express our function as a linear combination
of known functions φj , j = 0, . . . , r:

f(x) =

r∑
j=0

βjφj .

In experimental setup usually there is some error, so we want to minimize sum
of squares of errors:

m∑
i=1

‖yi − f(xi)‖2 =

m∑
i=1

〈
yi −

r∑
j=0

βjφj(xi), yi −
r∑
l=0

βlφl(xi)

〉

=

r∑
j=0

r∑
l=0

(
〈
m∑
i=1

〈φj(xi), φl(xi)〉

)
βjβl+

4

−2
r∑
j=0

m∑
i=1

〈yi, φj(xi)〉βj +
m∑
i=1

〈yi, yi〉

= 〈Aβ, β〉+ 〈b, β〉+ c

where

Aj,l =

m∑
i=1

〈φj(xi), φl(xi)〉,

bj = −2
m∑
i=1

〈yi, φj(xi)〉

c =

m∑
i=1

〈yi, yi〉

In particular, when φ0 = 1 and φj(x) = xj we have linear least squares
regression.

Variation: we may add penalty for large β, that is minimize

〈Aβ, β〉+ 〈b, β〉+ c+ λ〈β, β〉 = 〈Ãβ, β〉+ 〈b, β〉+ c.

which only di�ers that we have now di�erent matrix Ã. When penalty term
omits β0 this is called ridge regression.

L1 penalty gives non-quadratic problem (LASSO).

1.5 Quadratic approximation

Recall Taylor theorem in integral form:

f(x) = f(x0) + f ′(x0)(x− x0) +
∫ 1

0

tf ′′(x0 + t(x− x0))(x− x0, x− x0)dt.

This may be obtained by integrating by parts

f(x) = f(x0) +

∫ 1

0

f ′(x+ t(x− x0))(x− x0)dt.

If f has minimum at x0, then f
′′(x0) is positive de�nite. If f ′′(x0) is strictly

positive de�nite and f is regular then there is some neighbourhood V of x0 such
that f is convex in V . So convex methods are useful for local convergence.

1.6 Descent, basic idea

Typical optimization methods are iterative. Large class of methods can be
described as below.

Iteratively form points xi, starting from some x0. Put

xi+1 = xi + αihi

5

where hi is called search direction and αi > 0 is called step size (or learning rate
in machine learning context). We want this to be descent method, that is

f(xi+1) < f(xi).

except when xi is optimal. In convex case we have

f(xi+1) ≥ f(xi) + αi〈∇f(xi), hi〉

so we must have 〈∇f(xi), hi〉 < 0.
In general 〈∇f(xi), hi〉 < 0 means that for α small enough we get descent.

We call such hi descent direction.
Expression

〈∇f(xi), hi〉
‖hi‖

measures how fast f decays in direction hi. It is natural to choose hi so that it
gives fastest decay. By property of scalar product this means

hi =
−∇f(xi)
‖∇f(xi)‖

which is called steepest descent direction. Descent methods using multiples of
−∇f(xi) are called steepest descent.

After choice of hi we still need to choose αi. This is called line search.
Exact line search means that we solve one dimensional problem of minimizing
f(xi+αhi) exactly. Sometimes this can be done easily, but in most cases exact
line search is too expensive and we use an approximate one.

Choice of αi requires some care. We need su�cient descent, otherwise de-
scent may converge to non-optimal point. Also, step size must be big enough.

Below we will present theoretically good method to choose αi. However, in
many practical problem �xed αi works well (actual value is frequently deter-
mined in experimental way).

1.7 Descent, Armijo's condition

One rule is to accept only steps giving su�cient percentage of decay expected
from derivative (su�cient decay):

f(xi + αhi)− f(xi) ≤ ρα〈∇f(xi), hi〉

where ρ ∈ (0, 1) is a �xed parameter. To avoid too small steps we require that
multiplying step by �xed η > 1 should give unacceptable step:

f(xi + ηαhi)− f(xi) > ρηα〈∇f(xi), hi〉.

For convex functions, when α gives su�cient decay, then any smaller value also
gives su�cient decay.

6

1.8 Descent, backtracking line search

This leads to simple algorithm:

• Choose some initial step size.

• If step size is too large, then while step size is too large keep dividing it
by η, return �rst acceptable value.

• If step size is acceptable, then while step size is acceptable keep multiplying
it by η, return last acceptable value.

called backtracking line search
Example: Put f(x) = 1

2 (x
2
1+γx

2
2) and x0 = (γ, 1) where γ > 0. Then, using

exact line search in i-th iteration we get

(γ

(
−1− γ
1 + γ

)i
,

(
1− γ
1 + γ

)i
).

that is iterates converge geometrically with rate

1− γ
1 + γ

so for small γ convergence is very slow.
Remark: Using backtracking line search we can expect slightly slower con-

vergence.

1.9 Descent, condition number

For good behaviour need extra assumptions, namely that

m‖h‖2 ≤ f(x)′′(h, h) ≤M‖h‖2

When m is biggest possible and M smallest possible quotient m
M is called con-

dition number. Using exact or backtracking line search can prove linear con-
vergence with rate 1 − cmM . Example above shows that estimate of rate of
convergence can not be essentially improved.

1.10 Unconstrained optimization, convergence

Lemma 1.2 Assume f has continuous derivative. Let xn be a sequence pro-
duced by gradient descent with exact or backtracking (Armijo) line search. Then
every limit point x∞ of {xn} is a stationary point, that is ∇f(x∞) = 0.

Idea of the proof: f(xn) is nonincreasing, so it converges to f(x∞). By
contradiction, if x∞ was nonstationary, then gradient descent would decrease
value of f by a �xed amount for all y in a neighbourhood of x∞. This gives
contradiction with convergence. �

7

Remark: With �xed αi there is no warranty of descent. However, if �xed αi
gives descent, then the argument above works and proves that every limit point
is a stationary point.

Remarks:

• If sublevel set {x : f(x) ≤ f(x0)} is compact, then there exist limit point,
otherwise gradient descent may diverge.

• There may be multiple limit points.

• Numerically gradient descent typically converges to local minimum, but
theoretically can converge to a saddle point (due to descent can not con-
verge to maximum).

• No claim about rate of convergence.

• The same argument works whenever descent is uniform in some neigh-
bourhood of x∞.

Example: Let f(x1, x2) =
1
2 (x

2
1+

1
2x

2
2) for x2 ≥ 0 and f(x1, x2) =

1
2 (x

2
1− 1

2x
2
2)

for x2 < 0. It is easy to check that f has Lipschitz continuous derivative:
‖∇f(x) − ∇(y)‖ ≤ ‖x − y‖. We saw that started from (12 , 1) gradient descent
with exact line search will keep x2 > 0, so it will converge to non-optimal
stationary point (0, 0). Here by exact we mean line search that will �nd local
minimum closest to starting point. In the example above f is unbounded from
below on lines used in line search, but it is possible to construct function with
Lipschitz continuous derivative such that it agrees with quadratic 1

2 (x
2
1 +

1
2x

2
2)

on all lines used in line search and (0, 0) is not a local minimum.

1.11 Unconstrained optimization, rate of convergence

To say anything about rate of convergence we need extra assumptions. We
already had assumption that

f ′′(x)(h, h) ≤M‖h‖2.

For nonconvex f we need symmetric inequality

−M‖h‖2 ≤ f ′′(x)(h, h).

As long as f is smooth and domain of f is convex this is equivalent to

‖∇f(y)−∇f(x)‖ ≤M‖y − x‖,

that is Lipschitz continuity of derivative of f .
Comparing f with quadratic function we get inequality

f(y) ≤ f(x) + 〈∇f(x), y − x〉+ M

2
‖y − x‖2.

8

Taking y = x− α∇f(x), α = 1
M we get

f(y) ≤ f(x)− 1

2M
‖∇f(x)‖2.

Moreover, for φ(α) = f(xi − α∇f(xi)) when 0 < α < 1
M , then φ(α)′ < 0.

Namely,
φ(α)′ = −〈∇f(xi − α∇f(xi)),∇f(xi)〉.

We write

∇f(xi − α∇f(xi)) = (∇f(xi − α∇f(xi))−∇f(xi)) +∇f(xi).

so
−〈∇f(xi − α∇f(xi)),∇f(xi)〉

= −〈∇f(xi − α∇f(xi))−∇f(xi),∇f(xi)〉 − 〈∇f(xi),∇f(xi)〉

≤ −‖∇f(xi)‖2 + ‖∇f(xi − α∇f(xi))−∇f(xi)‖‖∇f(xi)‖.

Consequently, if

‖∇f(xi − α∇f(xi))−∇f(xi)‖ < ‖∇f(xi)‖

then φ(α)′ < 0. By Lipschitz continuity of ∇f we have

‖∇f(xi − α∇f(xi))−∇f(xi))‖ ≤M‖α∇f(xi)‖

so it is enough to have

M‖α∇f(xi)‖ < ‖∇f(xi)‖

which means |α| < 1
M .

Now, given xi we see that exact line search will choose xi+1 so that

f(xi+1) ≤ f(xi)−
1

2M
‖∇f(xi)‖2.

That is

f(xi)− f(xi+1) ≥
1

2M
‖∇f(xi)‖2

hence adding over i:

f(x0)− f(xm+1) ≥
1

2M

m∑
i=0

‖∇f(xi)‖2

which means that there i ≤ m such that

‖∇f(xi)‖2 ≤
2M(f(x0)− f(xm+1))

m+ 1
.

If problem is bounded from below this means that we can decrease gradient to
ε in O(1

ε2) steps.

9

Above we handled �xed α and exact line search. Recall Armijo's rule:

f(xi + αhi)− f(xi) ≤ ρα〈∇f(xi), hi〉.

By previous calculation α ≤ 1
M is acceptable when ρ ≤ 1

2 . Together with second
part of the rule, this means that we will choose α > 1

ηM . If we choose α > 1
M ,

then we get at least ρ
2M ‖∇f(xi)‖

2 of decay, otherwise at least 1
2ηM ‖∇f(xi)‖

2

of decay. Then, proceeding as before we get

‖f ′(xi)‖2 ≤
CM(f(x0)− f(xm+1))

m+ 1
.

with C = 2max(1ρ , η).

More generally, if hi is arbitrary search direction such that 〈∇f(xi), hi〉 < 0,
then write

cos(θi) = −
〈∇f(xi), hi〉
‖∇f(xi)‖‖hi‖

.

Repeating previous reasoning we get Zoutendijk inequality

m∑
i=0

cos(θi)‖∇f(xi)‖2 ≤
CM(f(x0)− f(xm+1))

m+ 1

with similar conclusions as before.
O(1

ε2) steps to decrease gradient to εmay look bad, but in fact is best possible
estimate for gradient descent and several other methods. There is better method
needing O(ε

−3
2) steps and this in general is best possible.

For convex functions situation is better. To simplify arguments we will
consider constant step size α ≤ 2

M where as before M is Lipschitz constant of
gradient of f .

To prove the results below we need a useful estimate:

Lemma 1.3

f(x) + 〈∇f(x), y − x〉+ 2

M
‖∇f(x)−∇f(y)‖2 ≤ f(y),

1

M
‖∇f(y)−∇f(x)‖2 ≤ 〈∇f(y)−∇f(x), y − x〉

Proof: To prove �rst inequality consider φ(y) = f(y) − 〈∇f(x), y − x〉.
∇φ(x) = 0 so φ attains minimal value at x, so

f(x) = φ(x) ≤ φ(y − 1

M
∇φ(y)).

Since gradient of φ has the same Lipschitz constant as f we have descent estimate

φ(y − 1

M
∇φ(y)) ≤ φ(y)− 1

2M
‖∇φ(y)‖2.

10

Since ∇φ(y) = ∇f(y)−∇f(x) this gives �rst estimate.
Adding �rst estimate for x and y and with reversed order gives second esti-

mate. �

Now, we will prove that under conditions above distance to optimal point
can not increase.

Lemma 1.4 With assumptions as above

‖xi+1 − x∞‖ ≤ ‖xi − x∞‖

Proof:
‖xi+1 − x∞‖2 = ‖xi − x∞ − α∇f(xi)‖2

= ‖xi − x∞‖2 − 2α〈∇f(xi), xi − x∞〉+ α2‖∇f(xi)‖2

≤ ‖xi − x∞‖2 − α
2

M
‖∇f(xi)‖2 + α2‖∇f(xi)‖2

≤ ‖xi − x∞‖2

as long as α ≤ 2
M . �

Now, we can prove decay of goal function:

Lemma 1.5 Let f be convex such that gradient of f is Lipschitz continuous
with constant M . Gradient descent using constant step size α = 1

M satis�es

f(xm)− f(x∞) ≤ 2M‖x0 − x∞‖2

m+ 4

where x∞ is a minimizer of f .

Proof: By convexity

f(x∞)− f(xi) ≥ 〈∇f(xi), x∞ − xi〉 ≥ −‖∇f(xi)‖‖x∞ − xi‖

so

‖∇f(xi)‖ ≥
f(xi)− f(x∞)

‖xi − x∞‖
≥ f(xi)− f(x∞)

‖x0 − x∞‖
Combining this with descent estimate we get

f(xi+1)− f(xi) ≤ −
(f(xi)− f(x∞))2

2M‖x0 − x∞‖2

Writing δi = f(xi)− f(x∞) this means

δi+1 − δi ≤ −
δ2i

2M‖x0 − x∞‖2

11

so

δi+1 ≤ δi −
δ2i

2M‖x0 − x∞‖2

Now the we get result by induction. It is clearly true for i = 0. The right hand
side is a quadratic in δi, which attains maximal value at δmax =M‖x0− x∞‖2.
By inductive assumption δi ≤ 2M‖x0−x∞‖2

i+4 , which is smaller than δmax, so our
quadratic is increasing for relevant δi and we get estimate from above plugging
in upper estimate for δi.

Consequently

δi+1 ≤
2M‖x0 − x∞‖2

i+ 4
− 2M‖x0 − x∞‖2

(i+ 4)2

= 2M‖x0 − x∞‖2(
1

i+ 4
− 1

(i+ 4)2
)

≤ 2M‖x0 − x∞‖2(
1

i+ 4
− 1

(i+ 4)(i+ 5)
)

=
2M‖x0 − x∞‖2

i+ 5
.

�

Remark. We get similar result for smaller steps. However, when α > 2
M our

proof that ‖xi − x∞‖ is nonincreasing no longer works. For 1
M < α ≤ 2

M we
get worse estimate of descent. In practice larger steps are likely to give faster
convergence, but theory suggests small steps. So there is a discrepancy. We will
see that similar discrepancy appears in di�erent situations.

We also have decay of gradient:

Lemma 1.6 With assumptions as above we have

min
m/2≤i<m

‖∇f(xi)‖ ≤
4M‖x0 − x∞‖

m+ 1
.

Remark: Clearly, this is better then non-convex gradient estimate.
Proof: Applying our previous general gradient estimate with x0 replaced by

xm0 where m0 = m/2 (rounded up) we get

min
m0≤i<m

‖∇f(xi)‖2 ≤
2M(f(xm0

)− f(x∞))

m−m0 + 1
.

Using estimate for f(xm0
)− f(x∞) this is

≤ 2M(2M‖x0 − x∞‖2)
(m0 + 4)(m−m0 + 1)

12

≤ (4M‖x0 − x∞‖)2

(m+ 1)2

which gives the claim. �

1.12 Further reading

David G. Luenberger, Yinyu Ye, Linear and Nonlinear Programming, chapters
7 and 8.

Stephen Boyd, Lieven Vandenberghe, Convex Optimization, chapter 9.

13

