
Lecture 6

W. Hebisch

March 29, 2023

1 Unconstrained optimization

1.1 Unconstrained optimization, rate of convergence

Now we come to lower bound.
We will say that a method is �rst order method if

xi+1 ∈ x0 + lin{∇f(x0), . . . ,∇f(xi)}.

Intuitively, the condition above means that we use only information obtained
from �rst derivatives to choose direction. Clearly gradient descent is a �rst
order method, but we will see that most methods that we study are �rst order
methods.

Lemma 1.1 For any k, 1 ≤ k ≤ n−1
2 , and any x0 ∈ Rn there exists a con-

vex function f : Rn → R such that gradient of f is Lipschitz continuous with

constant M and for any �rst-order method we have

f(xk)− f(x∞) ≥ 3M‖x0 − x∞‖2

32(k + 1)2
,

‖xk − x∞‖2 ≥
1

8
‖x0 − x∞‖2

where x∞ is the minimum of f .

There is a method (Nesterow acceleration) for which we have corresponding
upper bound.

Proof. To prove the lemma we need to construct appropriate couterexample.
It is enough to do this for x0 = 0.

For s ∈ Rn we de�ne

f(s) =
1

2

(
s21 + s2n +

n−1∑
i=1

(si+1 − si)2
)
− s1.

Clearly ∇2f is strictly positive de�nite. One can check that ∇f(s) = 0 when

si = 1− i

n+ 1
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so optimal value is 1
2 (−1 + 1

n+1 ).
Let Vi be subspace of Rn consisting from vectors such that only �rst i co-

ordinates are nonzero (V0 = {0}). One can check that when xi ∈ Vi, then
∇f(xi) ∈ Vi+1 so for any �rst order method starting at x0 = 0 we have xi ∈ Vi.

At best �rst order metod will give optimal value on Vi. However, f restricted
to Vi looks exactly like f with n = i, so optimal value is 1

2 (−1 + 1
i+1 ) and

therefore error

E(xi) =
1

2
(−1 +

1

i+ 1
)− 1

2
(−1 +

1

n+ 1
)

=
1

2
(

1

i+ 1
− 1

n+ 1
)

and in particular when 2(i+ 1) ≤ n+ 1 then

E(xi) ≥
1

4

1

i+ 1
.

Also, note that

‖xi‖2 =

i∑
j=1

(1− j

i+ 1
)2 =

i∑
j=1

j2

(i+ 1)2

≤
i∑

j=1

(j + 1)3 − j3

3(i+ 1)2
=

(i+ 1)3

3(i+ 1)2
− 1

3(i+ 1)2
≤ i+ 1

3

so

E(xi) ≥ O(
1

(i+ 1)2
)‖x0 − x∞‖2

Moreover,
‖xi − x∞‖2 ≥ c‖x0 − x∞‖2

�

Previous lemma means that even for quite reqular convex functions we can
not expect very fast convergence. In fact, there is already problem with convex
quadratic functions.

Above we have di�culty because f is convex, but second derviative may be
very small in some directions (and relatively large in other directions). So we
need lower bound on second derivative. To use similar notation as in following
lectures we introduce here Hessian:

〈∇2f(x)h1, h2〉 = f ′′(x)(h1, h2)

that is for �xed x right hand side is a (symmetric) quadratic form in h, while on
left hand side ∇2f(x) is a linear operator uniqely de�ned by the equality above.

Technically, instead of lower bound on∇2f it is more elegant to use following
condition.
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We say that f is strongly convex with constant m when f− 1
2m‖x‖

2 is convex.
This condition holds when f is twice di�erentiable and all eigenvalues of

∇2f are bounded from below by m. However, as written above condition does
not require existence of second deriviative.

Lemma 1.2 When f is strongly convex with constant m, that is f− 1
2m‖x‖

2 is

convex, gradient of f is Lipschitz continuous with constant M , then for gradient

descent with constant step size α = 2
M+m we have

‖xi − x∞‖ ≤ Ci‖x0 − x∞‖

where

C =
M −m
M +m

and x∞ is a minimal point.

Proof: We will represent ∇f using ∇2f (which is possible under our assump-
tions, in particular ∇2f exists almost everywhere):

∇f(xi) = ∇f(xi)−∇f(x∞) =

∫ 1

0

∇2f(x+ thi)hi

where hi = xi − x∞. So

hi+1 = xi+1 − x∞ = xi − x∞ − α∇f(xi)

= (I − α
∫ 1

0

∇2f(x+ thi))hi = Ahi

By assumption mI ≤ ∇2f(x+ thi) ≤MI, so

2m

M +m
I ≤ α∇2f(x+ thi) ≤

2M

M +m
I.

So

−M −m
M +m

I ≤ A ≤ M −m
M +m

I

and since A is symmetric

‖A‖ ≤ M −m
M +m

.

Consequently

‖xi+1 − x∞‖ ≤ ‖A‖‖xi − x∞‖ ≤ C‖xi − x∞‖

and claim follows by induction. �

Remark: Again, slightly enlarging C we get result for steps smaller than
2

M+m and for slightly larger steps. But the proof breaks down when steps are
much larger.

We also get result for improvement of goal function:

3



Lemma 1.3 With assumptions as above and step α = 1
M

f(xi+1)− f(x∞) ≤ C(f(xi)− f(x∞))

where C = 1− m
M .

Proof: In previous lecture we obtained decay estimate

f(xi+1) ≤ f(xi)−
1

2M
‖∇f(xi)‖2

so

f(xi+1)− f(x∞) ≤ f(xi)− f(x∞)− 1

2M
‖∇f(xi)‖2

By strong convexity

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
m

2
‖y − x‖2.

Computing derivative we see that z = x − 1
m∇f(x) minimizes right hand side

(with �xed x and variable y).
So

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
m

2
‖y − x‖2

≥ f(x) + 〈∇f(x), z − x〉+
m

2
‖z − x‖2

= f(x)− 1

2m
‖∇f(x)‖2

Using y = x∞ and x = xi we get

1

2m
‖∇f(xi)‖2 ≥ f(xi)− f(x∞)

Plugging the above into decay estimate we get

f(xi+1)− f(x∞) ≤ f(xi)− f(x∞)− 1

2M
2m(f(xi)− f(x∞))

= C(f(xi)− f(x∞))

with C = 1− m
M which gives the claim. �

Remark: clearly exact line search is as good or better than this. Armijo's
rule gives at least fraction of decay of �xed step, so we get similar result with
slightly larger C.

Remark: When m
M is reasonably big this is much better than result without

strong convexity: we need number of steps that grows linearly with accuracy
while 1

ε is exponential in number of bits.
What to do when m

M is very small? It may happen that m
M is small due to

bad scaling, this happened in quadratic example from previous lecture. Simple
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diagonal scaling sometimes helps, but rotating bad example we see that in gen-
eral we may need to rescale by arbitrary linear mapping A. In a sense optimal
rescaling would give

‖Ah‖2 = 〈∇2f(x)h, h〉

We can not get this for all x simultaneously, but can do for single point xi.
Namely, we de�ne new scalar product as 〈h, h〉x = 〈∇2f(x)h, h〉. Then steepest
descent direction is given by Newton formula

(∇2f(xi))
−1∇f(xi).

1.2 Newton method

When xi+1 = xi − (∇2f(xi))
−1∇f(xi) we say about pure Newton method.

To derive Newton formula we �nd steepest descent direction at x minimizing

〈∇f(x), h〉
〈h, h〉1/2x

=
〈∇f(x), h〉

〈∇f2(x)h, h〉1/2
.

Computing derivative with respect to h we get

∇f(x)〈∇2f(x)h, h〉1/2 − 〈∇f(x), h〉∇2f(x)h

as numerator. Comparing this to 0 gives equation

〈∇2f(x)h, h〉1/2∇f(x) = 〈∇f(x), h〉∇2f(x)h

that is

h =
〈∇2f(x)h, h〉1/2

〈∇f(x), h〉
(∇2f(x))−1∇f(x).

Note that
〈∇2f(x)h, h〉1/2

〈∇f(x), h〉

is just a negative constant, so in fact we get (∇2f(x))−1∇f(x) as the steepest
descent direction.

Classically, Newton method was obtained looking at quadratic approxima-
tion to f(x+ h):

f(x+ h) = f(x) + 〈∇f(x), h〉+
1

2
〈∇2f(x)h, h〉+ o(‖h‖2).

Minimizing quadratic function of h on the right hand side gives

h = −(∇2f(x))−1∇f(x).

So we get iterative algorithm

xi+1 = xi − α(∇2f(x))−1∇f(x).
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α = 1 is pure Newton method, when α may be smaller than 1 we have damped
Newton method.

Newton method for optimization is closely related to Newton method for
equation solving, namely Newton method for optimization of f produces the
same approximations as Newton method for solving equation ∇f(x) = 0. When
solving equations it is easy to see that pure Newton method may diverge, that
is approximations converge to a cycle or are chaotic. The same may happen
when using pure Newton method for optimization.

Consider now g(y) = f(Ay + b) where A is an invertible matrix. We have

〈∇g(y), h〉 = 〈∇f(Ay + b), Ah〉,

g′′(y)(h, h) = f ′′(Ay + b)(Ah,Ah)

so
∇g(y) = AT∇f(Ay + b),

∇2g(y)h = AT (∇2f)(Ay + b)Ah

and

(∇2g(y))−1∇g(y) = A−1(∇2f(Ay + b))−1(AT )−1AT∇f(Ay + b)

= A−1∇2f(Ay + b))−1∇f(Ay + b)

Rewriting, we get

A(∇2g(y))−1∇g(y) = (∇2f(Ay + b))−1∇f(Ay + b).

Let yi be approximations produced by Newton method applied to g and let
wi = (∇2g(yi))

−1∇g(yi) be corresponding search directions. Put xi = Ayi + b.
Our result shows that starting Newton method for f at xi we get hi = Awi as
as search direction. Clearly

g(yi + αwi) = f(A(yi + αwi) + b) = f(Ayi + b+ αAwi) = f(xi + αhi)

so we use the same function of α during line search, so we will get the same αi.
Consequently, starting Newton method for f at x0 we will get xi at step i.

In other words, Newton method is invariant under a�ne transformations:
changing variables in a�ne way changes approximations produced by Newton
method in the same way. This is quite di�erent than gradient descent, where
change of variables plays much more role.

Note: to have true invariance we should have invariant stopping criterion.
Good criterion is given by smallness of step hi using our scalar product

〈hi, hi〉xi = 〈∇2f(xi)hi, hi〉 = −〈∇2f(xi)(∇2f(xi))
−1∇f(xi), hi〉

= −〈∇f(xi), hi〉.
Using our formulas we have

−〈∇g(yi), wi〉 = −〈AT∇f(Ayi + b), A−1hi〉 = −〈∇f(xi), hi〉

so requirement −〈∇f(xi), hi〉 < ε gives invariant stopping criterion.
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1.3 Local convergence

To analyze local convergence, we start with Newton method for equation solving.
Let g : Rn → Rn. Given xi we de�ne

xi+1 = xi − g′(xi)−1g(xi)

Assume that x∞ is a solution, that is g(x∞) = 0.
Let Br = {x : ‖x− x∞‖ < r} be ball of radius r around x∞.

Lemma 1.4 Assume that g′ is Lipschitz continuous with constant L on Br and
‖g′−1(x)‖ ≤ m. If xi ∈ Br, then

‖xi+1 − x∞‖ ≤
Lm

2
‖xi − x∞‖2

If additionally rLm ≤ 2, then xi+1 ∈ Br. Also, when rLm ≤ 2, it is enough to

assume that ‖g′−1(x)‖ ≤ m for x ∈ Br.

Proof: Put δi = xi − x∞. We compute

0 = g(x∞) = g(xi)−
∫ 1

0

g′(xi − tδi)δidt

= g(xi)− g′(xi)δi −
∫ 1

0

(g′(xi − tδi)− g′(xi))δidt

so

‖g(xi)− g′(xi)δi‖ ≤ ‖δi‖
∫ 1

0

‖g′(xi − tδi)− g′(xi)‖dt

≤ ‖δi‖
∫ 1

0

L‖δi‖tdt =
L

2
‖δi‖2

Now

xi+1 − x∞ = xi − g′(xi)−1g(xi)− x∞ = g′(xi)
−1(g′(xi)(xi − x∞)− g(xi))

= g′(xi)
−1(g′(xi)δi − g(xi))

so
‖xi+1 − x∞‖ ≤ ‖g′(xi)−1‖‖g′(xi)δi − g(xi)‖

≤ mL

2
‖δi‖2 =

mL

2
‖xi − x∞‖2

which is the required estimate.
Since xi ∈ Br we have ‖xi−x∞‖ < r and if additional assumption is satis�ed

we have

1 ≥ rmL

2
>
mL‖xi − x∞‖

2
so

‖xi+1 − x∞‖ ≤
mL‖xi − x∞‖

2
‖xi − x∞‖ < ‖xi − x∞‖
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and ‖xi+1 − x∞‖ < ‖xi − x∞‖ < r, hence xi+1 ∈ Br.
Finally, we used estimate on ‖g′−1‖ only for x in line segment joining xi and

x∞. When rmL < 2 this line segment is inside Br. �

Assuming that g is regular enough and g′(x∞) is invertible from the lemma
we see that once Newton method is su�ciently close to solution it will con-
verge, moreover, each step approximately doubles accuracy (number of signi�-
cant bits). So, once we are close to solution 5 or 6 steps usually is enough to
get full machine accuracy.

Under reasonable global assumptions it is possible to �nd out if we are close
enough to solution:

Lemma 1.5 Assume that g′ is Lipschitz continuous with constant L and put

m = ‖g′(x0)−1‖. If

‖g(x0)‖ ≤ 3

16Lm2
,

then Newton method starting at x0 converges to x∞ and

‖x0 − x∞‖ ≤
1

4Lm
.

The result remains valid if we only assume that g′ is Lipschitz continuous with

constant L on ball centered at x0 and radius 1
2Lm .

Idea of the proof: let A = g′(x0)−1 and φ(x) = Ag(x). φ′(x) = Ag′(x), so
φ′(x0) = I (identity matrix) and φ′ is Lipschitz continuous with constant Lm.
As long as ‖x− x0‖ ≤ 1

2Lm we have ‖φ′(x)− I‖ ≤ 1
2 , so φ

′(x) is invertible and
‖φ′(x)‖ ≤ 2. If ‖x0 − x∞‖ ≤ 1

4Lm , then by previous lemma Newton method
applied to φ is convergent and

‖x0 − x∞‖ ≤ ‖x0 − x1‖+ ‖x1 − x∞‖ ≤ ‖φ(x0)‖+ Lm‖x0 − x∞‖2

≤ m‖g(x0)‖+
1

4
‖x0 − x∞‖

so
3

4
‖x0 − x∞‖ ≤ m‖g(x0)‖

and

‖x0 − x∞‖ ≤
4

3
m‖g(x0)‖ ≤ 1

4Lm

To drop assumption ‖x0− x∞‖ ≤ 1
4Lm consider equation φ(x)− tφ(x0) = 0.

For t = 1 this has solution in K = {x : ‖x − x0‖ < 1
4Lm}, namely x0. By

inverse function theorem set of t such that we have solution in K is open. By
compactness set of t such that we have solution in K̄ (closure of K) is closed.
By previous estimate, for t > 0 solution must be in K, so set of t such that we
have solution is K is nonempty open and closed subset of (0, 1], so since interval
is connected it is whole (0, 1]. By compactness for t = 0 we get solution such
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that ‖x− x0‖ ≤ 1
4Lm . �

We could restate the results for optimization, we will formulate appropriate
lemma later.

1.4 Global convergence

Local convergence means that close to solution αi = 1 is good choice of step
size. In fact, assuming regularity there is little motivation to use steps bigger
than 1, but to get global convergence we sometimes need step smaller than 1.
More precisely, when su�cient decay condition is violated we decrease step size.

In fact, local convergence implies that as long as we get decay we also get
global convergence of gradient to zero.

However, there are two di�culties. First, in general (when ∇2f is not pos-
itive de�nite) Newton direction may fail to be decay direction. Second, local
convergence assumes that ∇2f is invertible at stationary points. We can avoid
both di�culties adding to ∇2f multiple of identity to make it positive de�nite.
Unfortunately, it is hard to give some warranty for such method. Instead, we
will assume strong convexity.

Assume that mI ≤ ∇2f(x) ≤ MI and ‖∇2f(x)−∇2f(y)‖ ≤ L. By strong
convexity there is optimal point. Since ∇2f(x) is positive de�nite Newton di-
rection is descent direction and we have global convergence.

For local convergence we have the following results:

Lemma 1.6 If ‖∇f(xi)‖ < 2m2

L , then pure Newton method starting at xi is

convergent and

L

2m2
‖∇f(xi+1)‖ ≤

(
L

2m2
‖∇f(xi)‖

)2

Proof: We write hi = −(∇2f(xi))
−1∇f(xi) so ∇2f(xi)hi +∇f(xi) = 0 and

∇f(xi+1) = ∇f(xi + hi)−∇f(xi)−∇2f(xi)hi

=

∫ 1

0

(∇2f(xi + thi)−∇2f(xi))hidt

so

‖∇f(xi+1)‖ ≤
∫ 1

0

L‖thi‖‖hi‖dt =
L‖hi‖2

2

Since ‖∇2f(xi)
−1‖ ≤ 1

m we have ‖hi‖ ≤ 1
m‖∇f(xi)‖ so

‖∇f(xi+1)‖ ≤ L‖∇f(xi)‖2

2m2

which gives bound on ‖∇f(xi+1)‖. Under assumption this decreases which
proves convergence. �
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Recall Armijo's rule:

f(xi + αhi)− f(xi) ≤ ρα〈∇f(xi), hi〉.

Lemma 1.7 If ‖∇f(xi)‖ ≤ 3(1−2ρ)m2

L , then α = 1 is acceptable by Armijo's

rule.

Let γ = ρm
ηM2

Lemma 1.8 Assume ρ ≤ 1
2 . If step size α in Newton method is selected starting

from α = 1 and dividing α by η as long as Armijo's condition is violated, then

f(xi+1)− f(xi) ≤ −γ‖∇f(xi)‖2

Proof: Put λ = −〈∇f(xi), hi〉 = 〈∇2f(x)hi, hi〉. By strong convexity
〈hi, hi〉 ≤ 1

mλ. Using ∇
2f(x) ≤MI we have

f(xi + αhi) ≤ f(xi) + α〈∇f(xi), hi〉+
M

2
α2‖hi‖2

≤ f(xi)− αλ+
M

2m
α2λ.

Now we see that α = m
M satis�es Armijo's rule

f(xi + αhi) ≤ f(xi)− αλ+
1

2
αλ

= f(xi)−
1

2
αλ

since ρ ≤ 1
2 . Therefore we choose at least α = m

ηM leading to decay

f(xi+1)− f(xi) ≤ −ραλ

≤ − ρm
ηM

λ

Since λ ≤ 1
M ‖∇f(xi)‖2 this gives

f(xi+1)− f(xi) ≤ −
ρm

ηM2
‖∇f(xi)‖2 = −γ‖∇f(xi)‖2.

�

The lemmas together imply global convergence of Newton method with ρ <
1/2: as long as ‖∇f(xi)‖ is big (so that local convergence does not apply) we

get steady decay of value of f , in fact, putting t = min(3(1 − 2ρ), 1)m
2

L in at
most

f(x0)− f(x∞)

γt2

steps ‖∇f(xi)‖ ≥ t. But once ‖∇f(xi)‖ < t local convergence holds and we get
any �xed accuracy in a �xed number of steps.
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1.5 Further reading

Stephen Boyd, Lieven Vandenberghe, Convex Optimization, chapter 9.
David G. Luenberger, Yinyu Ye, Linear and Nonlinear Programming, chap-

ters 7 and 8.
Yurii Nesterov, Introductory lectures on convex optimization, Springer 2004,

chapter 1 (despite title more advanced than other texts).
Jorge Nocedal, Stephen J. Wright, Numerical Optimization, chapter 3.
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