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1 Newton method

1.1 Remarks

Let us state some features, assuming classical algorithms

• need O(n2) operations and memory to compute and store ∇2f

• need O(n3) operations to compute (∇2f(x))−1∇f(x)

• convergence independent of choice of variables

• very fast local convergence

Compare gradient descent

• O(n) operations and storage per step

• very sensitive to bad conditioning

This analysis is not entirely satisfactory. First, far from optimum we only
get decay of objective by constant amount. Gradient descent divides objective
by a constant which theoretically may by much better. Second, we still have
m
M and our estimate predicts very slow convergence when this is small. To put
this di�erently, Newton method is invariant under a�ne change of coordinates,
but our analysis depends on coordinates. When coordinates are badly adapted
to the problem, then we will get very pessimistic conclusions.

1.2 Self-concordant functions

We can get better estimates for special classes of functions. We say that convex
f : R→ R is self-concordant when

|f ′′′(x)| ≤ 2f ′′(x)3/2

for all x in domain of f . We say that multivariate f is self-concordant when
restriction of f to any line is self-concordant.

Note: condition above is invariant under translations and dilations which
implies that for functions of single variable self-concordance is a�ne invariant.
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But then by de�nition self-concordance is a�ne invariant also for multivariate
functions

Examples:

• linear function

• positive de�nite quadratic function

• minus logarithm

exp(x) on R is not self-concordant.
Let us do calculations for f(x) = − log(x). We have

f ′(x) = − 1

x
,

f ′′(x) =
1

x2
,

f ′′′(x) = −2 1

x3

so

|f ′′′(x)| = 2
1

x3
= 2(

1

x2
)3/2 = 2f ′′(x)3/2

so indeed − log(x) is self-concordant.
Note that we have factor 2 on the right hand side in the de�nition of self-

concordant function because we want − log(x) to be self-concordant. Namely,
− log(x) fails simpler condition

|f ′′′(x)| ≤ f ′′(x)3/2

It is easy to check that −4 log(x) satis�es condition above and more generally,
if f(x) is self-concordant, then 4f(x) satis�es condition above so in principle we
could use condition above and multiply all functions by 4. But having 2 in the
de�nition is more natural and leads to simpler theory.

Important property: when fi are self-concordant and ci ≥ 1 then∑
cifi

is self-concordant. Namely, it is obvious that cifi are self-concordant. We
calculate

|(f1 + f2)
′′′(x)| ≤ |f ′′′1 (x)|+ |f ′′′2 (x)| ≤ 2(f ′′1 (x)

3/2 + f ′′2 (x)
3/2)

≤ 2(f ′′1 (x) + f ′′2 (x))
3/2

where in the last step we used subadditivity of L3/2 norm. More precisely, for
a, b > 0 we have:

a3/2 + b3/2 = ‖(a, b)‖3/23/2 ≤ (‖(a, 0)‖3/2 + ‖(0, b)‖3/2)3/2 = (a+ b)3/2
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and we used it for a = f ′′1 (x), b = f ′′2 (x).
Consequently sum of self-concordant functions is self-concordant.
Remark: In general convex combination of self-concordant functions is not

self-concordant. Namely, let fi(x) = − log(xi) for i = 1, 2. Clearly, by our
computation for − log(x) each fi is self-concordant. But

g(x) =
1

2
(f1(x) + f2(x)) =

− log(x1)− log(x2)

2

is not self-concordant. To see this we restrict g to line x2 = 1, that is consider
h(t) = g((t, 1)) = − log(t)/2. By our computation for − log(x) we see that h(t)
is not self-concordant so also g is not self-concordant.

From the last property we see that

− log(1− x2) = − log((1− x)(1 + x)) = − log(1− x)− log(1 + x)

is self concordant as sum of self concordant functions. Similarly, minus loga-
rithm of any concave quadratic on real line is self concordant. Consequently
also in multidimensional case minus logarithm of any concave quadratic is self
concordant. In particular this applies to − log(1− ‖x‖2).

More complicated example: − log(det(A)) is self-concordant on set of strictly
positive de�nite matrices. Namely, a line going trough this set can be written
as A + tB where A is strictly positive de�nite and B is symmetric. Positive
de�nite matrix has square root so we can write

A+ tB = A1/2(I + tA−1/2BA−1/2)A1/2 = A1/2(I + tC)A1/2

where C = A−1/2BA−1/2 is symmetric. C has real eigenvalues λ1, . . . , λm and
we have

det(I + tC) =

m∏
i=1

(1 + tλi)

so

− log(det(A+ tB)) = − log(det(A))−
m∑
i=1

log(1 + tλi).

Since each of log(1+ tλi) is self-concordant as a function of t the whole sum
is self-concordant, so − log(det(A + tB)) is self-concordant as function of t, so
− log(det(A)) is self-concordant as function of A.

Alternative multivariate de�nition: multivariate f is self-concordant if and
only if for each x and h we have

|f ′′′(x)(h, h, h)| ≤ 2(f ′′(x)(h, h))3/2

This is clear by looking at f on lines of form x+ th.
We have

|f ′′′(x)(h1, h2, h3)| ≤ 2 (f ′′(x)(h1, h1)f
′′(x)(h2, h2)f

′′(x)(h3, h3))
1/3

Remark: Existence of derivatives leads to somewhat tricky theoretical problems.
In practice we work with rather regular functions, so we assume existence of
third derivative and then prove bounds.
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1.3 Estimate for symmetric functions

The last inequality follows from general property: when A is a real k-linear
symmetric form then

sup
‖xi‖≤1

|A(x1, x2, . . . , xk)| ≤ sup
‖x‖≤1

|A(x, x, . . . , x)|

This in turn follows from properties of bilinear forms: if ‖h1‖ = ‖h2‖ = 1 and

|A(h1, h2)| = sup
‖x1‖≤1,‖x2‖≤1

|A(x1, x2)|

then
|A(h1, h2)| = |A(h1, h1)|

Note that it is enough to prove the last claim for two dimensional space (sub-
space spanned by h1, h2).

Symmetric form can then be written as

A(h1, h2) = 〈Bh1, h2〉

where B is real symmetric matrix. B has two real eigenvalues λ1, λ2. When λ1 =
λ2 = λ, then |A(h1, h2)| = |λ||〈h1, h2〉| and the claim follows from properties
of scalar product. When λ1 6= λ2, then h1 and h2 maximizing A(h1, h2) must
be multiple of a single eigenvector and again claim follows. Having claim for
bilinear forms by induction we prove that

sup
‖xi‖≤1

|A(x1, x2, . . . , xk)|

is attained when all xi are equal, which gives claim for multilinear forms.
Note: the estimate above is speci�c to real scalars and euclidean norm ‖ · ‖.

Similar results hold for arbitrary norm and complex scalars, but at the cost of
adding on right hand side a constant bigger than 1.

1.4 Back to self-concordant functions

Recall that we argued that scalar product 〈h1, h2〉x = 〈∇2f(x)h1, h2〉 dependent
on x is probably better adapted to f , than usual scalar product. For self-
concordant functions we can show this in precise way. To avoid trivial di�culties
we will assume that values of self-concordant function f go to in�nity when
arguments go to boundary of the domain. This ensures that self-concordant
function is de�ned on maximal possible domain. Let Wx = {y : ‖y − x‖x < 1}.

1.4.1 Main estimate

Lemma 1.1 Let f be as above. f is de�ned on Wx and for ‖h‖x < 1 we have

f(x) + 〈∇f(x), h〉+ φ(−‖h‖x) ≤ f(x+ h) ≤ f(x) + 〈∇f(x), h〉+ φ(‖h‖x)
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where φ(s) = − log(1− s)− s =
∑∞

i=2
si

i . Moreover,

(1 + ‖h‖x)−2∇2f(x) ≤ ∇2f(x+ h) ≤ (1− ‖h‖x)−2∇2f(x).

Lower bounds remain valid as long as x+ h is in domain of f .

Proof: Let u = h
‖h‖x . Put

ψ(s) = inf{t : f ′′(x+ su) ≤ tf ′′(x)}

Note: In single variable we could use f ′′(x + su)/f ′′(x), but above f ′′ is a
quadratic form, so we need more complicated condition above.

For one variable real function g put

(δ+g)(s) = lim sup
r→0+

g(s+ r)− g(s)
r

Similarly de�ne δ− with lim sup replaced by lim inf. By self-concordance of
f we have

δ+ψ(s) ≤ 2ψ(s)3/2.

Namely, let A(s) = f ′′(x+ su). By self-concordance of f we have

|A′(s)(v, v)| = |f ′′′(x+ su)(v, v, u)|

≤ 2f ′′(x+ su)(v, v)(f ′′(x+ su)(u, u))1/2

By de�nition of ψ we have

f ′′(x+ su)(v, v) ≤ ψ(s)f ′′(x)(v, v)

so
|A′(s)(v, v)| ≤ 2ψ(s)3/2f ′′(x)(v, v)(f ′′(x)(u, u))1/2

But
f ′′(x)(u, u)1/2 = ‖u‖x = 1

so
|A′(s)(v, v)| ≤ 2ψ(s)3/2f ′′(x)(v, v) = 2ψ(s)3/2‖v‖2x.

Now A(s+ t) = A(s) + tA′(s) + o(t) so for t > 0 we have

A(s+ t)(v, v) ≤ A(s)(v, v) + tA′(s)(v, v) + o(t)‖v‖2x

≤ ψ(s)‖v‖2x + 2tψ(s)3/2‖v‖2x + o(t)‖v‖2x
Since ‖v‖2x = f ′′(x)(v, v) this means

A(s+ t)(v, v) ≤ (ψ(s) + 2tψ(s)3/2 + o(t))f ′′(x)(v, v)

that is
A(s+ t) ≤ (ψ(s) + 2tψ(s)3/2 + o(t))f ′′(x).
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Consequently
ψ(s+ t) ≤ (ψ(s) + 2tψ(s)3/2 + o(t))

which gives inequality

δ+ψ(s) = lim sup
t→0+

ψ(s+ t)− ψ(s)
t

≤ 2ψ(s)3/2.

Similarly we get inequality for δ−ψ(s) so

−2ψ(s)3/2 ≤ δ−ψ(s) ≤ δ+ψ(s) ≤ 2ψ(s)3/2

and

δ−ψ(s)
−1/2 ≥ − δ+ψ(s)

2ψ(s)3/2
≥ −1.

Since ψ(0) = 1 this implies

ψ(s)−1/2 ≥ 1− s.

Hence
ψ(s) ≤ (1− s)−2

so
f ′′(x+ h) = f ′′(x+ ‖h‖xu) ≤ (1− ‖h‖x)−2f ′′(x)

which gives upper estimate on f ′′(x+ h), when x+ h is in domain of f .
In similar way we prove lower bound on f ′′(x+ h). Integrating twice upper

and lower bounds for f ′′(x + su) we get bounds for f . Since we assume that
f goes to in�nity at boundary of the domain upper bound implies that for
‖h‖x < 1 we have x + h in the domain. This ends the proof when ‖h‖x > 0.
When ‖h‖x = 0 we choose hn so that ‖hn‖x > 0 and h = limhn and get estimate
as a limit.

Remark: φ above is self-concordant so bounds are sharp.

1.4.2 Self-concordant functions, nondegeneracy

In general it may happen that for some nonzero h we have ‖h‖x = 0. Under
assumption of our main estimate it follows that for all y in the domain of f we
have ‖h‖y = 0. In other words, space F = {h : ‖h‖x = 0} is independent of
x. Moreover, f is sum of linear function and function that is invariant under
translations by vectors from F .

We say that f is nondegenerate if the space F = {0}. Under assumption of
main estimate this is always the case when domain of f does not contain any
line. In the sequel we assume that f is nondegenerate.
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1.5 Newton method, self-concordant functions

Our main estimate means that nondegenerate f is well conditioned on com-
pact subsets of Wx. This implies strong results about convergence of Newton
method for self-concordant functions. In particular this implies uniform speed
of convergence of Newton method (bad conditioning is not a problem).

In Newton method we use scalar product 〈h1, h2〉x = 〈∇2f(x)h1, h2〉 depen-
dent on x which is better adapted to f , than usual scalar product.

Our main estimate means that nondegenerate f is well conditioned on com-
pact subsets of Wx. In particular this implies uniform speed of convergence of
Newton method. More precisely, recall that gradient of f at x with respect to
norm ‖ · ‖x is given by

(∇2f(x))−1∇f(x)

Put

λ(f, x) = ‖(∇2f(x))−1∇f(x)‖x = 〈∇2f(x))−1∇f(x),∇f(x)〉1/2.

When λ(f, x) is small (say smaller than 1
2 ) we have fast (quadratic) convergence.

When λ(f, x) is bounded from below, then using step staying in Wx we can still
get some �xed decay of objective function.

To stay in domain of f it is natural to use damped Newton method, that is
put

xi+1 = xi −
1

1 + λ(f, xi)
(∇2f(xi))

−1∇f(xi)

Lemma 1.2 We have

f(xi)− f(xi+1) ≥ λ(f, xi)− log(1 + λ(f, xi))

Note: For λ(f, xi) = 1 this predicts decay approximately by 0.3068, for
λ(f, xi) =

1
2 we get 0.0945.

Example: Let g(x) = −γx − log(1 − x) − x. Comparing derivative of g to
0 we see that g attains minimal value at x = γ/(1 + γ). Also g′(0) = −γ,
g′′(0) = 1, λ(g, 0) = γ and damped Newton method started in x0 = 0 will
get minimal value of g in single step and decay of objective function is exactly
equal to estimate from the lemma. In particular, single step estimate can not
be improved and any other choice of step depending only on λ will lead to worse
estimate.

Proof of the lemma: Lemma essentially follows from example and main esti-
mate. Namely, let w = (∇2f(xi))

−1∇f(xi), u = w/‖w‖xi . Put γ = 〈∇f(xi), u〉
and g(t) = −γt− log(1− t)− t.

We have

λ(f, xi) = ‖w‖xi
= 〈∇f(xi), (∇2f(xi))

−1∇f(xi)〉1/2 = 〈∇f(xi), w〉1/2

so

γ = 〈∇f(xi), u〉 =
〈∇f(xi), w〉
‖w‖xi

=
λ(f, xi)

2

λ(f, xi)
= λ(f, xi).
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Hence, λ(g, 0) = γ = ‖w‖xi
= λ(f, xi). By main estimate

f(xi + tu) ≤ f(xi) + g(t).

However, in damped Newton method xi+1 = xi + tu with

t =
‖w‖xi

1 + λ(f, xi)
=

γ

1 + γ

which is the same t as value produced by damped Newton method applied to g.
For local convergence we have:

Lemma 1.3 When xi+1 is given by damped Newton method

λ(f, xi+1) ≤ 2λ(f, xi)
2.

When xi+1 is given by standard Newton method and λ(f, xi) < 1, then

λ(f, xi+1) ≤
(

λ(f, xi)

1− λ(f, xi)

)2

In particular, damped Newton method has λ(f, xi+1) < λ(f, xi) when λ(f, xi) <
1
2 , while standard Newton when λ(f, xi) <

3−
√
5

2 ≈ 0.3819.
The results are quite satisfactory: when λ(f, xi) is large we get steady decay

of objective function, once λ(f, xi) <
1
2 local convergence takes over. But there

is a little troubling aspect: decrease of objective function is rather small when
say 1

2 < λ(f, xi) < 2. We will see later that this region is particularly interesting
for applications.

We can not get better decay of f , but naively we could hope that small
number of steps will transition from large λ(f, xi) to quadratic convergence.
Below we show by example that this is not the case: we can get many steps
when λ(f, xi) is quite close to 1.

Example: Let f(x) = − log(x) + εx2. It is self-concordant and attains mini-
mum at x∞ = 1√

2ε
. When x0 = 1 we have f ′(x0) = −1 + 2ε, f ′′(x0) = 1 + 2ε.

Easy calculation shows that pure Newton method makes step slightly smaller
than 1. More complicated calculation shows that damped Newton method
makes step slightly smaller than 1

2 . After single step we may rescale our function
so we get problem like original, only with changed ε. So we may get several steps
like above. In case of pure Newton method improvement of objective function is
approximately log(2) ≈ 0.693. In case of damped Newton method improvement
is approximately log( 32 ) ≈ 0.405. So theoretically (with very small ε) we may
have very large number of steps with only moderate improvement in each step.
Practically, we have here numbers of widely varying magnitude and numerical
accuracy will limit number of steps.

This was example in dimension one, but we can add arbitrarily many irrel-
evant variables. If we add quadratic term in extra variables with minimum at
0, we get true multidimensional problem, which however have the same conver-
gence behaviour as our problem in dimension one.

Note that from point of view of classical convergence theory f is very badly
conditioned and our result based on self-concordance is much better.

8



2 Further reading

Stephen Boyd, Lieven Vandenberghe, Convex Optimization, chapter 9.
David G. Luenberger, Yinyu Ye, Linear and Nonlinear Programming, chap-

ter 8.
A. Nemirovski, INTERIOR POINT POLYNOMIAL TIME METHODS IN

CONVEX PROGRAMMING, lecture notes, chapter 2.
Yurii Nesterov, Introductory lectures on convex optimization, Springer 2004,

chapter 1, chapter 4.1.
Jorge Nocedal, Stephen J. Wright, Numerical Optimization, chapter 3.

3 Conjugate direction methods

We already know about gradient descent and Newton method.
Gradient descent may require very large number of iterations, but per iter-

ation cost is small.
Newton method typically converges in smaller number of iterations, but

in each iteration we need to solve linear system of equations involving second
derivative.

Conjugate direction methods have per iteration cost slightly larger than
gradient descent, but should converge faster. In this sense are intermediate
between gradient descent and Newton method.

Remark: In practice we care about conjugate gradient method, but theory
is nicer when we make things slightly more general that is consider conjugate
direction methods.

Conjugate direction methods originally were introduced as storage e�cient
method of exact solving of some linear systems. More precisely we know that
for positive A minimization of

1

2
〈Ax, x〉 − 〈b, x〉

is equivalent to solving
Ax = b.

Original conjugate direction methods minimized quadratic form, in at most n
steps reaching exact solution where n is dimension of the problem.

Later it was observed that stopping method earlier one can get approximate
solution and frequently one can get good solution in relatively small number of
steps.

Conjugate direction methods were generalized to nonlinear problem. In such
case method in no longer convergent in �nite number of steps.

Let A be a positive de�nite matrix.
De�nition. We say that a sequence of vectors di is A-orthogonal (conjugate)

if and only if for i 6= j
〈Adi, dj〉 = 0

Recall standard linear algebra:
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Lemma 3.1 If vectors di are A-conjugate, then they are linearly independent.

Remark: To better see that this is standard result we can introduce new
scalar product by the formula

〈x, y〉A = 〈Ax, y〉.

Then A-orthogonal simply means orthogonal with respect to this new scalar
product.
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