
Lecture 8

W. Hebisch

April 12, 2023

1 Conjugate direction methods

We already know about gradient descent and Newton method.
Gradient descent may require very large number of iterations, but per iter-

ation cost is small.
Newton method typically converges in smaller number of iterations, but

in each iteration we need to solve linear system of equations involving second
derivative.

Conjugate direction methods have per iteration cost slightly larger than
gradient descent, but should converge faster. In this sense are intermediate
between gradient descent and Newton method.

Remark: In practice we care about conjugate gradient method, but theory
is nicer when we make things slightly more general that is consider conjugate
direction methods.

Conjugate direction methods originally were introduced as storage e�cient
method of exact solving of some linear systems. More precisely we know that
for positive A minimization of

1

2
〈Ax, x〉 − 〈b, x〉

is equivalent to solving
Ax = b.

Original conjugate direction methods minimized quadratic form, in at most n
steps reaching exact solution where n is dimension of the problem.

Later it was observed that stopping method earlier one can get approximate
solution and frequently one can get good solution in relatively small number of
steps.

Conjugate direction methods were generalized to nonlinear problem. In such
case method in no longer convergent in �nite number of steps.

Let A be a positive de�nite matrix.
De�nition. We say that a sequence of vectors di is A-orthogonal (conjugate)

if and only if for i 6= j
〈Adi, dj〉 = 0

Recall standard linear algebra:

1



Lemma 1.1 If vectors di are A-conjugate, then they are linearly independent.

Remark: To better see that this is standard result we can introduce new
scalar product by the formula

〈x, y〉A = 〈Ax, y〉.

Then A-orthogonal simply means orthogonal with respect to this new scalar
product.

A-conjugate vectors help in optimizing f(x) = 1
2 〈Ax, x〉 − 〈b, x〉.

Algorithm:

1. Take arbitrary x0.

2. For i starting at 1 repeat: xi = xi−1 + αidi where αi minimizes f on the
line xi−1 + αidi.

First we deal with one dimensional optimization. Put

φ(s) = f(xi−1 + sdi).

We have
φ′(s) = 〈A(xi−1 + sdi)− b, di〉.

Writing ri = Axi−1 − b we have

φ′(s) = 〈ri, di〉+ s〈Adi, di〉

so solving for φ′(αi) = 0 we get

αi =
−〈ri, di〉
〈Adi, di〉

Lemma 1.2 Let x∗ = argminx∈H f(x) where H = x0 + lin{d1, . . . , di}. Then
x∗ = xi.

Proof: For any x ∈ H we have x− x0 =
∑i

j=1 βjdj . By A-orthogonality

〈A(x− x0), dj〉 = βj〈Adj , dj〉

so

〈A(x− x0), x− x0〉 =
i∑

j=1

β2
j 〈Adj , dj〉

Now

f(x) =
1

2
〈A((x− x0) + x0), (x− x0) + x0〉 − 〈b, (x− x0) + x0〉

=
1

2
〈A(x− x0), x− x0〉+ 〈A(x− x0), x0〉 − 〈b, x− x0〉+

1

2
〈Ax0, x0〉 − 〈b, x0〉

2



=
1

2

 i∑
j=1

β2
j 〈Adj , dj〉

+

i∑
j=1

βj〈Adj , x0〉 −
i∑

j=1

βj〈b, dj〉

+
1

2
〈Ax0, x0〉 − 〈b, x0〉

= c+

i∑
j=1

φj(βj)

where c = 1
2 〈Ax0, x0〉 − 〈b, x0〉 and

φj(βj) =
1

2
β2
j 〈Adj , dj〉+ βj(〈Adj , x0〉 − 〈b, dj〉)

so f(x) is sum of functions of separate variables. Clearly for such functions
optimizing in turn with respect to each variable gives optimal point. But this
is exactly what our algorithm is doing.

Lemma 1.3 〈ri+1, dj〉 = 0 for j = 1, . . . , i.

Proof: This follows from optimality of xi on H: derivative of f at xi in
direction of dj is 0. But

∂sf(xi + sdj) = 〈A(xi + sdj), dj〉 − 〈b, dj〉

= 〈Axi − b, dj〉+ s〈Adj , dj〉 = 〈ri+1, dj〉+ s〈Adj , dj〉.

and when s = 0 this gives the claim.

1.1 Gram-Schmidt orthogonalization

Now it remains to �nd sequence of A-orthogonal vectors. There are many such
sequences. General procedure is called Gram-Schmidt orthogonalization and
works as follows:

• start from arbitrary basis {vi}

• take d1 = v1

• iteratively, given d1, . . . , di compute ci+1,j = 〈vi+1, dj〉/〈dj , dj〉 and put

di+1 = vi+1 −
∑i

j=1 cjdj

This is easy to program, but requires rather large number of operations and
large memory.

Remark: In our case we would need to use 〈x, y〉A which signi�cantly in-
creases cost of computation.

3



1.2 Conjugate gradient method

Fortunately one A-orthogonal sequence of vectors is easy to �nd. Corresponding
algorithm is called conjugate gradient method. We put d1 = −r1 and

di+1 = −ri+1 + βidi

where βi is such that di+1 and di are A-orthogonal, that is

βi =
〈Ari+1, di〉
〈Adi, di〉

.

Lemma 1.4 Assume that r1, . . . , ri are nonzero. Then

lin{d1, . . . , di} = lin{r1, Ar1, . . . , Ai−1r1}

and dj, j = 1, . . . , i are A-orthogonal.

Proof: By induction. Denote space on the right hand side above by Vi and
on the left hand side by Wi. Clearly V1 =W1 and sequence consistiong of single
vector is A-orthogonal. So we may assume that claim is valid for i and need to
prove it for i+1. To prove that dj are A-orthogonal it enough to prove that di+1

is A-orthogonal to Wi. By de�nition of di+1 we know that di+1 is A-orthogonal
to di. So it is enough to show that di+1 is A-orthogonal to Wi−1.

Now
di+1 = −ri+1 + βidi

since di is A-orthogonal to Wi−1 it is enough to show that ri+1 is A-orthogonal
to Wi−1. For v ∈Wi−1 we have

〈Ari+1, v〉 = 〈ri+1, Av〉.

However,
Av ∈ AWi−1 = AVi−1 ⊂ Vi =Wi

where we used inductive assumption. Also, by inductive assumption dj , j =
1, . . . , i are A-orthogonal so by previous lemma ri+1 is orthogonal to Wi. Hence

〈ri+1, Av〉 = 0

which shows A-orthogonality of dj , j = 1, . . . , i, i+ 1.
It remains to show equality Vi+1 = Wi+1. Clearly AVi ⊂ Vi+1. We have

xi − x0 ∈Wi, so by inductive assumption xi − x0 ∈ Vi. Hence

ri+1 = Axi − b = A(xi − x0) +Ax0 − b = A(xi − x0) + r1 ∈ Vi+1

and di+1 = −ri+1 + βidi ∈ Vi+1, so Wi+1 ⊂ Vi+1. But we proved that ri+1 is
orthogonal to Wi, so since ri+1 is nonzero we have ri+1 /∈Wi = Vi, so ri+1 and
Vi span Vi+1, so Vi+1 =Wi+1.

A priori single step of conjugate gradient method needs two application of
matrix A to vector: one to compute ri+1 = Axi− b and second to compute Adi.

4



We can simplify computation of conjugate gradient method as follows: −〈ri, di〉 =
〈ri, ri〉 − βi−1〈ri, di−1〉 = 〈ri, ri〉 so

αi =
〈ri, ri〉
〈Adi, di〉

ri+1 = ri + αiAdi

βi =
〈ri+1, Adi〉
〈Adi, di〉

di+1 = −ri+1 + βidi

which needs one multiplication of vector by matrix, 3 scalar products and 2
vector linear combinations.

Recall that we say that a method is �rst order method if

xi ∈ x0 + lin{∇f(x0), . . . ,∇f(xi−1)}.

Lemma 1.5 Assume f is quadratic as above, Vi = lin{r1, Ar1, . . . , Ai−1r1}.
For any �rst order method xi ∈ x0 + Vi.

Proof: We have

∇f(x) = Ax− b = Ax0 − b+A(x− x0) = r1 +A(x− x0).

Now the claim follows by induction, if xi ∈ x0 + Vi, then

∇f(xi) ∈ r1 +AVi ⊂ Vi+1

so
lin{∇f(x0), . . . ,∇f(xi−1)} ⊂ Vi

which gives the claim.
Note: V0 = {0} so x0 ∈ x0 + V0 which gives starting point for induction.
Together with previous lemma this means that for quadratic functions con-

jugate gradient method is the best �rst order method.
Remark: Best here means that we get smallest value of goal function. There

are di�erent criteria, for example smallness of ‖∇f(x)‖ or distance between x
and optimal point x∞.

Now we will explore some consequences. Let

P (t) =

i−1∑
j=0

γjt
j

be a polynomial of degree i− 1. Let

yi = x0 + P (A)r1

5



Similar to previous argument yi is obtained by in step i of a �rst order method,
so error is at least as big as error of conjugate gradient method, that is

〈A(xi − x∞), xi − x∞〉 ≤ 〈A(yi − x∞), yi − x∞〉.

But r1 = Ax0 − b and b = Ax∞ so we can write

yi − x∞ = x0 + P (A)(Ax0 −Ax∞)− x∞ = (I +AP (A))(x0 − x∞)

so

〈A(xi − x∞), xi − x∞〉 ≤ 〈A(I +AP (A))(x0 − x∞), (I +AP (A))(x0 − x∞)〉.

From this one can derive more speci�c estimate, we skip detail of proof, and
just give the result.

Lemma 1.6 Assume that A has n − m eigenvalues in interval [a, b] and re-
maining m eigenvalues are bigger than b. Then

E(xm+1) ≤
(
b− a
b+ a

)2

E(x0)

where
E(x) = 〈A(x− x∞), x− x∞〉

is error at x.

Note that what matters above are distinct eigenvalues. In particular, when
A has only m+ 1 eigenvalues, than we get optimum after m+ 1 steps.

There are cases when A has small number of distinct eigenvalues, but in
general we expect distinct eigenvalues. In fact, in problem 5.2 you should com-
pute eigenvalues of matrix A corresponding to simple di�erential problem. This
matrix has distinct eigenvalues and "spread out". While problem 5.2 is simpli-
�ed so that eigenvalues of A are easily computable similar behaviour appears in
other di�erential problems. Such problems appear in many engineering tasks.

1.3 Preconditioning conjugate gradient

To improve conditioning we can use transformation

x = C−1y

In terms of y convergence depends on eigenvalues of (C−1)TAC−1. When W =
(CTC)−1 is approximate inverse of A, then new problem is well conditioned
(note that WA and (C−1)TAC−1 have the same eigenvalues).

It is important that there is no need to explicitly compute transformed prob-
lem. Namely, denoting by xi = C−1yi and using ′ to denote other transformed
quantities in y variables we have

A′ = (C−1)TAC−1,

6



b′ = (C−1)T b

r′k = A′yk−1 − b′ = A′Cxk−1 − b′ = (C−1)T (Axk−1 − b).

Writing zk = Axk−1 − b and transforming r′k to x variables we compute

rk = C−1r′k = (CTC)−1(Axk−1 − b) =W (Axk−1 − b) =Wzk.

Next,
〈r′k, r′k〉 = 〈W (Axk−1 − b), (Axk−1 − b)〉 = 〈Wzk, zk〉

so we can compute this in x coordinates. Similarly d1 = C−1d′1 = −C−1r′1 =
−r1 and

di+1 = C−1d′i+1 = −C−1r′i + β′iC
−1d′i = −rk + β′idi,

〈A′d′i, d′i〉 = 〈AC−1d′i, C−1d′i〉 = 〈Adi, di〉,

〈r′i+1, A
′d′i〉 = 〈ri+1, Adi〉

so indeed we can compute scalar products giving α′i and β′i in terms of x
variables. Finally

zi+1 = Axi − b = AC−1yi − b = AC−1(yi−1 + α′id
′
i)− b

= α′iAC
−1d′i +AC−1yi−1 − b = α′iAdi +Axi−1 − b

= zi + α′iAdi

so we get whole iteration.
Note that there is no need to explicitly compute W : all we need is ability to

compute Wzk which we can do by solving equations.

1.4 Nonquadratic conjugate gradient methods

When f is not a quadratic function, then there are several possible ways to
generalize conjugate gradient method. First, note that our rj = ∇f(xj−1). As
before we use xi = xi−1+αidi with d1 = −r1 and di+1 = −ri+1+βidi. To choose
search direction, we need rule for βi. Two popular choices are Fletcher-Rieves
formula

βi =
‖∇f(xi)‖2

‖∇f(xi−1)‖2

and Polak-Ribiere formula

βi =
〈∇f(xi),∇f(xi)−∇f(xi−1)〉

‖∇f(xi−1)‖2
.

Both formulas give the same results for quadratic functions, but in practice
Polak-Ribiere formula seem to give better results for nonquadratic ones. To
determine αi we need to perform line search. Backtracking line search would
give bad results for quadratic functions, so we need better one. Evaluating f at
3 points on line and using quadratic interpolation to �nd approximate minimum
gives exact result for quadratic functions and seem to behave well in general.

7



For nonquadratic functions search directions are no longer orthogonal and
after large number of steps may be quite suboptimal. Usual way to handle this
is to use restarts, that is from time to time take βi = 0.

Close to optimal point one can show that conjugate gradient method with
restarts after n steps (where n is dimension of the space) behaves similar to
Newton method, more precisely n steps of conjugate gradient method do similar
work as one step of Newton method.

This is easy to see at intuitive level: close to optimal point our function
behaves very similar to quadratic function and we could use conjugate gradient
to compute f ′′(xi)

−1∇f(xi). Using f gives slightly di�erent result, but result-
ing convergence as fast as Newton method (but we need n steps of conjugate
gradient to perform one Newton step).

When f ′′ is well conditioned, then more frequent restarts lead to faster
convergence: method behaves like Newton method with approximate inverse of
f ′′.

2 Quasi-Newton methods

Last time we said that conjugate direction methods have cost slightly larger than
gradient descent, but should converge faster. They are in this sense intermediate
between gradient descent and Newton method.

Quasi-Newton methods were invented earlier than nonquadratic conjugate
gradient method. Historically they were the �rst approach to construct method
which tried to converge faster than gradient descent but have lower per iteration
cost than Newton method. They try to get good convergence by approximating
second derivative using di�erences of gradients.

Core idea of quasi-Newton methods is to use descent

xi+1 = xi + αidi

in the search direction di given by

di = −Si∇f(xi).

where Si is a strictly positive de�nite matrix. When Si = I, this gives gradient
descent. When Si = (∇2f(xi))

−1, this gives Newton method. Fixed Si gives
preconditioned gradient descent. When Si = (∇2f(x0))

−1 we get modi�ed
Newton method. In general, when Si approximates (∇2f)−1, then we expect
better convergence.

Another view is that we use S−1i as a new metric. Therefore the �rst name
used for such methods was variable metric methods.

Viewing quasi-Newton methods as gradient descent with new metric we can
get convergence estimate. First, since di are descent direction we see that
quasi-Newton methods are descent methods, so values of goal function are non-
increasing. Second, write Si = QT

i Qi and A(x) = QT
i ∇2f(x)Qi. Now using

〈S−1i x, y〉 = 〈Q−1i x,Q−1i y〉 as a scalar product we see that A(x) gives Hessian

8



matrix corresponding to this scalar product. So speed of convergence depends
on conditioning of A(x). In particular, when A(x) is well conditioned we get
convergence to stationary point.

More precisely we have the following:

Lemma 2.1 Assume that mI ≤ A(x) ≤ MI, and xi+1 uses step 2
M+m (or

exact line search), then

f(xi+1)− f(x∞) ≤ C(f(xi)− f(x∞))

where C = 1− m
M .

Note: this is lemma from Lecture 6 applied to metric above. Using inexact
line search we get similar result with slightly larger C.

Note: We can compute m and M from eigenvalues of S−1i ∇2f(x). In par-
ticular m and M depend only on Si and f and are independent of Qi.

How to �nd reasonable Sk? Write pi = xi+1−xi, gi = ∇f(xi), qi = gi+1−gi.
For quadratic f we have

qi = ∇2f(xi)pi.

So reasonable condition is
Si+1qi = pi.

Equivalently when Bi = S−1i :

qi = Bi+1pi.

Those equations are called quasi-Newton equations (or secant equations).

Lemma 2.2 Let A be positive de�nite matrix and f(x) = 1
2 〈Ax, x〉 − 〈b, x〉

be quadratic function. Quasi-Newton method using exact line search with Si

satisfying quasi-Newton equations satis�es

〈Adi+1, di〉 = 0.

Proof: For quadratic f we have qi = Api. By quasi-Newton equations we
have

Si+1Api = Si+1qi = pi.

Since line search is exact we have 〈∇f(xi+1), di〉 = 0.
We have

pi+1 = xi+2 − xi+1 = αi+1di+1

and di+1 = −Si+1∇f(xi+1) so

〈Api+1, pi〉 = −αi+1〈ASi+1∇f(xi+1), pi〉 = −αi+1〈∇f(xi+1), Si+1Api〉

= −αi+1〈∇f(xi+1), pi〉 = αi+1αi〈∇f(xi+1), di〉 = 0.

In other words
〈Adi+1, di〉 = 0.

9



�

Quasi-Newton equations specify Si only in single direction, so there is in�nite
number of solutions. Other reasonable condition is that Si+1 should be close
to Si. One meaning of close is to require Ui = Si+1 − Si to be of low rank.
It is possible to �nd symmetric Si+1 such that Ui is of rank 1. However, such
rule may produce Si+1 which is not positive de�nite and may lead to numerical
di�culties. Next level of complexity is rank 2 update: we require update Ui to
be of rank at most 2.

Quasi-Newton equations give

pi = Si+1qi = Uiqi + Siqi

so
Uiqi = pi − Siqi

That again admits in�nite number of solutions.
Quasi-Newton equations involve Siqi and pi. In "general position" Siqi

and pi are linearly independent and it is natural to request that update acts
only in this plane and maps orthogonal complement to zero. Still admits one
dimensional family of solutions. Simplest possibility is

Uk(x) = aSiqi〈Siqi, x〉+ bpi〈pi, x〉

where a and b are numeric parameters. Then

pi − Siqi = aSiqi〈Siqi, qi〉+ bpi〈pi, qi〉

so a = −1
〈Siqi,qi〉 , b =

1
〈pi,qi〉 and

Si+1x = Six−
〈Siqi, x〉
〈Siqi, qi〉

Siqi +
〈pi, x〉
〈pi, qi〉

pi.

This is called Davidon-Fletcher-Powell update or in short DFP update.
In quasi-Newton equations Si and Bi play symmetric role, that is

qi = Bi+1pi.

so alternatively to DFP update we can request update to Bi build from qi
and Bipi. This leads to formula invented independently by Broyden, Fletcher,
Goldfarb and Shanno or in short BFGS update:

Bi+1x = Bix−
〈Bipi, x〉
〈Bipi, pi〉

Bipi +
〈qi, x〉
〈pi, qi〉

qi.

2.1 Further reading

David G. Luenberger, Yinyu Ye, Linear and Nonlinear Programming, chapter
10.

Jorge Nocedal, Stephen J. Wright, Numerical Optimization, chapter 6 and
section 2 of chapter 7.

10


