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Acquiring signals

Many types of real-world signals (e.g. sound, images,
video) can be viewed as an n-dimensional vector

x =

x1
...

xn

 ∈ Rn of real numbers, where n is large (e.g.

n ∼ 106).
To acquire this signal, we consider a linear measurement
model, in which we measure an m-dimensional vector
b = Ax ∈ Rm for some m × n measurement matrix A (thus
we measure the inner products of x with the rows of A).
For instance, if we are measuring a time series in the
frequency domain, A would be some sort of Fourier matrix.
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This leads to the following classical question in linear algebra:
Question: How many measurements m do we need to
make in order to recover the original signal x exactly from
b? What about approximately?
In other words: when can we solve the equation Ax = b?
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The classical answer

The classical theory of linear algebra, which we learn as
undergraduates, is as follows:

If there are at least as many measurements as unknowns
(m ≥ n), and A has full rank, then the problem is
determined or overdetermined, and one can easily solve
Ax = b uniquely (e.g. by gaussian elimination).
If there are fewer measurements than unknowns (m < n),
then the problem is underdetermined even when A has full
rank. Knowledge of Ax = b restricts x to an (affine)
subspace of Rn, but does not determine x completely.
However, if one has reason to believe that x is “small”, one
can use the least squares solution
x# = argminx :Ax=b ‖x‖`2 = A∗(AA∗)−1b as the “best
guess” for x .
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Ax=b

x
#

A low-dimensional example of a least-squares guess.
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In many situations the least squares solution is not
satisfactory.
For instance, consider the problem of reconstructing a
one-dimensional discrete signal f : {1, . . . ,n} → C from a
partial collection f̂ (ξ1), . . . , f̂ (ξm) of Fourier coefficients

f̂ (ξ) :=
1
n

n∑
x=1

f (x)e−2πixξ/n.
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The least squares solution f # to this problem is easily seen to
be the partial Fourier series

f # :=
m∑

j=1

f̂ (ξj)e−2πiξj x/n

which, when m is small, is often very different from the original
signal f , especially if f is “spiky” (consider for instance a delta
function signal).
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The Logan-Shepp phantom and its least squares reconstruction
after Fourier-sampling along 22 radial lines (here m/n ≈ 0.05).
This type of measurement is a toy model of that used in MRI.
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Sparse recovery

It is thus of interest to obtain a good estimator for
underdetermined problems such as Ax = b in the case in
which x is expected to be “spiky” - that is, concentrated in
only a few of its coordinates.
A model case occurs when x is known to be S-sparse for
some 1 ≤ S ≤ n, which means that at most S of the
coefficients of x can be non-zero.
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Why sparsity?

Sparsity is a simple but effective model for many real-life
signals. For instance, an image may be many megapixels
in size, but when viewed in the right basis (e.g. a wavelet
basis), many of the coefficients may be negligible, and so
the image may be compressible into a file of much smaller
size without seriously affecting the image quality. (This is
the basis behind algorithms such as the JPEG2000
protocol.) In other words, many images are effectively
sparse in the wavelet basis.
More complicated models than sparse signals can also be
studied, but for simplicity we will restrict attention to the
sparse case here.
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Sparsity helps!

Intuitively, if a signal x ∈ Rn is S-sparse, then it should only
have S degrees of freedom rather than n. In principle, one
should now only need S measurements or so to
reconstruct x , rather than n. This is the underlying
philosophy of compressive sensing: one only needs a
number of measurements proportional to the compressed
size of the signal, rather than the uncompressed size.
An analogy would be with the classic twelve coins puzzle:
given twelve coins, one of them counterfeit (and thus
heavier or lighter than the others), one can determine the
counterfeit coin in just three weighings, by weighing the
coins in suitably chosen batches. The key point is that the
counterfeit data is sparse.
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Compressed sensing is advantageous whenever
signals are sparse in a known basis;
measurements (or computation at the sensor end) are
expensive; but
computations at the receiver end are cheap.

Such situations can arise in
Imaging (e.g. the “single-pixel camera”)
Sensor networks
MRI
Astronomy
...
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But can compressed sensing work?

Proposition: Suppose that any 2S columns of the m × n
matrix A are linearly independent. (This is a reasonable
assumption once m ≥ 2S.) Then, any S-sparse signal
x ∈ Rn can be reconstructed uniquely from Ax .
Proof: Suppose not; then there are two S-sparse signals
x , x ′ ∈ Rn with Ax = Ax ′, which implies A(x − x ′) = 0. But
x − x ′ is 2S-sparse, so there is a linear dependence
between 2S columns of A, contradiction. �
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In fact, the above proof also shows how to reconstruct an
S-sparse signal x ∈ Rn from the measurements b = Ax : x
is the unique sparsest solution to Ax = b. In other words,

x = argminx :Ax=b ‖x‖`0

where

‖x‖`0 :=
n∑

i=1

|xi |0 = #{1 ≤ i ≤ n : xi 6= 0}

is the sparsity of x .
Unfortunately, in contrast to the `2 minimisation problem
(least-squares), `0 minimisation is computationally
intractable (in fact, it is an NP-hard problem in general). In
part, this is because `0 minimisation is not a convex
optimisation problem.
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To summarise so far: when solving an underdetermined
problem Ax = b, `2 minimisation is easy to compute, but
often wrong.
When x is sparse, `0 minimisation is often correct, but very
difficult to compute.
Is there a way to split the difference?
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Basis pursuit

A simple, yet surprisingly effective, way to do so is `1

minimisation or basis pursuit; thus, our guess x ] for the
problem Ax = b is given by the formula

x ] = argminx :Ax=b ‖x‖`1 .

This is a convex optimisation problem and can be solved
fairly quickly by linear programming methods (several
specialised software packages are now also available).
And... it works!
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Ax=b

x

In this example, the signal x is reconstructed exactly from
b = Ax by `1 minimisation.
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Exact reconstruction of the Logan-Shepp phantom from partial
Fourier data by `1 minimisation (or more precisely, total
variation minimisation, i.e. the `1 norm of the gradient).
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Basis pursuit was introduced empirically in the sciences
(e.g. in seismology by Claerbout-Muir and others) in the
1970s, and then studied mathematically in the 1990s by by
Chen, Donoho, Huo, Logan, Saunders, and others.
Near-optimal performance guarantees emerged in the
2000s by Candés-Romberg-Tao, Donoho, and others.
There are also several other compressed sensing
algorithms known (e.g. matching pursuit and its
refinements), but we will focus on basis pursuit here as it is
relatively simple to state.
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Theoretical results

There are now several theoretical results ensuring that
basis pursuit works whenever the measurement matrix A is
sufficiently “incoherent”, which roughly means that its
matrix entries are uniform in magnitude. (It’s somewhat
analogous to how the secret to solving the twelve coins
problem is to weigh several of the coins at once.) Here is
one typical result:
Theorem: (Candés-Romberg-T. 2004). Let
ξ1, . . . , ξm ∈ {1, . . . ,n} be chosen randomly. Then with high
probability, every S-sparse signal f : {1, . . . ,n} → C can be
recovered from f̂ (ξ1), . . . , f̂ (ξm), so long as m > CS log n
for some absolute constant C.
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Numerical experiments suggest that in practice, most
S-sparse signals are in fact recovered exactly once
m ≥ 4S or so.
It turns out that basis pursuit is effective not only for Fourier
measurements, but for a much wider class of
measurement matrices. The necessary condition that
every 2S columns of A have to be linearly independent,
has to be strengthened somewhat (for instance, to the
assertion that every 4S columns of A are approximately
orthonormal). The precise condition used in the literature
is called the Restricted Isometry Property (RIP), and is
obeyed by many types of matrices (e.g. gaussian random
matrices obey the RIP with high probability).
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Variants and extensions

There are many variants and extensions of compressed
sensing in the literature (200+ papers in the last 3 years!). Here
is a quick sample:

Compressed sensing algorithms such as basis pursuit can
not only recover sparse data x exactly from b = Ax , but
can also recover compressible data (data which is
approximately sparse) approximately, by a slight
modification of the algorithm.
In a similar spirit, these algorithms are also robust with
regards to noise: if one only has some approximate
measurements b = Ax + z of the signal x , where z is a
noise vector (e.g. gaussian white noise), then basis pursuit
will still recover a good approximation x ] to x .
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x

x
#

|| Ax − b || < e

Reconstructing a sparse signal x approximately from noisy data
b = Ax + z, assuming that z has norm less than some error
tolerance e.
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There is a “dual” to compressed sensing, namely linear
coding in which a signal x ∈ Rn is expanded into a larger
signal Ax ∈ Rm (where now m > n instead of m < n) to be
transmitted over a noisy network. Even if parts of the
transmitted signal are corrupted, so that the data received
is of the form b = Ax + e for some sparse e (representing
packet loss or corruption), one can recover x exactly in
many cases. (The trick is to view e, rather than x , as the
signal, in which case one can convert things back to a
compressed sensing problem.)
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There are also matrix versions of compressed sensing:
instead of trying to reconstruct a sparse vector x from
some measurements Ax , one instead tries to reconstruct a
low-rank matrix M from some coefficients of that matrix.
There is an analogue of basis pursuit (using the nuclear
norm ‖M‖1 rather than the `1 norm) which is effective in
many cases. This type of problem is relevant to real-life
matrix completion problems (e.g. the Netflix prize).
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Practical applications of compressed sensing

Compressed sensing is a fairly new paradigm, but is
already being used in practical settings, for instance to
speed up MRI scans by requiring fewer measurements to
achieve a given amount of resolution.
One of the first prototype demonstrations of compressed
sensing is the single pixel camera, developed by Rice
University.
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A schematic of the Rice single pixel camera
(http://dsp.rice.edu/cscamera)
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Physical implementation
(http://dsp.rice.edu/cscamera)
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Test image (16384 pixels) and CS reconstruction using 1600
and 3300 measurements
(http://dsp.rice.edu/cscamera)
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Test image (65536 pixels) and CS reconstruction using 6600
measurements (http://dsp.rice.edu/cscamera)
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MRI image of a mouse heart, and CS reconstruction using 20%
of available measurements (Blumensath-Davies)
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