When do closed classes imply closedness? (and more)

Tomasz Rzepecki

Uniwersytet Wrocławski

Şirince, May 2016

Tomasz Rzepecki When do closed classes imply closedness?

General setup Problem Transitive case

General setup

- G is a group,
- X is a set on which G acts,
- E is a G-invariant equivalence relation on X (i.e. x E y ⇔ gx E gy, for all x, y, g).
- [Usually, we want to have $x \in y \implies G \cdot x = G \cdot y$.]

Possible constraints:

- The action is continuous.
- G is compact.
- (G, X are type-definable.)
- Etc.

General setup Problem Transitive case

General setup

- G is a group,
- X is a set on which G acts,
- E is a G-invariant equivalence relation on X (i.e. x E y ↔ gx E gy, for all x, y, g).
- [Usually, we want to have $x \in y \implies G \cdot x = G \cdot y$.]

Possible constraints:

- The action is continuous.
- G is compact.
- (G, X are type-definable.)
- Etc.

General setup Problem Transitive case

Problem

Question

If G is a topological group acting continuously on X, under what conditions is it true that E has closed classes iff it is closed [iff X/E is somehow nice]?

Example

- Consider $G = \mathbf{R}$ acting on $X = \mathbf{R}^2$ by $r \cdot (a, b) = (a + rb, b)$, and let *E* be the orbit equivalence relation.
- Classes of *E* are points on the line y = 0 and lines parallel to it.
- The classes of *E* are closed, and the class space is easy to understand (it is almost Hausdorff), but *E* is not closed.

General setup Problem Transitive case

Problem

Question

If G is a topological group acting continuously on X, under what conditions is it true that E has closed classes iff it is closed [iff X/E is somehow nice]?

Example

- Consider $G = \mathbf{R}$ acting on $X = \mathbf{R}^2$ by $r \cdot (a, b) = (a + rb, b)$, and let *E* be the orbit equivalence relation.
- Classes of *E* are points on the line y = 0 and lines parallel to it.
- The classes of *E* are closed, and the class space is easy to understand (it is almost Hausdorff), but *E* is not closed.

General setup Problem Transitive case

Very simple remark

Remark

Suppose *G* is a topological group and $H \le G$. Then *H* is closed iff the relation E_H of lying in the same left coset of *H* is closed.

Proof.

 $E_H = \{(g_1, g_2) \mid g_1^{-1}g_2 \in H\}$, while $H = \{g \in G \mid g \in H, e\}$, so E_H is the preimage of H by the (continuous) map $(g_1, g_2) \mapsto g_1^{-1}g_2$ and H is the section of E_H at e.

Remark

If *E* is invariant on X = G, then $E = E_H$, where $H = [e]_E$.

General setup Problem Transitive case

Example

We want at the very least to have that $G \setminus X$ is nice. For arbitrary continuous actions, various pathologies are possible.

Example

Consider $G = \mathbf{R}$ acting on the flat torus $\mathbf{R}^2/\mathbf{Z}^2$ by $r \cdot (a, b) = (a + r, b + r\alpha)$ for a fixed $\alpha \notin \mathbf{Q}$, and let *E* be the orbit equivalence relation. Then *E* does not have closed classes (they are all meagre and dense), and the quotient space has no nice structure (e.g. the topology is trivial).

For simplicity, we will restrict ourselves to compact groups (acting on compact spaces).

General setup Problem Transitive case

Example

We want at the very least to have that $G \setminus X$ is nice. For arbitrary continuous actions, various pathologies are possible.

Example

Consider $G = \mathbf{R}$ acting on the flat torus $\mathbf{R}^2/\mathbf{Z}^2$ by $r \cdot (a, b) = (a + r, b + r\alpha)$ for a fixed $\alpha \notin \mathbf{Q}$, and let *E* be the orbit equivalence relation.

Then E does not have closed classes (they are all meagre and dense), and the quotient space has no nice structure (e.g. the topology is trivial).

For simplicity, we will restrict ourselves to compact groups (acting on compact spaces).

General setup Problem Transitive case

Example

We want at the very least to have that $G \setminus X$ is nice. For arbitrary continuous actions, various pathologies are possible.

Example

Consider $G = \mathbf{R}$ acting on the flat torus $\mathbf{R}^2/\mathbf{Z}^2$ by $r \cdot (a, b) = (a + r, b + r\alpha)$ for a fixed $\alpha \notin \mathbf{Q}$, and let *E* be the orbit equivalence relation. Then *E* does not have closed classes (they are all meagre and dense), and the quotient space has no nice structure (e.g. the topology is trivial).

For simplicity, we will restrict ourselves to compact groups (acting on compact spaces).

General setup Problem Transitive case

Simple remark

Remark

Suppose *G*, *X* are compact, *G* acts transitively and continuously on *X* and *E* is invariant. Then if *E* has closed classes, it is closed (in X^2).

- Fix x₀ ∈ X, put H := Stab_G[x₀]_E (preimage of [x₀]_E via the orbit map φ_{x₀}: g → g ⋅ x₀).
- Then $g_1 x_0 E g_2 x_0$ iff $g_1 H = g_2 H$.
- It follows that $E = \{(g_1 x_0, g_2 x_0) \mid g_1 \in E_H, g_2\}$, i.e. *E* is the pushforward of E_H via φ_{x_0} , so it is closed by compactness.

General setup Problem Transitive case

Simple remark

Remark

Suppose *G*, *X* are compact, *G* acts transitively and continuously on *X* and *E* is invariant. Then if *E* has closed classes, it is closed (in X^2).

- Fix x₀ ∈ X, put H := Stab_G[x₀]_E (preimage of [x₀]_E via the orbit map φ_{x₀}: g → g ⋅ x₀).
- Then $g_1 x_0 E g_2 x_0$ iff $g_1 H = g_2 H$.
- It follows that $E = \{(g_1x_0, g_2x_0) \mid g_1 \in E_H g_2\}$, i.e. *E* is the pushforward of E_H via φ_{x_0} , so it is closed by compactness.

General setup Problem Transitive case

Simple remark

Remark

Suppose *G*, *X* are compact, *G* acts transitively and continuously on *X* and *E* is invariant. Then if *E* has closed classes, it is closed (in X^2).

- Fix x₀ ∈ X, put H := Stab_G[x₀]_E (preimage of [x₀]_E via the orbit map φ_{x₀}: g → g ⋅ x₀).
- Then $g_1 x_0 E g_2 x_0$ iff $g_1 H = g_2 H$.
- It follows that $E = \{(g_1x_0, g_2x_0) \mid g_1 \in E_H g_2\}$, i.e. *E* is the pushforward of E_H via φ_{x_0} , so it is closed by compactness.

General setup Problem Transitive case

Simple remark

Remark

Suppose *G*, *X* are compact, *G* acts transitively and continuously on *X* and *E* is invariant. Then if *E* has closed classes, it is closed (in X^2).

- Fix x₀ ∈ X, put H := Stab_G[x₀]_E (preimage of [x₀]_E via the orbit map φ_{x₀}: g ↦ g ⋅ x₀).
- Then $g_1 x_0 E g_2 x_0$ iff $g_1 H = g_2 H$.
- It follows that E = {(g₁x₀, g₂x₀) | g₁ E_H g₂}, i.e. E is the pushforward of E_H via φ_{x₀}, so it is closed by compactness.

General setup Problem Transitive case

Gluing orbits

Remark

- If *E* is finer than the orbit equivalence relation of *G*, then *E* is invariant iff each *E*↑_{*G*⋅*x*} is invariant.
- If G-orbits are closed and E is as above, then E has closed classes iff each E_{↑G·x} has closed classes.
- In general, there is no reason for *E* to be closed even if all *E*_{↑G·x} are closed.

General setup Problem Transitive case

Gluing orbits

Remark

- If *E* is finer than the orbit equivalence relation of *G*, then *E* is invariant iff each *E*↑_{*G*⋅*x*} is invariant.
- If G-orbits are closed and E is as above, then E has closed classes iff each E_{∫G·x} has closed classes.
- In general, there is no reason for *E* to be closed even if all *E*↾_{*G*⋅x} are closed.

General setup Problem Transitive case

Gluing orbits

Remark

- If *E* is finer than the orbit equivalence relation of *G*, then *E* is invariant iff each *E*↑_{*G*⋅*x*} is invariant.
- If G-orbits are closed and E is as above, then E has closed classes iff each E_{G⋅x} has closed classes.
- In general, there is no reason for *E* to be closed even if all *E*↾_{*G*⋅*x*} are closed.

General setup Problem Transitive case

Simple counterexample

Example

- Let $G = \mathbf{Z}/2\mathbf{Z}$ act on $X = G \times \{0, 1/n \mid n \in \mathbf{N}\}$ in the natural way.
- Put (g, x) E(h, y) iff x = y and $(g = h \text{ or } x \neq 0)$.
- *E* is invariant, its classes are closed, but it is not closed.

Remark

This shows that we cannot just extend the preceding remark to intransitive actions.

General setup Problem Transitive case

Simple counterexample

Example

- Let $G = \mathbf{Z}/2\mathbf{Z}$ act on $X = G \times \{0, 1/n \mid n \in \mathbf{N}\}$ in the natural way.
- Put (g, x) E(h, y) iff x = y and $(g = h \text{ or } x \neq 0)$.
- *E* is invariant, its classes are closed, but it is not closed.

Remark

This shows that we cannot just extend the preceding remark to intransitive actions.

General setup Problem Transitive case

Simple counterexample

Example

- Let $G = \mathbf{Z}/2\mathbf{Z}$ act on $X = G \times \{0, 1/n \mid n \in \mathbf{N}\}$ in the natural way.
- Put (g, x) E(h, y) iff x = y and $(g = h \text{ or } x \neq 0)$.
- E is invariant, its classes are closed, but it is not closed.

Remark

This shows that we cannot just extend the preceding remark to intransitive actions.

General setup Problem Transitive case

Simple counterexample

Example

- Let $G = \mathbf{Z}/2\mathbf{Z}$ act on $X = G \times \{0, 1/n \mid n \in \mathbf{N}\}$ in the natural way.
- Put (g, x) E(h, y) iff x = y and $(g = h \text{ or } x \neq 0)$.
- E is invariant, its classes are closed, but it is not closed.

Remark

This shows that we cannot just extend the preceding remark to intransitive actions.

Smoothness Miller's theorem Orbital equivalence relations Weakly orbital equivalence relations

Smoothness

Suppose we have an equivalence relation *E* on a Polish (=separable completely metrisable) space *X*. We say that *E* or X/E is smooth ("classifiable by reals") if we can attach, in a Borel way, a unique real number to each *E*-class.

⁼act

Any G_{δ} (in particular, any closed) equivalence relation is smooth.

Example

If we consider the action of **Z** on the circle S^1 by an irrational rotation, then S^1/\mathbf{Z} is not smooth.

Smoothness Miller's theorem Orbital equivalence relations Weakly orbital equivalence relations

Smoothness

Suppose we have an equivalence relation *E* on a Polish (=separable completely metrisable) space *X*. We say that *E* or X/E is smooth ("classifiable by reals") if we can attach, in a Borel way, a unique real number to each *E*-class.

Fact

Any G_{δ} (in particular, any closed) equivalence relation is smooth.

Example

If we consider the action of **Z** on the circle S^1 by an irrational rotation, then S^1/\mathbf{Z} is not smooth.

Smoothness Miller's theorem Orbital equivalence relations Weakly orbital equivalence relations

Smoothness

Suppose we have an equivalence relation *E* on a Polish (=separable completely metrisable) space *X*. We say that *E* or X/E is smooth ("classifiable by reals") if we can attach, in a Borel way, a unique real number to each *E*-class.

Fact

Any G_{δ} (in particular, any closed) equivalence relation is smooth.

Example

If we consider the action of **Z** on the circle S^1 by an irrational rotation, then S^1/\mathbf{Z} is not smooth.

Smoothness Miller's theorem Orbital equivalence relations Weakly orbital equivalence relations

Non-smoothness

Example

If we consider the action of **Z** on the circle S^1 by an irrational rotation, then S^1/\mathbf{Z} is not smooth.

Proof.

Suppose towards contradiction that S^1/Z is smooth, and let $f: S^1 \to \mathbf{R}$ be the Borel function witnessing that. Then f is Baire measurable, so there is a comeagre set $C \subseteq S^1$ such that $f|_C$ is continuous. Therefore, $C' := \bigcap_{z \in \mathbf{Z}} z \cdot C$ is also comeagre and **Z**-invariant, so it contains more than one orbit (because orbits are meagre).

But orbits are dense and f is constant on each of them, which is a contradiction, as f is continuous on C'.

Smoothness Miller's theorem Orbital equivalence relations Weakly orbital equivalence relations

Non-smoothness

Example

If we consider the action of **Z** on the circle S^1 by an irrational rotation, then S^1/\mathbf{Z} is not smooth.

Proof.

Suppose towards contradiction that S^1/\mathbb{Z} is smooth, and let $f: S^1 \to \mathbb{R}$ be the Borel function witnessing that. Then *f* is Baire measurable, so there is a comeagre set $C \subseteq S^1$ such that $f|_C$ is continuous.

Therefore, $C' := \bigcap_{z \in \mathbb{Z}} z \cdot C$ is also comeagre and \mathbb{Z} -invariant, so it contains more than one orbit (because orbits are meagre). But orbits are dense and *f* is constant on each of them, which is a contradiction, as *f* is continuous on *C'*.

Smoothness Miller's theorem Orbital equivalence relations Weakly orbital equivalence relations

Non-smoothness

Example

If we consider the action of **Z** on the circle S^1 by an irrational rotation, then S^1/\mathbf{Z} is not smooth.

Proof.

Suppose towards contradiction that S^1/\mathbb{Z} is smooth, and let $f: S^1 \to \mathbb{R}$ be the Borel function witnessing that. Then *f* is Baire measurable, so there is a comeagre set $C \subseteq S^1$ such that $f|_C$ is continuous. Therefore, $C' := \bigcap_{z \in \mathbb{Z}} z \cdot C$ is also comeagre and \mathbb{Z} -invariant, so it contains more than one orbit (because orbits are meagre). But orbits are dense and *f* is constant on each of them, which is a contradiction, as *f* is continuous on C'.

Smoothness Miller's theorem Orbital equivalence relations Weakly orbital equivalence relations

Non-smoothness

Example

If we consider the action of **Z** on the circle S^1 by an irrational rotation, then S^1/\mathbf{Z} is not smooth.

Proof.

Suppose towards contradiction that S^1/\mathbb{Z} is smooth, and let $f: S^1 \to \mathbb{R}$ be the Borel function witnessing that. Then *f* is Baire measurable, so there is a comeagre set $C \subseteq S^1$ such that $f|_C$ is continuous. Therefore, $C' := \bigcap_{z \in \mathbb{Z}} z \cdot C$ is also comeagre and \mathbb{Z} -invariant, so it contains more than one orbit (because orbits are meagre). But orbits are dense and *f* is constant on each of them, which is a contradiction, as *f* is continuous on C'.

Smoothness Miller's theorem Orbital equivalence relations Weakly orbital equivalence relations

Miller's theorem

Fact (Miller, 1977)

Suppose G is a Polish group acting on X = G and $H \le G$. If E_H is smooth, then H is closed.

Corollary (solution for the "transitive" case)

If G is a compact Polish group, acting continuously and transitively on a Polish space X, TFAE for invariant E on X:

- E is closed,
- 2) E has closed classes,
- E is smooth.

Smoothness Miller's theorem Orbital equivalence relations Weakly orbital equivalence relations

Miller's theorem

Fact (Miller, 1977)

Suppose G is a Polish group acting on X = G and $H \le G$. If E_H is smooth, then H is closed.

Corollary (solution for the "transitive" case)

If G is a compact Polish group, acting continuously and transitively on a Polish space X, TFAE for invariant E on X:

- E is closed,
- 2 E has closed classes,
- E is smooth.

Smoothness Miller's theorem Orbital equivalence relations Weakly orbital equivalence relations

Proof of the transitive case

Corollary (solution for the "transitive" case)

If G is a compact Polish group, acting continuously and transitively on a Polish space X, TFAE for invariant E on X:

- E is closed,
- E has closed classes,
- E is smooth.

Proof.

Assume that *E* is smooth. Fix any $x_0 \in X$ and let $H := \operatorname{Stab}_G[x_0]_E$. Then E_H is smooth, so *H* is closed, so E_H is closed and so is *E* (as in the previous proof).

Smoothness Miller's theorem Orbital equivalence relations Weakly orbital equivalence relations

Proof of the transitive case

Corollary (solution for the "transitive" case)

If G is a compact Polish group, acting continuously and transitively on a Polish space X, TFAE for invariant E on X:

- E is closed,
- E has closed classes,
- E is smooth.

Proof.

Assume that *E* is smooth. Fix any $x_0 \in X$ and let $H := \operatorname{Stab}_G[x_0]_E$. Then E_H is smooth, so *H* is closed, so E_H is closed and so is *E* (as in the previous proof).

Smoothness Miller's theorem Orbital equivalence relations Weakly orbital equivalence relations

Smoothness and closedness

Corollary (solution for the "transitive" case)

If G is a compact Polish group, acting continuously and transitively on a Polish space X, TFAE for invariant E on X:

- E is closed,
- E has closed classes,
- E is smooth.

Example

Suppose *E* is a (nontrivial) rotation-invariant equivalence relation on *S*¹. Then *E* is smooth exactly when $E = E_{\theta}$, where $z_1 \ E_{\theta} \ z_2 \iff z_1/z_2 = e^{k\theta i}$ for some integer *k*, where θ is a (fixed) rational multiple of π .

Smoothness Miller's theorem Orbital equivalence relations Weakly orbital equivalence relations

Idea

- In the transitive case, we had $E = \varphi_{x_0}[E_H]$.
- In general, given *E* refining *G*-orbit equivalence, we have $E = \bigcup_{x \in X} E \upharpoonright_{G : x}$.
- If each $G \cdot x$ is closed, and if E is smooth, then so are all $E \upharpoonright_{G \cdot x}$.
- Then for compact [Polish] G, X we have: $E \text{ closed} \implies [E \text{ smooth} \implies E_{G \cdot x} \text{ all smooth} \implies]$ $\implies [x]_E \text{ all closed} \implies E_{G \cdot x} \text{ all closed}$
- For the missing implication, we need to have a better description of *E* than *E* = ⋃_{*x*∈*X*} *E*↾_{*G*⋅*x*}.
- Intuitively, we want to have that the transition between "stalks" E_{↑G·x} is "continuous".

Smoothness Miller's theorem Orbital equivalence relations Weakly orbital equivalence relations

Idea

- In the transitive case, we had $E = \varphi_{x_0}[E_H]$.
- In general, given *E* refining *G*-orbit equivalence, we have $E = \bigcup_{x \in X} E \upharpoonright_{G \cdot x}$.
- If each $G \cdot x$ is closed, and if E is smooth, then so are all $E \upharpoonright_{G \cdot x}$.
- Then for compact [Polish] G, X we have: $E \text{ closed} \implies [E \text{ smooth} \implies E|_{G \times X} \text{ all smooth} =$
- For the missing implication, we need to have a better description of *E* than *E* = ⋃_{*x*∈*X*} *E*↾_{*G*⋅*x*}.
- Intuitively, we want to have that the transition between "stalks" *E*↾_{*G*,*x*} is "continuous".

Smoothness Miller's theorem Orbital equivalence relations Weakly orbital equivalence relations

Idea

- In the transitive case, we had $E = \varphi_{x_0}[E_H]$.
- In general, given *E* refining *G*-orbit equivalence, we have $E = \bigcup_{x \in X} E \upharpoonright_{G \cdot x}$.
- If each $G \cdot x$ is closed, and if E is smooth, then so are all $E \upharpoonright_{G \cdot x}$.
- Then for compact [Polish] G, X we have: $E \text{ closed } \Longrightarrow [E \text{ smooth } \Longrightarrow E \upharpoonright_{G \cdot x} \text{ all smooth } \Longrightarrow]$ $\Longrightarrow [x]_E \text{ all closed } \Longrightarrow E \upharpoonright_{G \cdot x} \text{ all closed}$
- For the missing implication, we need to have a better description of *E* than *E* = ⋃_{*x*∈*X*} *E*↾_{*G*⋅*x*}.
- Intuitively, we want to have that the transition between "stalks" *E*↾_{*G*⋅*x*} is "continuous".

Smoothness Miller's theorem Orbital equivalence relations Weakly orbital equivalence relations

Idea

- In the transitive case, we had $E = \varphi_{x_0}[E_H]$.
- In general, given *E* refining *G*-orbit equivalence, we have $E = \bigcup_{x \in X} E \upharpoonright_{G \cdot x}$.
- If each $G \cdot x$ is closed, and if E is smooth, then so are all $E \upharpoonright_{G \cdot x}$.
- Then for compact [Polish] *G*, *X* we have:

 $\begin{array}{l} E \text{ closed } \implies [E \text{ smooth } \implies E{\upharpoonright}_{G \cdot x} \text{ all smooth } \implies] \\ \implies [x]_E \text{ all closed } \implies E{\upharpoonright}_{G \cdot x} \text{ all closed} \end{array}$

- For the missing implication, we need to have a better description of *E* than *E* = ⋃_{*x*∈*X*} *E*↾_{*G*⋅*x*}.
- Intuitively, we want to have that the transition between "stalks" *E*↾_{*G*,*x*} is "continuous".

Smoothness Miller's theorem Orbital equivalence relations Weakly orbital equivalence relations

Idea

- In the transitive case, we had $E = \varphi_{x_0}[E_H]$.
- In general, given *E* refining *G*-orbit equivalence, we have $E = \bigcup_{x \in X} E \upharpoonright_{G \cdot x}$.
- If each $G \cdot x$ is closed, and if E is smooth, then so are all $E \upharpoonright_{G \cdot x}$.
- Then for compact [Polish] *G*, *X* we have:

 $E \text{ closed } \implies [E \text{ smooth } \implies E{\upharpoonright}_{G \cdot x} \text{ all smooth } \implies]$ $\implies [x]_E \text{ all closed } \implies E{\upharpoonright}_{G \cdot x} \text{ all closed }$

- For the missing implication, we need to have a better description of *E* than *E* = ⋃_{*x*∈*X*} *E*↾_{*G*⋅*x*}.
- Intuitively, we want to have that the transition between "stalks" *E*↑_{*G*⋅*x*} is "continuous".

Smoothness Miller's theorem Orbital equivalence relations Weakly orbital equivalence relations

Idea

- In the transitive case, we had $E = \varphi_{x_0}[E_H]$.
- In general, given *E* refining *G*-orbit equivalence, we have $E = \bigcup_{x \in X} E \upharpoonright_{G \cdot x}$.
- If each $G \cdot x$ is closed, and if E is smooth, then so are all $E \upharpoonright_{G \cdot x}$.
- Then for compact [Polish] *G*, *X* we have:

 $\begin{array}{l} E \text{ closed } \implies [E \text{ smooth } \implies E\!\upharpoonright_{G\cdot x} \text{ all smooth } \implies] \\ \implies [x]_E \text{ all closed } \implies E\!\upharpoonright_{G\cdot x} \text{ all closed} \end{array}$

- For the missing implication, we need to have a better description of *E* than *E* = ⋃_{*x*∈*X*} *E*↾_{*G*⋅*x*}.
- Intuitively, we want to have that the transition between "stalks" *E*↾_{*G*⋅*x*} is "continuous".

Smoothness Miller's theorem Orbital equivalence relations Weakly orbital equivalence relations

Orbital equivalence relations

Definition

(An invariant equivalence relation) *E* is orbital if there is some $H \le G$ such that for all x, $[x]_E = H \cdot x$.

Intuition: *E* is orbital if for some *H*, the relation *E* is the "uniform pushforward" of E_H by all the orbit maps; note that:

$$E = \bigcup_{x \in X} E \upharpoonright_{G \cdot x} = \bigcup_{x \in X} \varphi_x[E_H]$$

Example

Suppose G = X and $H \le G$. Then E_H is orbital iff H is normal. (Because an orbital equivalence relation on G is the relation of lying in the right coset of a subgroup of G, and E_H is the relation of lying in the same left coset.)

Smoothness Miller's theorem Orbital equivalence relations Weakly orbital equivalence relations

Orbital equivalence relations

Definition

(An invariant equivalence relation) *E* is orbital if there is some $H \le G$ such that for all x, $[x]_E = H \cdot x$.

Intuition: *E* is orbital if for some *H*, the relation *E* is the "uniform pushforward" of E_H by all the orbit maps; note that:

$$\mathsf{E} = \bigcup_{x \in X} \mathsf{E}\!\!\upharpoonright_{G \cdot x} = \bigcup_{x \in X} \varphi_x[\mathsf{E}_H]$$

Example

Suppose G = X and $H \le G$. Then E_H is orbital iff H is normal. (Because an orbital equivalence relation on G is the relation of lying in the right coset of a subgroup of G, and E_H is the relation of lying in the same left coset.)

Smoothness Miller's theorem Orbital equivalence relations Weakly orbital equivalence relations

Orbital equivalence relations

Definition

(An invariant equivalence relation) *E* is orbital if there is some $H \le G$ such that for all x, $[x]_E = H \cdot x$.

Intuition: *E* is orbital if for some *H*, the relation *E* is the "uniform pushforward" of E_H by all the orbit maps; note that:

$$\mathsf{E} = \bigcup_{x \in X} \mathsf{E}_{\mathsf{G} \cdot x} = \bigcup_{x \in X} \varphi_x[\mathsf{E}_{\mathsf{H}}]$$

Example

Suppose G = X and $H \le G$. Then E_H is orbital iff H is normal. (Because an orbital equivalence relation on G is the relation of lying in the right coset of a subgroup of G, and E_H is the relation of lying in the same left coset.)

Smoothness Miller's theorem Orbital equivalence relations Weakly orbital equivalence relations

Orbital equivalence relations ctd.

Definition

(An invariant equivalence relation) *E* is orbital if there is some $H \le G$ such that for all x, $[x]_E = H \cdot x$.

Lemma

Suppose *E* is orbital. Then orbitality is witnessed by $H = \bigcap_{x \in X} \operatorname{Stab}_{G}[x]_{E}$.

Proof.

Let H' witness orbitality of E. Then for all x we have $H' \cdot x = [x]_E \subseteq [x]_E - \text{so } H' \leq H$. On the other hand, we have by definition $H \cdot x \subseteq [x]_E = H' \cdot x - \text{so } H \cdot x \subseteq [x]_E \subseteq H \cdot x$.

Smoothness Miller's theorem Orbital equivalence relations Weakly orbital equivalence relations

Orbital equivalence relations ctd.

Definition

(An invariant equivalence relation) *E* is orbital if there is some $H \le G$ such that for all x, $[x]_E = H \cdot x$.

Lemma

Suppose *E* is orbital. Then orbitality is witnessed by $H = \bigcap_{x \in X} \operatorname{Stab}_{G}[x]_{E}$.

Proof.

Let H' witness orbitality of E. Then for all x we have $H' \cdot x = [x]_E \subseteq [x]_E - \text{ so } H' \leq H$. On the other hand, we have by definition $H \cdot x \subseteq [x]_E = H' \cdot x - \text{ so } H \cdot x \subseteq [x]_E \subseteq H \cdot x$.

Smoothness Miller's theorem Orbital equivalence relations Weakly orbital equivalence relations

Orbital equivalence relations ctd.

Definition

(An invariant equivalence relation) *E* is orbital if there is some $H \le G$ such that for all x, $[x]_E = H \cdot x$.

Proposition

Suppose G and X are compact and E is orbital. Then E is closed iff all of its classes are closed.

Proof.

Let *H* witness orbitality of *E*; then $E = \{(x, hx) \mid h \in H, x \in X\}$, which is closed if *H* is closed in *G*. But $\bigcap_{x \in X} \operatorname{Stab}_G[x]_E$ is closed and it witnesses orbitality.

Smoothness Miller's theorem Orbital equivalence relations Weakly orbital equivalence relations

Orbital equivalence relations ctd.

Definition

(An invariant equivalence relation) *E* is orbital if there is some $H \le G$ such that for all x, $[x]_E = H \cdot x$.

Proposition

Suppose G and X are compact and E is orbital. Then E is closed iff all of its classes are closed.

Proof.

Let *H* witness orbitality of *E*; then $E = \{(x, hx) \mid h \in H, x \in X\}$, which is closed if *H* is closed in *G*. But $\bigcap_{x \in X} \operatorname{Stab}_G[x]_E$ is closed and it witnesses orbitality.

Smoothness Miller's theorem Orbital equivalence relations Weakly orbital equivalence relations

Smoothness for orbital equivalence relations

Proposition

Suppose G and X are compact and E is orbital. Then E is closed iff all of its classes are closed.

Corollary (solution for the "orbital" case)

If G and X are compact Polish, while E is orbital, TFAE:

- E is closed,
- 2 E has closed classes,
- E is smooth.

Proof.

If *E* is smooth, so are all the $E|_{G \cdot x}$, the classes are closed by the transitive case.

Smoothness Miller's theorem Orbital equivalence relations Weakly orbital equivalence relations

Smoothness for orbital equivalence relations

Proposition

Suppose G and X are compact and E is orbital. Then E is closed iff all of its classes are closed.

Corollary (solution for the "orbital" case)

If G and X are compact Polish, while E is orbital, TFAE:

- E is closed,
- 2 E has closed classes,
- E is smooth.

Proof.

If *E* is smooth, so are all the $E \upharpoonright_{G \cdot x}$, the classes are closed by the transitive case.

Smoothness Miller's theorem Orbital equivalence relations Weakly orbital equivalence relations

Smoothness for orbital equivalence relations

Corollary (solution for the "orbital" case)

If G and X are compact Polish, while E is orbital, TFAE:

- E is closed,
- 2 E has closed classes,
- E is smooth.

Example

Consider G = SO(2) acting on $X = D^2$. The smooth orbital equivalence relations are exactly those induced by finite subgroups of *G*.

Smoothness Miller's theorem Orbital equivalence relations Weakly orbital equivalence relations

Weakly orbital equivalence relations

- The "transitive" and "orbital" cases can be generalised together in the form of "weakly orbital" equivalence relations.
- They can be intuitively interpreted as the relations which are "non-uniform" but still somehow consistent pushforwards of some E_H via the orbit maps.
- Naively: put E = ∪_{x∈X} φ_x[E_{H_x}] for some H_x ≤ G. But this is trivial: just take H_x = Stab_G[x]_E! We need more control over H_x.

Smoothness Miller's theorem Orbital equivalence relations Weakly orbital equivalence relations

Weakly orbital equivalence relations

- The "transitive" and "orbital" cases can be generalised together in the form of "weakly orbital" equivalence relations.
- They can be intuitively interpreted as the relations which are "non-uniform" but still somehow consistent pushforwards of some E_H via the orbit maps.
- Naively: put E = ∪_{x∈X} φ_x[E_{H_x}] for some H_x ≤ G. But this is trivial: just take H_x = Stab_G[x]_E! We need more control over H_x.

Smoothness Miller's theorem Orbital equivalence relations Weakly orbital equivalence relations

Weakly orbital equivalence relations

- The "transitive" and "orbital" cases can be generalised together in the form of "weakly orbital" equivalence relations.
- They can be intuitively interpreted as the relations which are "non-uniform" but still somehow consistent pushforwards of some E_H via the orbit maps.
- Naively: put E = ∪_{x∈X} φ_x[E_{H_x}] for some H_x ≤ G. But this is trivial: just take H_x = Stab_G[x]_E! We need more control over H_x.

Smoothness Miller's theorem Orbital equivalence relations Weakly orbital equivalence relations

General (?) solution to the problem

Proposition (solution for the "weakly orbital" case)

Suppose G, X are compact Polish, and E is weakly orbital*. The following are equivalent:

- E is closed,
- E has closed classes,
- E is smooth.

(The * denotes an extra assumption of "continuity" of the "non-uniform" pushforward.)

Invariant equivalence relations in model theory Smoothness for BIERs Previous results and the extension Definable group actions

Invariant equivalence relations in model theory

We consider a monster model \mathfrak{C} of a fixed complete first order theory T (i.e. a structure satisfying certain axioms and very rich in automorphisms).

Definition

We say that a set in (a power of) \mathfrak{C} is *invariant* when it is Aut(\mathfrak{C})-invariant.

Definition

An invariant equivalence relation on some $X \subseteq \mathfrak{C}$ is bounded if $|X/E| \le 2^{|T|}$ (BIER). (Intuitively, X/E does not depend on \mathfrak{C} , only *T*.)

Invariant equivalence relations in model theory Smoothness for BIERs Previous results and the extension Definable group actions

Invariant equivalence relations in model theory

We consider a monster model \mathfrak{C} of a fixed complete first order theory T (i.e. a structure satisfying certain axioms and very rich in automorphisms).

Definition

We say that a set in (a power of) \mathfrak{C} is *invariant* when it is Aut(\mathfrak{C})-invariant.

Definition

An invariant equivalence relation on some $X \subseteq \mathfrak{C}$ is bounded if $|X/E| \le 2^{|T|}$ (BIER). (Intuitively, X/E does not depend on \mathfrak{C} , only *T*.)

Invariant equivalence relations in model theory Smoothness for BIERs Previous results and the extension Definable group actions

Invariant equivalence relations in model theory

We consider a monster model \mathfrak{C} of a fixed complete first order theory T (i.e. a structure satisfying certain axioms and very rich in automorphisms).

Definition

We say that a set in (a power of) \mathfrak{C} is *invariant* when it is Aut(\mathfrak{C})-invariant.

Definition

An invariant equivalence relation on some $X \subseteq \mathfrak{C}$ is bounded if $|X/E| \leq 2^{|\mathcal{T}|}$ (BIER). (Intuitively, X/E does not depend on \mathfrak{C} , only \mathcal{T} .)

Invariant equivalence relations in model theory Smoothness for BIERs Previous results and the extension Definable group actions

Lascar equivalence, (type-)definability

Definition

On any invariant set X, there is a finest BIER on X, denoted by \equiv_L .

Definition

We say that a set $X \subseteq \mathfrak{C}$ is definable or "pseudo-clopen" (with parameters a_1, \ldots, a_n) if there is a formula $\varphi(x, a_1, \ldots, a_n)$ in the language of T such that $X = \{b \in \mathfrak{C} \mid \varphi(b, a_1, \ldots, a_n) \text{ is true}\}$

Definition

We call a set $[\emptyset]$ -type-definable or "pseudo-closed" when it is the intersection of a small family of sets definable [without parameters].

Invariant equivalence relations in model theory Smoothness for BIERs Previous results and the extension Definable group actions

Lascar equivalence, (type-)definability

Definition

On any invariant set X, there is a finest BIER on X, denoted by \equiv_L .

Definition

We say that a set $X \subseteq \mathfrak{C}$ is definable or "pseudo-clopen" (with parameters a_1, \ldots, a_n) if there is a formula $\varphi(x, a_1, \ldots, a_n)$ in the language of T such that $X = \{b \in \mathfrak{C} \mid \varphi(b, a_1, \ldots, a_n) \text{ is true}\}$

Definition

We call a set $[\emptyset]$ -type-definable or "pseudo-closed" when it is the intersection of a small family of sets definable [without parameters].

Invariant equivalence relations in model theory Smoothness for BIERs Previous results and the extension Definable group actions

Lascar equivalence, (type-)definability

Definition

On any invariant set X, there is a finest BIER on X, denoted by \equiv_L .

Definition

We say that a set $X \subseteq \mathfrak{C}$ is definable or "pseudo-clopen" (with parameters a_1, \ldots, a_n) if there is a formula $\varphi(x, a_1, \ldots, a_n)$ in the language of T such that $X = \{b \in \mathfrak{C} \mid \varphi(b, a_1, \ldots, a_n) \text{ is true}\}$

Definition

We call a set $[\emptyset$ -]type-definable or "pseudo-closed" when it is the intersection of a small family of sets definable [without parameters].

Invariant equivalence relations in model theory Smoothness for BIERs Previous results and the extension Definable group actions

Smoothness in model theory

The notion of smoothness has been adapted to model theory in the following form.

Definition

Suppose *E* is a BIER and *T* is countable. Then E^M is the "pushforward" of *E* to the space of types over a countable model *M* (=orbits of Aut(\mathfrak{C}/M)).

Definition

We say that E is smooth if E^M is smooth for some (every) countable model M.

Invariant equivalence relations in model theory Smoothness for BIERs Previous results and the extension Definable group actions

Smoothness in model theory

The notion of smoothness has been adapted to model theory in the following form.

Definition

Suppose *E* is a BIER and *T* is countable. Then E^M is the "pushforward" of *E* to the space of types over a countable model *M* (=orbits of Aut(\mathfrak{C}/M)).

Definition

We say that *E* is smooth if E^M is smooth for some (every) countable model *M*.

Invariant equivalence relations in model theory Smoothness for BIERs Previous results and the extension Definable group actions

Previous results

Fact (Newelski 2002)

If \equiv_L is not type-definable on X, then $|X/\equiv_L| \ge 2^{\aleph_0}$

Conjecture (Krupiński, Pillay, Solecki 2012)

If T is countable, then \equiv_L on a \emptyset -type-definable set is smooth iff it is type-definable ("closed").

(Type-definable \Rightarrow smooth is easy.)

Fact (Kaplan, Miller, Simon 2013)

The conjecture holds.

Invariant equivalence relations in model theory Smoothness for BIERs Previous results and the extension Definable group actions

Previous results

Fact (Newelski 2002)

If \equiv_L is not type-definable on X, then $|X/\equiv_L| \ge 2^{\aleph_0}$

Conjecture (Krupiński, Pillay, Solecki 2012)

If T is countable, then \equiv_L on a \emptyset -type-definable set is smooth iff it is type-definable ("closed").

(Type-definable \Rightarrow smooth is easy.)

Fact (Kaplan, Miller, Simon 2013)

The conjecture holds.

Invariant equivalence relations in model theory Smoothness for BIERs Previous results and the extension Definable group actions

Previous results

Fact (Newelski 2002)

If \equiv_L is not type-definable on X, then $|X/\equiv_L| \ge 2^{\aleph_0}$

Conjecture (Krupiński, Pillay, Solecki 2012)

If T is countable, then \equiv_L on a \emptyset -type-definable set is smooth iff it is type-definable ("closed").

(Type-definable \Rightarrow smooth is easy.)

Fact (Kaplan, Miller, Simon 2013)

The conjecture holds.

Invariant equivalence relations in model theory Smoothness for BIERs Previous results and the extension Definable group actions

The ultimate result?

Fact (Krupiński, Pillay, Rz. 2015)

If *E* is a BIER on some $[\alpha]_{\equiv}$ (i.e. an Aut(\mathfrak{C})-orbit) and *T* is countable, then *E* is smooth iff it is type-definable.

- This is not true if the domain of E is not a complete type (i.e. Aut(C) does not act transitively on it).
- The reason is the same as in the topological case: essentially, gluing together countably many pieces preserves smoothness, but not type-definability.

Invariant equivalence relations in model theory Smoothness for BIERs Previous results and the extension Definable group actions

The ultimate result?

Fact (Krupiński, Pillay, Rz. 2015)

If *E* is a BIER on some $[\alpha]_{\equiv}$ (i.e. an Aut(\mathfrak{C})-orbit) and *T* is countable, then *E* is smooth iff it is type-definable.

- This is not true if the domain of E is not a complete type (i.e. Aut(C) does not act transitively on it).
- The reason is the same as in the topological case: essentially, gluing together countably many pieces preserves smoothness, but not type-definability.

Invariant equivalence relations in model theory Smoothness for BIERs Previous results and the extension Definable group actions

The ultimate result?

Fact (Krupiński, Pillay, Rz. 2015)

If *E* is a BIER on some $[\alpha]_{\equiv}$ (i.e. an Aut(\mathfrak{C})-orbit) and *T* is countable, then *E* is smooth iff it is type-definable.

- This is not true if the domain of E is not a complete type (i.e. Aut(C) does not act transitively on it).
- The reason is the same as in the topological case: essentially, gluing together countably many pieces preserves smoothness, but not type-definability.

Invariant equivalence relations in model theory Smoothness for BIERs Previous results and the extension Definable group actions

The ultimate result?

Fact (Krupiński, Pillay, Rz. 2015)

If *E* is a BIER on some $[\alpha]_{\equiv}$ (i.e. an Aut(\mathfrak{C})-orbit) and *T* is countable, then *E* is smooth iff it is type-definable.

- The fact does hold more generally, for example, in case of ≡_L on any Ø-type-definable set.
- ≡_L is an orbital equivalence relation w.r.t. G = Aut(𝔅) (and it has a nice "consistent" syntactic description).
- Weak orbitality* is a way to express the "consistency" of the gluing.

Invariant equivalence relations in model theory Smoothness for BIERs Previous results and the extension Definable group actions

The ultimate result?

Fact (Krupiński, Pillay, Rz. 2015)

If *E* is a BIER on some $[\alpha]_{\equiv}$ (i.e. an Aut(\mathfrak{C})-orbit) and *T* is countable, then *E* is smooth iff it is type-definable.

- The fact does hold more generally, for example, in case of ≡_L on any Ø-type-definable set.
- ≡_L is an orbital equivalence relation w.r.t. G = Aut(𝔅) (and it has a nice "consistent" syntactic description).
- Weak orbitality* is a way to express the "consistency" of the gluing.

Invariant equivalence relations in model theory Smoothness for BIERs Previous results and the extension Definable group actions

The ultimate result?

Fact (Krupiński, Pillay, Rz. 2015)

If *E* is a BIER on some $[\alpha]_{\equiv}$ (i.e. an Aut(\mathfrak{C})-orbit) and *T* is countable, then *E* is smooth iff it is type-definable.

- The fact does hold more generally, for example, in case of ≡_L on any Ø-type-definable set.
- \equiv_L is an orbital equivalence relation w.r.t. $G = Aut(\mathfrak{C})$ (and it has a nice "consistent" syntactic description).
- Weak orbitality* is a way to express the "consistency" of the gluing.

Invariant equivalence relations in model theory Smoothness for BIERs Previous results and the extension Definable group actions

The ultimate result?

Fact (Krupiński, Pillay, Rz. 2015)

If *E* is a BIER on some $[\alpha]_{\equiv}$ (i.e. an Aut(\mathfrak{C})-orbit) and *T* is countable, then *E* is smooth iff it is type-definable.

- The fact does hold more generally, for example, in case of ≡_L on any Ø-type-definable set.
- \equiv_L is an orbital equivalence relation w.r.t. $G = Aut(\mathfrak{C})$ (and it has a nice "consistent" syntactic description).
- Weak orbitality* is a way to express the "consistency" of the gluing.

Invariant equivalence relations in model theory Smoothness for BIERs Previous results and the extension Definable group actions

Theorem

Suppose *E* is a BIER (on a \emptyset -type-definable set), weakly orbital^{*} with respect to $G = Aut(\mathfrak{C})$, while *T* is countable. Then TFAE:

- E is type-definable,
- all E-classes are type-definable,
- E is smooth.

Idea of the proof.

Such *E* can be seen as a "regular pushforward" of an equivalence relation on Gal(T), which allows us to reduce to the case of transitive Aut(\mathfrak{C})-actions, which is the content of the preceding fact.

Invariant equivalence relations in model theory Smoothness for BIERs Previous results and the extension Definable group actions

Theorem

Suppose *E* is a BIER (on a \emptyset -type-definable set), weakly orbital^{*} with respect to $G = Aut(\mathfrak{C})$, while *T* is countable. Then TFAE:

- E is type-definable,
- all E-classes are type-definable,
- E is smooth.

Idea of the proof.

Such *E* can be seen as a "regular pushforward" of an equivalence relation on Gal(T), which allows us to reduce to the case of transitive $Aut(\mathfrak{C})$ -actions, which is the content of the preceding fact.

Invariant equivalence relations in model theory Smoothness for BIERs Previous results and the extension Definable group actions

(Type-)definable group actions

If *G* and *X* are \emptyset -type-definable, as is the group action, while all *E*-classes are (setwise) G_{\emptyset}^{000} -invariant, we can prove a similar result by essentially the same methods. (Note: G_{\emptyset}^{000} is the so-called connected component of *G*.)

Theorem

Suppose G, X, E are as above, and E is weakly orbital^{*}. Then E is type-definable iff all its classes are type-definable.

Invariant equivalence relations in model theory Smoothness for BIERs Previous results and the extension Definable group actions

(Type-)definable group actions

If *G* and *X* are \emptyset -type-definable, as is the group action, while all *E*-classes are (setwise) G_{\emptyset}^{000} -invariant, we can prove a similar result by essentially the same methods. (Note: G_{\emptyset}^{000} is the so-called connected component of *G*.)

Theorem

Suppose G, X, E are as above, and E is weakly orbital^{*}. Then E is type-definable iff all its classes are type-definable.

Invariant equivalence relations in model theory Smoothness for BIERs Previous results and the extension Definable group actions

Definable group actions and smoothness

Fact (Krupiński, Pillay, Rz. 2015)

Suppose G is \emptyset -definable, T is countable, and $H \leq G$ is invariant of bounded index. Then E_H is smooth iff H is type-definable.

(Note that *H* is invariant of bounded index iff E_H is a BIER.)

Corollary

Suppose that T is countable, G and X are \emptyset -definable, as is the action. If E is a weakly orbital^{*}, G-invariant BIER on X, then E is smooth iff it is type-definable.

Invariant equivalence relations in model theory Smoothness for BIERs Previous results and the extension Definable group actions

Definable group actions and smoothness

Fact (Krupiński, Pillay, Rz. 2015)

Suppose G is \emptyset -definable, T is countable, and $H \leq G$ is invariant of bounded index. Then E_H is smooth iff H is type-definable.

(Note that H is invariant of bounded index iff E_H is a BIER.)

Corollary

Suppose that T is countable, G and X are \emptyset -definable, as is the action. If E is a weakly orbital^{*}, G-invariant BIER on X, then E is smooth iff it is type-definable.