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Motivations

General goal: understanding “strong type spaces”.
A theorem of Newelski (2002) about Fσ equivalence
relations (cardinality).
A theorem of Kaplan, Miller and Simon (2013) about Borel
cardinality of Lascar strong type (Borel cardinality).
A question of Gismatullin and Krupiński (2012) related to
connected group components.
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Borel reductions

Definition
Suppose X ,Y are Polish
spaces and E ,F are Borel
equivalence relations on X ,Y .
Then f : X → Y is a Borel
reduction of E to F if

f (x) F f (x ′) ⇐⇒ x E x ′
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Borel cardinalities

1= (1)
(2)

(N)

(3)

(R)
E0

(n)

smooth

Definition
E ≤B F if there exists a Borel

reduction of E to F .
E ∼B F if E ≤B F and F ≤B E ; E

is smooth if E ∼B ∆(X ).

Fact
There is a smallest non-smooth
equivalence relation, E0.
≤B is linear up to E0.
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Strong types

≡ ≡KP ≡L

Definition
≡KP is the finest bounded (i.e. with small

number of classes), ∅-type-definable
equivalence relation.

≡L is the finest bounded, invariant
equivalence relation.

Fact
≡L is (∅−)Fσ, i.e. x ≡L y ⇐⇒

∨
n Φn(x , y).

In the sequel, E is a bounded, Fσ equivalence
relation on a ∅-type-definable set X ⊆ C
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Borel cardinalities of invariant equivalence relations

SX(M)
EM

S(M)

X
E

Definition
Borel cardinality of E is the Borel
cardinality of EM for a ctble model M.

p EM q ⇐⇒ ∃a |= p ∃b |= q (a E b)

Remark
Type-definable ERs (e.g. ≡KP) are
smooth.
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Orbital equivalence relations

Definition
As before, E is an Fσ, bounded equivalence relation on X ⊆ C.
E is orbital if there is some Γ ≤ Aut(C) such that E-classes

are orbits of Γ.
E is orbital on types if it refines ≡ and restrictions of E to types

are orbital.

Example
≡KP and ≡L are orbital.
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Orbital on types vs refining ≡

Question
If E refines ≡, is E already orbital on types?

Answer
No! (We have found counterexamples.)
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Normal form

Definition
If E is Fσ on X , then

∨
n Φn(x , y) is a normal form for E if

it is increasing (i.e. Φn ` Φn+1),
E(x , y) ⇐⇒

∨
n Φn(x , y),

d(x , y) = min{n | C |= Φn(x , y)} is a metric on X .

Example

≡L is has normal form Φn(x , y) = “dL(x , y) ≤ n” (Lascar
distance).
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Normal forms exist

Proposition

If E is bounded Fσ, then E has a normal form
∨

n Φn such that
“dL(x , y) ≤ n” ` Φn(x , y).

Proposition
C: an E-class; assume that E refines ≡. TFAE:

C has infinite diameter w.r.t. some normal form;
C has infinite diameter w.r.t. every normal form.

Proof.
Easy from a theorem of Newelski.
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Technical theorem

Fact (Newelski 2002, simplified)
E: Fσ, refines ≡.
Then if [a]E has infinite diameter, then E�[a]≡ has at least c
classes.

Fact (Kaplan, Miller & Simon 2013)

The class [a]≡L has infinite diameter (w.r.t. Lascar distance) iff
≡L�[a]≡ is non-smooth.

Theorem (countable case; independently Kaplan & Miller 2013)
E: is bdd, Fσ and orbital on types.
Then [a]E has infinite diameter ⇐⇒ E�[a]≡ is non-smooth.
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Technical theorem cont.

Corollary (countable case for groups)

G: definable and N EG: Fσ of bounded index.
Then N is ∅-type-definable ⇐⇒ EN is smooth.

Remark
Similar result in uncountable case, more complicated
techniques.
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Five conditions theorem

Theorem
E: orbital on types, Fσ, bdd. ER on X:

Bounded diameters
⇓

⇑ if X = p(C)


Type-definable

⇓
Smooth⇔ finite diameters


⇑ if E ⊆ ≡KP

⇓
E is refined by ≡KP
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Additional comments

Proposition
Reverse (⇑) implications do not hold.

Proof.
Series of counterexamples.

Question
Can we weaken “orbital on types” assumption?

Answer (partial)
Not too much: E must at least refine ≡.
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1

3|(x- )

E
1

p0

≡
Example

T = Th(Z,+,n|·)n∈N;
p0(x) = tp(1/∅) =

∧
n n 6 |x

x E y ⇐⇒ x ≡ y and if x |= p0,
then 3|(x − y).

E :
is smooth, but not type-definable,
is orbital on types (so theorem
applies).
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...

...

...

...

Example

T = Th(R,+, ·,1,0, <);
Φn(x , y) =

∧
m≥n(x < m↔ y < m);

E =
∨

n Φn(x , y)

E has only 2 classes (so it is smooth),
although one class has infinite diameter
(and E is not type-definable).
E does not refine ≡ (theorem does not
apply).
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Connected components

Definition
G: (∅-) definable group in C.

G00 : the smallest type-definable subgroup of bounded
index;

G000 : the smallest invariant subgroup of bounded
index.

Question

Are there definable groups such that G00 6= G000?

Answer (Pillay & Conversano 2012)

Yes! (S̃L2(R)
∗
)
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Connected components: meta-example

Theorem (Gismatullin, Krupiński 2012)

0→ A→ G̃ π→ G→ 0

A,G: definable groups (A abelian),

G̃ = A×G: definable group in terms of 2-cocyle h : G2 → A.
Under some technical assumptions and assumption †
(concerning non-splitting of a cocycle derived from h), we have

G̃00 6= G̃000.
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Main theorem for definable group extensions

Theorem
Suppose we have:

H̃ E G̃: Fσ normal subgroup;
H̃ ∩ A and π[H̃]: type-definable;
(technical assumptions).

Then H̃ is type-definable.

Proof.
Using the technical theorem and a certain topology (weaker
than Vietoris) on subsets of A/(A ∩ H̃).
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Corollary

Question (Gismatullin & Krupiński 2012)

In the meta-example, if G00 = G000, does G̃000 6= G̃00 imply
assumption †?

Corollary (with some natural assumptions)
Yes!
Moreover, if G00 = G000, then

G̃00/G̃000 ∼= K/D

where K is a compact group and D is finitely generated dense.

Tomasz Rzepecki Smoothness of bounded invariant equivalence relations



Basics
Tools

Results

Five conditions theorem
Definable group extensions & connected components

Corollary

Question (Gismatullin & Krupiński 2012)
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Appendix
Infinite diameter
Not orbital on types

Infinite diameter is independent of n.f. (usually)

Example

T = Th(R,+, ·,0,1),
E – total relation,
Φn(x , y) =

∨
n
∧

m≥n(x = m↔ y = m) is a normal form for
E ,
E has only one class, which has infinite diameter w.r.t.∨

n Φn;
the only class clearly has diameter 1 with respect to trivial
normal form Φ′n(x , y) = >
E does not refine ≡.
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Appendix
Infinite diameter
Not orbital on types

Example

G = 〈(1,2)(3,5)(4,6), (1,3,6)(2,4,5)〉
= {(), (1,2)(3,5)(4,6), (1,3,6)(2,4,5),

(1,4)(2,3)(5,6), (1,5)(2,6)(3,4), (1,6,3)(2,5,4)}

1 ∼ 2, 3 ∼ 4, 5 ∼ 6 (and no other nontrivial relations)
M: (finite) structure such that G is the automorphism group
and ∼ is definable.
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