Smoothness of bounded invariant equivalence relations

Tomasz Rzepecki (joint work with Krzysztof Krupiński)

Uniwersytet Wrocławski

Classification Theory Workshop, 2014

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ ■ ● ● ●

Motivations Abstract Borel equivalence relations Classical strong types and Borel cardinalities

Motivations

• General goal: understanding "strong type spaces".

- A theorem of Newelski (2002) about F_σ equivalence relations (cardinality).
- A theorem of Kaplan, Miller and Simon (2013) about Borel cardinality of Lascar strong type (Borel cardinality).
- A question of Gismatullin and Krupiński (2012) related to connected group components.

Motivations Abstract Borel equivalence relations Classical strong types and Borel cardinalities

Motivations

- General goal: understanding "strong type spaces".
- A theorem of Newelski (2002) about *F_σ* equivalence relations (cardinality).
- A theorem of Kaplan, Miller and Simon (2013) about Borel cardinality of Lascar strong type (Borel cardinality).
- A question of Gismatullin and Krupiński (2012) related to connected group components.

Motivations

- General goal: understanding "strong type spaces".
- A theorem of Newelski (2002) about *F_σ* equivalence relations (cardinality).
- A theorem of Kaplan, Miller and Simon (2013) about Borel cardinality of Lascar strong type (Borel cardinality).
- A question of Gismatullin and Krupiński (2012) related to connected group components.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Motivations

- General goal: understanding "strong type spaces".
- A theorem of Newelski (2002) about *F_σ* equivalence relations (cardinality).
- A theorem of Kaplan, Miller and Simon (2013) about Borel cardinality of Lascar strong type (Borel cardinality).
- A question of Gismatullin and Krupiński (2012) related to connected group components.

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Motivations Abstract Borel equivalence relations Classical strong types and Borel cardinalities

Borel reductions

Definition

Suppose *X*, *Y* are Polish spaces and *E*, *F* are Borel equivalence relations on *X*, *Y*. Then $f: X \rightarrow Y$ is a Borel reduction of *E* to *F* if

$$f(x) \mathrel{F} f(x') \iff x \mathrel{E} x'$$

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Motivations Abstract Borel equivalence relations Classical strong types and Borel cardinalities

Borel cardinalities

Definition

- $E \leq_B F$ if there exists a Borel reduction of *E* to *F*.
- $E \sim_B F$ if $E \leq_B F$ and $F \leq_B E$; E is smooth if $E \sim_B \Delta(X)$.

Fact

• There is a smallest non-smooth equivalence relation, **E**₀.

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

• \leq_B is linear up to **E**₀.

Motivations Abstract Borel equivalence relations Classical strong types and Borel cardinalities

Borel cardinalities

Definition

 $E \leq_B F$ if there exists a Borel reduction of *E* to *F*.

$$E \sim_B F$$
 if $E \leq_B F$ and $F \leq_B E$; E is smooth if $E \sim_B \Delta(X)$.

Fact

• There is a smallest non-smooth equivalence relation, **E**₀.

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨト 三日 のへの

• \leq_B is linear up to **E**₀.

Motivations Abstract Borel equivalence relations Classical strong types and Borel cardinalities

Strong types

Ξ		1		K	P)	=	L
				I				
				╀				
				t				

Definition

- ≡_{KP} is the finest bounded (i.e. with small number of classes), Ø-type-definable equivalence relation.
 - \equiv_L is the finest bounded, invariant equivalence relation.

Fact

 $\equiv_L is (\emptyset -)F_{\sigma}, i.e. \ x \equiv_L y \iff \bigvee_n \Phi_n(x, y).$

In the sequel, *E* is a bounded, F_{σ} equivalence relation on a \emptyset -type-definable set $X \subseteq \mathfrak{C}$

Motivations Abstract Borel equivalence relations Classical strong types and Borel cardinalities

Strong types

Ξ	•	1	=	K	P)	=	L
				I				
				╀				
				t				

Definition

- ≡_{KP} is the finest bounded (i.e. with small number of classes), Ø-type-definable equivalence relation.
 - \equiv_L is the finest bounded, invariant equivalence relation.

Fact

$$\equiv_L is (\emptyset -)F_{\sigma}, i.e. \ x \equiv_L y \iff \bigvee_n \Phi_n(x, y).$$

In the sequel, *E* is a bounded, F_{σ} equivalence relation on a \emptyset -type-definable set $X \subseteq \mathfrak{C}$

Motivations Abstract Borel equivalence relations Classical strong types and Borel cardinalities

Strong types

\equiv $\equiv KP \equiv L$							
	╉		Н				Н
	T						
	T	Ш					
	T	Ш					
	T	Ш					
	-						Ч

Definition

- ≡_{KP} is the finest bounded (i.e. with small number of classes), Ø-type-definable equivalence relation.
 - \equiv_L is the finest bounded, invariant equivalence relation.

Fact

$$\equiv_L is (\emptyset -)F_{\sigma}, i.e. \ x \equiv_L y \iff \bigvee_n \Phi_n(x, y).$$

In the sequel, *E* is a bounded, F_{σ} equivalence relation on a \emptyset -type-definable set $X \subseteq \mathfrak{C}$

Motivations Abstract Borel equivalence relations Classical strong types and Borel cardinalities

Borel cardinalities of invariant equivalence relations

Definition

Borel cardinality of E is the Borel cardinality of E^M for a ctble model M.

$$p E^M q \iff \exists a \models p \exists b \models q (a E b)$$

Remark

Type-definable ERs (e.g. \equiv_{KP}) are smooth.

Motivations Abstract Borel equivalence relations Classical strong types and Borel cardinalities

Borel cardinalities of invariant equivalence relations

Definition

Borel cardinality of E is the Borel cardinality of E^M for a ctble model M.

$$p E^M q \iff \exists a \models p \exists b \models q (a E b)$$

Remark

Type-definable ERs (e.g. \equiv_{KP}) are smooth.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Orbital equivalence relations Normal forms Technical theorem

Orbital equivalence relations

Definition

As before, *E* is an F_{σ} , bounded equivalence relation on $X \subseteq \mathfrak{C}$.

E is orbital if there is some $\Gamma \leq Aut(\mathfrak{C})$ such that *E*-classes are orbits of Γ .

E is orbital on types if it refines \equiv and restrictions of *E* to types are orbital.

Example

\equiv_{KP} and \equiv_L are orbital.

Orbital equivalence relations Normal forms Technical theorem

Orbital equivalence relations

Definition

As before, *E* is an F_{σ} , bounded equivalence relation on $X \subseteq \mathfrak{C}$.

E is orbital if there is some $\Gamma \leq Aut(\mathfrak{C})$ such that *E*-classes are orbits of Γ .

E is orbital on types if it refines \equiv and restrictions of *E* to types are orbital.

Example

 \equiv_{KP} and \equiv_L are orbital.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Orbital equivalence relations Normal forms Technical theorem

Orbital on types vs refining \equiv

Question

If E refines \equiv , is E already orbital on types?

Answer

No! (We have found counterexamples.)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Orbital equivalence relations Normal forms Technical theorem

Normal form

Definition

If *E* is F_{σ} on *X*, then $\bigvee_{n} \Phi_{n}(x, y)$ is a normal form for *E* if

- it is increasing (i.e. $\Phi_n \vdash \Phi_{n+1}$),
- $E(x,y) \iff \bigvee_n \Phi_n(x,y),$
- $d(x, y) = \min\{n \mid \mathfrak{C} \models \Phi_n(x, y)\}$ is a metric on *X*.

Example

 \equiv_L is has normal form $\Phi_n(x, y) = "d_L(x, y) \le n"$ (Lascar distance).

Orbital equivalence relations Normal forms Technical theorem

Normal form

Definition

If *E* is F_{σ} on *X*, then $\bigvee_{n} \Phi_{n}(x, y)$ is a normal form for *E* if

• it is increasing (i.e. $\Phi_n \vdash \Phi_{n+1}$),

•
$$E(x,y) \iff \bigvee_n \Phi_n(x,y),$$

• $d(x, y) = \min\{n \mid \mathfrak{C} \models \Phi_n(x, y)\}$ is a metric on *X*.

Example

 \equiv_L is has normal form $\Phi_n(x, y) = "d_L(x, y) \le n"$ (Lascar distance).

◆□ > ◆□ > ◆三 > ◆三 > 三日 のへで

Orbital equivalence relations Normal forms Technical theorem

Normal form

Definition

If *E* is F_{σ} on *X*, then $\bigvee_{n} \Phi_{n}(x, y)$ is a normal form for *E* if

• it is increasing (i.e. $\Phi_n \vdash \Phi_{n+1}$),

•
$$E(x,y) \iff \bigvee_n \Phi_n(x,y),$$

• $d(x, y) = \min\{n \mid \mathfrak{C} \models \Phi_n(x, y)\}$ is a metric on X.

Example

 \equiv_L is has normal form $\Phi_n(x, y) = "d_L(x, y) \le n"$ (Lascar distance).

Orbital equivalence relations Normal forms Technical theorem

Normal form

Definition

If *E* is F_{σ} on *X*, then $\bigvee_{n} \Phi_{n}(x, y)$ is a normal form for *E* if

• it is increasing (i.e. $\Phi_n \vdash \Phi_{n+1}$),

•
$$E(x,y) \iff \bigvee_n \Phi_n(x,y),$$

• $d(x, y) = \min\{n \mid \mathfrak{C} \models \Phi_n(x, y)\}$ is a metric on X.

Example

 \equiv_L is has normal form $\Phi_n(x, y) = "d_L(x, y) \le n"$ (Lascar distance).

Orbital equivalence relations Normal forms Technical theorem

Normal forms exist

Proposition

If *E* is bounded F_{σ} , then *E* has a normal form $\bigvee_{n} \Phi_{n}$ such that " $d_{L}(x, y) \leq n$ " $\vdash \Phi_{n}(x, y)$.

Proposition

C: an E-class; assume that E refines \equiv . TFAE:

- C has infinite diameter w.r.t. some normal form;
- C has infinite diameter w.r.t. every normal form.

Proof.

Easy from a theorem of Newelski.

Orbital equivalence relations Normal forms Technical theorem

Normal forms exist

Proposition

If *E* is bounded F_{σ} , then *E* has a normal form $\bigvee_{n} \Phi_{n}$ such that " $d_{L}(x, y) \leq n$ " $\vdash \Phi_{n}(x, y)$.

Proposition

C: an E-class; assume that E refines \equiv . TFAE:

- C has infinite diameter w.r.t. some normal form;
- C has infinite diameter w.r.t. every normal form.

Proof.

Easy from a theorem of Newelski.

Orbital equivalence relations Normal forms Technical theorem

Normal forms exist

Proposition

If *E* is bounded F_{σ} , then *E* has a normal form $\bigvee_{n} \Phi_{n}$ such that " $d_{L}(x, y) \leq n$ " $\vdash \Phi_{n}(x, y)$.

Proposition

C: an E-class; assume that E refines \equiv . TFAE:

- C has infinite diameter w.r.t. some normal form;
- C has infinite diameter w.r.t. every normal form.

Proof.

Easy from a theorem of Newelski.

 Basics
 Orbital equivalence relation

 Tools
 Normal forms

 Results
 Technical theorem

Technical theorem

Fact (Newelski 2002, simplified)

E: F_{σ} , refines \equiv . Then if $[a]_E$ has infinite diameter, then $E \upharpoonright_{[a]_{\equiv}}$ has at least c classes.

Fact (Kaplan, Miller & Simon 2013)

The class $[a]_{\equiv_L}$ has infinite diameter (w.r.t. Lascar distance) iff $\equiv_L |_{[a]_{\equiv}}$ is non-smooth.

Theorem (countable case; independently Kaplan & Miller 2013)

E: is bdd, F_{σ} and orbital on types. Then $[a]_{E}$ has infinite diameter $\iff E \upharpoonright_{[a]_{E}}$ is non-smooth.

 Basics
 Orbital equivalence relation

 Tools
 Normal forms

 Results
 Technical theorem

Technical theorem

Fact (Newelski 2002, simplified)

E: F_{σ} , refines \equiv . Then if $[a]_E$ has infinite diameter, then $E \upharpoonright_{[a]_{\equiv}}$ has at least c classes.

Fact (Kaplan, Miller & Simon 2013)

The class $[a]_{\equiv_L}$ has infinite diameter (w.r.t. Lascar distance) iff $\equiv_L |_{[a]_{\equiv}}$ is non-smooth.

Theorem (countable case; independently Kaplan & Miller 2013) *E*: is bdd, F_{σ} and orbital on types. Then $[a]_E$ has infinite diameter $\iff E \upharpoonright_{[a]_{\equiv}}$ is non-smooth.
 Basics
 Orbital equivalence relation

 Tools
 Normal forms

 Results
 Technical theorem

Technical theorem

Fact (Newelski 2002, simplified)

E: F_{σ} , refines \equiv . Then if $[a]_E$ has infinite diameter, then $E_{[a]_{\equiv}}$ has at least c classes.

Fact (Kaplan, Miller & Simon 2013)

The class $[a]_{\equiv_L}$ has infinite diameter (w.r.t. Lascar distance) iff $\equiv_L |_{[a]_{\equiv}}$ is non-smooth.

Theorem (countable case; independently Kaplan & Miller 2013)

E: is bdd, F_{σ} and orbital on types. Then [a]_{*E*} has infinite diameter $\iff E \upharpoonright_{[a]_{=}}$ is non-smooth.

◆□ > ◆□ > ◆豆 > ◆豆 > 三日 のへで

Orbital equivalence relations Normal forms Technical theorem

Technical theorem cont.

Corollary (countable case for groups)

G: definable and $N \leq G$: F_{σ} of bounded index. Then N is \emptyset -type-definable $\iff E_N$ is smooth.

Remark

Similar result in uncountable case, more complicated techniques.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Orbital equivalence relations Normal forms Technical theorem

Technical theorem cont.

Corollary (countable case for groups)

G: definable and $N \leq G$: F_{σ} of bounded index. Then N is \emptyset -type-definable $\iff E_N$ is smooth.

Remark

Similar result in uncountable case, more complicated techniques.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Five conditions theorem Definable group extensions & connected components

Five conditions theorem

Theorem

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨト 三日 のへの

Five conditions theorem Definable group extensions & connected components

Five conditions theorem

Theorem

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Five conditions theorem Definable group extensions & connected components

Five conditions theorem

Theorem

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Five conditions theorem Definable group extensions & connected components

Additional comments

Proposition

Reverse (\u00ac) implications do not hold.

Proof.

Series of counterexamples.

Question

Can we weaken "orbital on types" assumption?

Answer (partial)

Not too much: E must at least refine \equiv .

Five conditions theorem Definable group extensions & connected components

Additional comments

Proposition

Reverse (\u00ac) implications do not hold.

Proof.

Series of counterexamples.

Question

Can we weaken "orbital on types" assumption?

Answer (partial)

Not too much: E must at least refine \equiv .

Five conditions theorem Definable group extensions & connected components

Additional comments

Proposition

Reverse (\u00ac) implications do not hold.

Proof.

Series of counterexamples.

Question

Can we weaken "orbital on types" assumption?

Answer (partial)

Not too much: E must at least refine \equiv .

Five conditions theorem Definable group extensions & connected components

Examples

Example

- $T = \text{Th}(\mathbf{Z}, +, n|\cdot)_{n \in \mathbf{N}};$
- $p_0(x) = \operatorname{tp}(1/\emptyset) = \bigwedge_n n \not| x$
- $x E y \iff x \equiv y$ and if $x \models p_0$, then 3|(x - y).
- is smooth, but not type-definable,

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

is orbital on types (so theorem applies).

Five conditions theorem Definable group extensions & connected components

Examples

Example

- $T = \text{Th}(\mathbf{Z}, +, n|\cdot)_{n \in \mathbf{N}};$
- $p_0(x) = \operatorname{tp}(1/\emptyset) = \bigwedge_n n \not| x$
- $x E y \iff x \equiv y$ and if $x \models p_0$, then 3|(x - y).
- is smooth, but not type-definable,

・ロト (周) (E) (E) (E) (E)

is orbital on types (so theorem applies).

Five conditions theorem Definable group extensions & connected components

Examples

Example

- $T = \text{Th}(\mathbf{Z}, +, n|\cdot)_{n \in \mathbf{N}};$
- $p_0(x) = \operatorname{tp}(1/\emptyset) = \bigwedge_n n / x$
- $x E y \iff x \equiv y$ and if $x \models p_0$, then 3|(x - y).
- is smooth, but not type-definable,
 is orbital on types (so theorem applies).

Five conditions theorem Definable group extensions & connected components

Examples

Example

- $T = \text{Th}(\mathbf{Z}, +, n|\cdot)_{n \in \mathbf{N}};$
- $p_0(x) = \operatorname{tp}(1/\emptyset) = \bigwedge_n n / x$
- $x E y \iff x \equiv y$ and if $x \models p_0$, then 3|(x - y).
- *E*:
 - is smooth, but not type-definable,

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

• is orbital on types (so theorem applies).

Five conditions theorem Definable group extensions & connected components

Examples

Example

- $T = \text{Th}(\mathbf{Z}, +, n|\cdot)_{n \in \mathbf{N}};$
- $p_0(x) = \operatorname{tp}(1/\emptyset) = \bigwedge_n n / x$
- $x E y \iff x \equiv y$ and if $x \models p_0$, then 3|(x - y).
- *E*:
 - is smooth, but not type-definable,

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

• is orbital on types (so theorem applies).

Five conditions theorem Definable group extensions & connected components

Examples

Example

- $T = Th(\mathbf{R}, +, \cdot, 1, 0, <);$
- Φ_n(x, y) = ∧_{m≥n}(x < m ↔ y < m);
 E = ∨_nΦ_n(x, y)

E has only 2 classes (so it is smooth), although one class has infinite diameter (and *E* is not type-definable). *E* does not refine \equiv (theorem does not apply).

Five conditions theorem Definable group extensions & connected components

Examples

Example

- $T = Th(\mathbf{R}, +, \cdot, 1, 0, <);$
- $\Phi_n(x,y) = \bigwedge_{m \ge n} (x < m \leftrightarrow y < m);$

•
$$E = \bigvee_n \Phi_n(x, y)$$

E has only 2 classes (so it is smooth), although one class has infinite diameter (and *E* is not type-definable). *E* does not refine \equiv (theorem does not apply).

Five conditions theorem Definable group extensions & connected components

Examples

Example

- $T = Th(\mathbf{R}, +, \cdot, 1, 0, <);$
- $\Phi_n(x, y) = \bigwedge_{m \ge n} (x < m \leftrightarrow y < m);$ • $E = \bigvee_n \Phi_n(x, y)$

E has only 2 classes (so it is smooth), although one class has infinite diameter (and *E* is not type-definable). *E* does not refine \equiv (theorem does not apply).

Five conditions theorem Definable group extensions & connected components

Examples

Example

- $T = Th(\mathbf{R}, +, \cdot, 1, 0, <);$
- $\Phi_n(x, y) = \bigwedge_{m \ge n} (x < m \leftrightarrow y < m);$

•
$$E = \bigvee_n \Phi_n(x, y)$$

E has only 2 classes (so it is smooth), although one class has infinite diameter (and E is not type-definable).

E does not refine \equiv (theorem does not apply).

Five conditions theorem Definable group extensions & connected components

Examples

Example

- $T = Th(\mathbf{R}, +, \cdot, 1, 0, <);$
- $\Phi_n(x, y) = \bigwedge_{m \ge n} (x < m \leftrightarrow y < m);$

•
$$E = \bigvee_n \Phi_n(x, y)$$

E has only 2 classes (so it is smooth), although one class has infinite diameter (and *E* is not type-definable). *E* does not refine \equiv (theorem does not apply).

Five conditions theorem Definable group extensions & connected components

Connected components

Definition

- *G*: (\emptyset -) definable group in \mathfrak{C} .
 - *G*⁰⁰ : the smallest type-definable subgroup of bounded index;
 - *G*⁰⁰⁰ : the smallest invariant subgroup of bounded index.

Question

Are there definable groups such that $G^{00} \neq G^{000}$?

Answer (Pillay & Conversano 2012)

Yes! $(\widetilde{SL_2(\mathbf{R})}^*)$

> ロックロック・マック・マック・ロークの

Five conditions theorem Definable group extensions & connected components

Connected components

Definition

- *G*: (\emptyset -) definable group in \mathfrak{C} .
 - *G*⁰⁰ : the smallest type-definable subgroup of bounded index;
 - *G*⁰⁰⁰ : the smallest invariant subgroup of bounded index.

Question

Are there definable groups such that $G^{00} \neq G^{000}$?

Answer (Pillay & Conversano 2012)

Yes! $(\widetilde{SL_2(\mathbf{R})}^*)$

1471077127127 EI= 990

Five conditions theorem Definable group extensions & connected components

Connected components

Definition

- *G*: (\emptyset -) definable group in \mathfrak{C} .
 - *G*⁰⁰ : the smallest type-definable subgroup of bounded index;
 - *G*⁰⁰⁰ : the smallest invariant subgroup of bounded index.

Question

Are there definable groups such that $G^{00} \neq G^{000}$?

Answer (Pillay & Conversano 2012)

Yes! $(\widetilde{SL_2(\mathbf{R})}^*)$

Five conditions theorem Definable group extensions & connected components

Connected components: meta-example

Theorem (Gismatullin, Krupiński 2012)

 $0 \to {\pmb{A}} \to {\widetilde{\pmb{G}}} \xrightarrow{\pi} {\pmb{G}} \to 0$

A, G: definable groups (A abelian),

 $\widetilde{G} = A \times G$: definable group in terms of 2-cocyle h: $G^2 \to A$. Under some technical assumptions and assumption † (concerning non-splitting of a cocycle derived from h), we have

 $\widetilde{G}^{00}
eq \widetilde{G}^{000}$.

Five conditions theorem Definable group extensions & connected components

Connected components: meta-example

Theorem (Gismatullin, Krupiński 2012)

 $\mathbf{0} \to \mathbf{A} \to \widetilde{\mathbf{G}} \stackrel{\pi}{\to} \mathbf{G} \to \mathbf{0}$

A, G: definable groups (A abelian), $\widetilde{G} = A \times G$: definable group in terms of 2-cocyle h: $G^2 \to A$. Under some technical assumptions and assumption † (concerning non-splitting of a cocycle derived from h), we have

 $\widetilde{m{G}}^{00}
eq \widetilde{m{G}}^{000}.$

Five conditions theorem Definable group extensions & connected components

Connected components: meta-example

Theorem (Gismatullin, Krupiński 2012)

 $\mathbf{0} \to \mathbf{A} \to \widetilde{\mathbf{G}} \stackrel{\pi}{\to} \mathbf{G} \to \mathbf{0}$

A, G: definable groups (A abelian), $\widetilde{G} = A \times G$: definable group in terms of 2-cocyle h: $G^2 \to A$. Under some technical assumptions and assumption † (concerning non-splitting of a cocycle derived from h), we have

 $\widetilde{G}^{00}
eq \widetilde{G}^{000}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Five conditions theorem Definable group extensions & connected components

Main theorem for definable group extensions

Theorem

Suppose we have:

- $\widetilde{H} \trianglelefteq \widetilde{G}$: F_{σ} normal subgroup;
- $\widetilde{H} \cap A$ and $\pi[\widetilde{H}]$: type-definable;
- (technical assumptions).

Then \widetilde{H} is type-definable.

Proof.

Using the technical theorem and a certain topology (weaker than Vietoris) on subsets of $A/(A \cap \tilde{H})$.

Five conditions theorem Definable group extensions & connected components

Main theorem for definable group extensions

Theorem

Suppose we have:

- $\widetilde{H} \trianglelefteq \widetilde{G}$: F_{σ} normal subgroup;
- $\widetilde{H} \cap A$ and $\pi[\widetilde{H}]$: type-definable;
- (technical assumptions).

Then \widetilde{H} is type-definable.

Proof.

Using the technical theorem and a certain topology (weaker than Vietoris) on subsets of $A/(A \cap \tilde{H})$.

Five conditions theorem Definable group extensions & connected components

Main theorem for definable group extensions

Theorem

Suppose we have:

- $\widetilde{H} \trianglelefteq \widetilde{G}$: F_{σ} normal subgroup;
- $\widetilde{H} \cap A$ and $\pi[\widetilde{H}]$: type-definable;
- (technical assumptions).

Then \widetilde{H} is type-definable.

Proof.

Using the technical theorem and a certain topology (weaker than Vietoris) on subsets of $A/(A \cap \tilde{H})$.

Five conditions theorem Definable group extensions & connected components

Main theorem for definable group extensions

Theorem

Suppose we have:

- $\widetilde{H} \trianglelefteq \widetilde{G}$: F_{σ} normal subgroup;
- $\widetilde{H} \cap A$ and $\pi[\widetilde{H}]$: type-definable;
- (technical assumptions).

Then \widetilde{H} is type-definable.

Proof.

Using the technical theorem and a certain topology (weaker than Vietoris) on subsets of $A/(A \cap \tilde{H})$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Five conditions theorem Definable group extensions & connected components

Main theorem for definable group extensions

Theorem

Suppose we have:

- $\widetilde{H} \trianglelefteq \widetilde{G}$: F_{σ} normal subgroup;
- $\widetilde{H} \cap A$ and $\pi[\widetilde{H}]$: type-definable;
- (technical assumptions).

Then \widetilde{H} is type-definable.

Proof.

Using the technical theorem and a certain topology (weaker than Vietoris) on subsets of $A/(A \cap \tilde{H})$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Five conditions theorem Definable group extensions & connected components

Corollary

Question (Gismatullin & Krupiński 2012)

In the meta-example, if $G^{00} = G^{000}$, does $\widetilde{G}^{000} \neq \widetilde{G}^{00}$ imply assumption \dagger ?

Corollary (with some natural assumptions)

Yes! Moreover, if $G^{00} = G^{000}$, then

 $\widetilde{G}^{00}/\widetilde{G}^{000}\cong K/D$

where K is a compact group and D is finitely generated dense.

Five conditions theorem Definable group extensions & connected components

Corollary

Question (Gismatullin & Krupiński 2012)

In the meta-example, if $G^{00} = G^{000}$, does $\widetilde{G}^{000} \neq \widetilde{G}^{00}$ imply assumption \dagger ?

Corollary (with some natural assumptions)

Yes! Moreover, if $G^{00} = G^{000}$, then

$$\widetilde{G}^{00}/\widetilde{G}^{000}\cong {\it K}/{\it D}$$

where K is a compact group and D is finitely generated dense.

Infinite diameter is independent of n.f. (usually)

Example

- $T = \text{Th}(\mathbf{R}, +, \cdot, 0, 1),$
- E total relation,
- $\Phi_n(x, y) = \bigvee_n \bigwedge_{m \ge n} (x = m \leftrightarrow y = m)$ is a normal form for *E*,
- *E* has only one class, which has infinite diameter w.r.t. $\bigvee_n \Phi_n$;
- the only class clearly has diameter 1 with respect to trivial normal form Φ'_n(x, y) = ⊤
- *E* does not refine \equiv .

Infinite diameter Not orbital on types

Example

$$\begin{split} & G = \langle (1,2)(3,5)(4,6), (1,3,6)(2,4,5) \rangle \\ & = \{ (), (1,2)(3,5)(4,6), (1,3,6)(2,4,5), \\ & (1,4)(2,3)(5,6), (1,5)(2,6)(3,4), (1,6,3)(2,5,4) \} \end{split}$$

- 1 \sim 2, 3 \sim 4, 5 \sim 6 (and no other nontrivial relations)
- *M*: (finite) structure such that *G* is the automorphism group and ~ is definable.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □