Topological dynamics and the complexity of strong types II

Tomasz Rzepecki (joint work with Krzysztof Krupiński and Anand Pillay)

Uniwersytet Wrocławski

Oaxaca, July 2015

Tomasz Rzepecki Topological dynamics and the complexity of strong types II

Motivations Ideas

Motivations

- Characterising type-definability (and relative definability) of invariant equivalence relations, in countable and uncountable case.
- In particular, generalising the following fact, as well as previous results of [Krupiński–Rz.] and [Kaplan–Miller].

Fact (Newelski)

If *E* is an F_{σ} equivalence relation on a set $X = p(\mathfrak{C})$ for some $p \in S(\emptyset)$, while $Y \subseteq X$ is type-definable and *E*-saturated, then if $|Y/E| < 2^{\aleph_0}$, then *E* is type-definable.

Motivations Ideas

Motivations

- Characterising type-definability (and relative definability) of invariant equivalence relations, in countable and uncountable case.
- In particular, generalising the following fact, as well as previous results of [Krupiński–Rz.] and [Kaplan–Miller].

Fact (Newelski)

If *E* is an F_{σ} equivalence relation on a set $X = p(\mathfrak{C})$ for some $p \in S(\emptyset)$, while $Y \subseteq X$ is type-definable and *E*-saturated, then if $|Y/E| < 2^{\aleph_0}$, then *E* is type-definable.

Motivations Ideas

General ideas

- Idea: use facts about compact groups to deduce facts about bounded invariant equivalence relations.
- Problem: Galois groups and type spaces are not Hausdorff, in general.
- How to avoid the problem? Using topological dynamics.

Mycielski's theorem Compact groups Souslin operation and Baire sets

Mycielski's theorem

Proposition

Suppose E is a meagre equivalence relation on a compact space X. Then E has at least 2^{\aleph_0} -many classes.

Proof.

- Suppose $E \subseteq \bigcup_{n \in \mathbb{N}} F_n \subseteq X^2$, where F_n are closed nowhere dense and non-decreasing
- We define recursively a family U_s , $s \in 2^{<\omega}$, so that
- The construction is straightforward.
- Picking for each η ∈ 2^ω an arbitrary point in ∩_{n∈ω} U_{η↾n} (which exists by compactness) completes the proof.

Mycielski's theorem Compact groups Souslin operation and Baire sets

Mycielski's theorem

Proposition

Suppose E is a meagre equivalence relation on a compact space X. Then E has at least 2^{\aleph_0} -many classes.

Proof.

- Suppose $E \subseteq \bigcup_{n \in \mathbb{N}} F_n \subseteq X^2$, where F_n are closed nowhere dense and non-decreasing
- We define recursively a family $U_s, s \in 2^{<\omega}$, so that

 $\bigcirc \forall s, \overline{U_{s0}}, \overline{U_{s1}} \subseteq U_s$

- ② if $s \neq t$ and $s, t \in 2^{n+1}$, then $(U_s \times U_t) \cap F_{n+1} = \emptyset$
- The construction is straightforward.
- Picking for each η ∈ 2^ω an arbitrary point in ∩_{n∈ω} U_{η↾n} (which exists by compactness) completes the proof.

Mycielski's theorem Compact groups Souslin operation and Baire sets

Mycielski's theorem

Proposition

Suppose E is a meagre equivalence relation on a compact space X. Then E has at least 2^{\aleph_0} -many classes.

Proof.

- Suppose $E \subseteq \bigcup_{n \in \mathbb{N}} F_n \subseteq X^2$, where F_n are closed nowhere dense and non-decreasing
- We define recursively a family $U_s, s \in 2^{<\omega}$, so that

) if s
eq t and $s,t \in 2^{n+1}$, then $(U_s imes U_t) \cap F_{n+1} = \emptyset$.

- The construction is straightforward.
- Picking for each η ∈ 2^ω an arbitrary point in ∩_{n∈ω} U_{η↾n} (which exists by compactness) completes the proof.

Mycielski's theorem Compact groups Souslin operation and Baire sets

Mycielski's theorem

Proposition

Suppose E is a meagre equivalence relation on a compact space X. Then E has at least 2^{\aleph_0} -many classes.

Proof.

• Suppose $E \subseteq \bigcup_{n \in \mathbb{N}} F_n \subseteq X^2$, where F_n are closed nowhere dense and non-decreasing

• We define recursively a family U_s , $s \in 2^{<\omega}$, so that

$$\bigcirc \forall s, \overline{U_{s0}}, \overline{U_{s1}} \subseteq U_s$$

- 2 if $s \neq t$ and $s, t \in 2^{n+1}$, then $(U_s \times U_t) \cap F_{n+1} = \emptyset$.
- The construction is straightforward.

Picking for each η ∈ 2^ω an arbitrary point in ∩_{n∈ω} U_{η↾n} (which exists by compactness) completes the proof.

Mycielski's theorem Compact groups Souslin operation and Baire sets

Mycielski's theorem

Proposition

Suppose E is a meagre equivalence relation on a compact space X. Then E has at least 2^{\aleph_0} -many classes.

Proof.

• Suppose $E \subseteq \bigcup_{n \in \mathbb{N}} F_n \subseteq X^2$, where F_n are closed nowhere dense and non-decreasing

• We define recursively a family U_s , $s \in 2^{<\omega}$, so that

- 3 if $s \neq t$ and $s, t \in 2^{n+1}$, then $(U_s \times U_t) \cap F_{n+1} = \emptyset$.
- The construction is straightforward.

Picking for each η ∈ 2^ω an arbitrary point in ∩_{n∈ω} U_{η↾n} (which exists by compactness) completes the proof.

Mycielski's theorem Compact groups Souslin operation and Baire sets

Mycielski's theorem

Proposition

Suppose E is a meagre equivalence relation on a compact space X. Then E has at least 2^{\aleph_0} -many classes.

Proof.

• Suppose $E \subseteq \bigcup_{n \in \mathbb{N}} F_n \subseteq X^2$, where F_n are closed nowhere dense and non-decreasing

• We define recursively a family U_s , $s \in 2^{<\omega}$, so that

- 2 if $s \neq t$ and $s, t \in 2^{n+1}$, then $(U_s \times U_t) \cap F_{n+1} = \emptyset$.
- The construction is straightforward.
- Picking for each η ∈ 2^ω an arbitrary point in ∩_{n∈ω} U_{η↾n} (which exists by compactness) completes the proof.

Mycielski's theorem Compact groups Souslin operation and Baire sets

The case of compact groups

Corollary

Suppose H is a meagre subgroup of a compact Hausdorff group G. Then [G : H] is at least 2^{\aleph_0} .

Proof.

- Notice that the map (x, y) → xy⁻¹ is continuous and open, so preimages of meagre sets are meagre.
- In particular, the relation of lying in the same coset of *H* is meagre, and we can apply the proposition.

Mycielski's theorem Compact groups Souslin operation and Baire sets

The case of compact groups

Corollary

Suppose H is a meagre subgroup of a compact Hausdorff group G. Then [G : H] is at least 2^{\aleph_0} .

Proof.

- Notice that the map (x, y) → xy⁻¹ is continuous and open, so preimages of meagre sets are meagre.
- In particular, the relation of lying in the same coset of H is meagre, and we can apply the proposition.

Mycielski's theorem Compact groups Souslin operation and Baire sets

The key corollary

Fact (Piccard-Pettis theorem)

If $A \subseteq G$ is a nonmeagre and Baire (i.e. closed modulo meagre) subset of a [semi]topological group, then AA^{-1} contains a neighbourhood of e.

Corollary (Key corollary)

If G is a compact Hausdorff group and $H \le G$ is Baire and not open, then [G : H] is at least 2^{\aleph_0} (if H is open, [G : H] is finite).

Proof.

By the fact, if *H* is not open, it must be meagre. Then the preceding corollary applies immediately.

Mycielski's theorem Compact groups Souslin operation and Baire sets

The key corollary

Fact (Piccard-Pettis theorem)

If $A \subseteq G$ is a nonmeagre and Baire (i.e. closed modulo meagre) subset of a [semi]topological group, then AA^{-1} contains a neighbourhood of e.

Corollary (Key corollary)

If G is a compact Hausdorff group and $H \leq G$ is Baire and not open, then [G : H] is at least 2^{\aleph_0} (if H is open, [G : H] is finite).

Proof.

By the fact, if *H* is not open, it must be meagre. Then the preceding corollary applies immediately.

Mycielski's theorem Compact groups Souslin operation and Baire sets

Souslin operation

Definition

Suppose $(A_s)_{s \in \omega^{<\omega}}$ is a tree of subsets of a set *X*. Then we define the Souslin operation by

$$\mathcal{A}_{s}\mathcal{A}_{s} = \bigcup_{\eta \in \omega^{\omega}} \bigcap_{n \in \omega} \mathcal{A}_{\eta \restriction n}$$

If A_s are in a fixed class C of subsets of X, we say that A_sA_s is Souslin over C.

Fact

The Souslin operation applied to a family of [strictly] Baire subsets of a topological space (i.e. closed modulo meagre [in every subspace]) is [strictly] Baire (i.e. all sets Souslin over [strictly] Baire sets are themselves [strictly] Baire).

Mycielski's theorem Compact groups Souslin operation and Baire sets

Souslin operation

Definition

Suppose $(A_s)_{s \in \omega^{<\omega}}$ is a tree of subsets of a set *X*. Then we define the Souslin operation by

$$\mathcal{A}_{s}\mathcal{A}_{s} = \bigcup_{\eta \in \omega^{\omega}} \bigcap_{n \in \omega} \mathcal{A}_{\eta \restriction n}$$

If A_s are in a fixed class C of subsets of X, we say that A_sA_s is Souslin over C.

Fact

The Souslin operation applied to a family of [strictly] Baire subsets of a topological space (i.e. closed modulo meagre [in every subspace]) is [strictly] Baire (i.e. all sets Souslin over [strictly] Baire sets are themselves [strictly] Baire).

The main theorem The trichotomy theorem

Uncountable language case

Theorem

We are working in the monster model \mathfrak{C} of a complete theory. Let $p \in S(\emptyset)$. Suppose we have:

 a bounded, invariant equivalence relation E on X = p(𝔅), which is Souslin over type-definable sets (e.g. E is F_σ),

• a type-definable and *E*-saturated set $Y \subseteq X$.

Then:

(I) E is type-definable, or E↑_Y has at least 2^{ℵ₀}-many classes,
(II) in addition, if Aut(𝔅/{Y}) acts transitively on Y/E (e.g. Y = p(𝔅) or Y is a KP strong type), then either E↑_Y is (relatively) definable (so, by compactness, it has finitely many classes), or E↑_Y has at least 2^{ℵ₀}-many classes.

The main theorem The trichotomy theorem

Uncountable language case

Theorem

We are working in the monster model \mathfrak{C} of a complete theory. Let $p \in S(\emptyset)$. Suppose we have:

- a bounded, invariant equivalence relation E on X = p(𝔅), which is Souslin over type-definable sets (e.g. E is F_σ),
- a type-definable and E-saturated set $Y \subseteq X$.

Then:

(I) E is type-definable, or E↑Y has at least 2^{ℵ0}-many classes,
(II) in addition, if Aut(𝔅/{Y}) acts transitively on Y/E (e.g. Y = p(𝔅) or Y is a KP strong type), then either E↑Y is (relatively) definable (so, by compactness, it has finitely many classes), or E↑Y has at least 2^{ℵ0}-many classes.

The main theorem The trichotomy theorem

Uncountable language case

Theorem

We are working in the monster model \mathfrak{C} of a complete theory. Let $p \in S(\emptyset)$. Suppose we have:

- a bounded, invariant equivalence relation E on X = p(𝔅), which is Souslin over type-definable sets (e.g. E is F_σ),
- a type-definable and E-saturated set $Y \subseteq X$.

Then:

(I) E is type-definable, or E↑_Y has at least 2^{ℵ₀}-many classes,
(II) in addition, if Aut(€/{Y}) acts transitively on Y/E (e.g. Y = p(€) or Y is a KP strong type), then either E↑_Y is (relatively) definable (so, by compactness, it has finitely many classes), or E↑_Y has at least 2^{ℵ₀}-many classes.

The main theorem The trichotomy theorem

Uncountable language case

Theorem

We are working in the monster model \mathfrak{C} of a complete theory. Let $p \in S(\emptyset)$. Suppose we have:

- a bounded, invariant equivalence relation E on X = p(𝔅), which is Souslin over type-definable sets (e.g. E is F_σ),
- a type-definable and E-saturated set $Y \subseteq X$.

Then:

(I) *E* is type-definable, or $E_{\uparrow Y}$ has at least 2^{\aleph_0} -many classes,

(II) in addition, if Aut(𝔅/{Y}) acts transitively on Y/E (e.g. Y = p(𝔅) or Y is a KP strong type), then either E↾_Y is (relatively) definable (so, by compactness, it has finitely many classes), or E↾_Y has at least 2^{ℵ₀}-many classes.

The main theorem The trichotomy theorem

Strict Baire property

Lemma

If *E* is as in the theorem (i.e. Souslin over type-definable sets), then for any fixed $\bar{\alpha} \in X$, the *E*-class of $\bar{\alpha}$ is Souslin over type-definable sets, while the "kernel" of \bar{h}_E is Souslin over closed sets, and in particular strictly Baire.

The main theorem The trichotomy theorem

(Not) openness in case of $Y = X [= p(\mathfrak{C})]$

Theorem (QM theorem)

 \bar{h}_E is a topological group quotient mapping.

Corollary

If $|X/E| < 2^{\aleph_0}$, then (by QM) also $[u\mathcal{M}/H(u\mathcal{M}) : \ker \overline{h}_E] < 2^{\aleph_0}$, so ker \overline{h}_E is open. This implies (by QM) that X/E is discrete (and compact), so E is relatively definable.

The main theorem The trichotomy theorem

(Not) openness in case of $Y = X [= p(\mathfrak{C})]$

Theorem (QM theorem)

 \bar{h}_E is a topological group quotient mapping.

Corollary

If $|X/E| < 2^{\aleph_0}$, then (by QM) also $[u\mathcal{M}/H(u\mathcal{M}) : \ker \bar{h}_E] < 2^{\aleph_0}$, so ker \bar{h}_E is open. This implies (by QM) that X/E is discrete (and compact), so E is relatively definable.

The main theorem The trichotomy theorem

$$\ker \bar{h}_E \leq (u\mathcal{M})/H(u\mathcal{M}) \xrightarrow{h_E} X/E$$

$$\ker \bar{h}_E \leq G_1 \xrightarrow{\bar{h}_E \restriction_{G_1}} Y/E$$

- Let G_1 be the closure of ker \bar{h}_E , a closed subgroup of $(u\mathcal{M})/H(u\mathcal{M})$.
- Clearly $G_1 \subseteq \overline{h}_E^{-1}[Y/E]$ (by continuity of \overline{h}_E).
- If *E* is not type-definable, X/E is not Hausdorff, so by the QM theorem, ker \bar{h}_E is not closed in $(u\mathcal{M})/H(u\mathcal{M})$ (so also not closed in G_1).
- Then, by the key corollary, $[G_1 : \ker \bar{h}_E] \ge 2^{\aleph_0}$.
- This clearly implies that $|Y/E| \ge 2^{\aleph_0}$.

The main theorem The trichotomy theorem

$$\ker \bar{h}_E \leq (u\mathcal{M})/H(u\mathcal{M}) \xrightarrow{h_E} X/E$$

$$\ker \bar{h}_E \leq G_1 \xrightarrow{\bar{h}_E \restriction_{G_1}} Y/E$$

- Let G_1 be the closure of ker \bar{h}_E , a closed subgroup of $(u\mathcal{M})/H(u\mathcal{M})$.
- Clearly $G_1 \subseteq \overline{h}_E^{-1}[Y/E]$ (by continuity of \overline{h}_E).
- If *E* is not type-definable, X/E is not Hausdorff, so by the QM theorem, ker \bar{h}_E is not closed in $(u\mathcal{M})/H(u\mathcal{M})$ (so also not closed in G_1).
- Then, by the key corollary, $[G_1 : \ker \bar{h}_E] \ge 2^{\aleph_0}$.
- This clearly implies that $|Y/E| \ge 2^{\aleph_0}$.

The main theorem The trichotomy theorem

$$\ker \bar{h}_E \leq (u\mathcal{M})/H(u\mathcal{M}) \xrightarrow{h_E} X/E$$

$$\ker \bar{h}_E \leq G_1 \xrightarrow{\bar{h}_E \restriction_{G_1}} Y/E$$

- Let G_1 be the closure of ker \bar{h}_E , a closed subgroup of $(u\mathcal{M})/H(u\mathcal{M})$.
- Clearly $G_1 \subseteq \bar{h}_E^{-1}[Y/E]$ (by continuity of \bar{h}_E).
- If *E* is not type-definable, X/E is not Hausdorff, so by the QM theorem, ker \bar{h}_E is not closed in $(u\mathcal{M})/H(u\mathcal{M})$ (so also not closed in G_1).
- Then, by the key corollary, $[G_1 : \ker \bar{h}_E] \ge 2^{\aleph_0}$.
- This clearly implies that $|Y/E| \ge 2^{\aleph_0}$.

The main theorem The trichotomy theorem

$$\ker \bar{h}_E \leq (u\mathcal{M})/H(u\mathcal{M}) \xrightarrow{h_E} X/E$$

$$\ker \bar{h}_E \leq G_1 \xrightarrow{\bar{h}_E \restriction_{G_1}} Y/E$$

- Let G_1 be the closure of ker \bar{h}_E , a closed subgroup of $(u\mathcal{M})/H(u\mathcal{M})$.
- Clearly $G_1 \subseteq \bar{h}_E^{-1}[Y/E]$ (by continuity of \bar{h}_E).
- If *E* is not type-definable, X/E is not Hausdorff, so by the QM theorem, ker \bar{h}_E is not closed in $(u\mathcal{M})/H(u\mathcal{M})$ (so also not closed in G_1).
- Then, by the key corollary, $[G_1 : \ker \bar{h}_E] \ge 2^{\aleph_0}$.
- This clearly implies that $|Y/E| \ge 2^{\aleph_0}$.

The main theorem The trichotomy theorem

$$\ker \bar{h}_E \leq (u\mathcal{M})/H(u\mathcal{M}) \xrightarrow{h_E} X/E$$

$$\ker \bar{h}_E \leq G_1 \xrightarrow{\bar{h}_E \restriction_{G_1}} Y/E$$

- Let G_1 be the closure of ker \bar{h}_E , a closed subgroup of $(u\mathcal{M})/H(u\mathcal{M})$.
- Clearly $G_1 \subseteq \overline{h}_E^{-1}[Y/E]$ (by continuity of \overline{h}_E).
- If *E* is not type-definable, X/E is not Hausdorff, so by the QM theorem, ker \bar{h}_E is not closed in $(u\mathcal{M})/H(u\mathcal{M})$ (so also not closed in G_1).
- Then, by the key corollary, $[G_1 : \ker \bar{h}_E] \ge 2^{\aleph_0}$.
- This clearly implies that $|Y/E| \ge 2^{\aleph_0}$.

The main theorem The trichotomy theorem

Subgroups of $(u\mathcal{M})/H(u\mathcal{M})$

- Aut(\mathfrak{C}) acts on $X = p(\mathfrak{C})$, which induces an action of $\operatorname{Gal}_L(T)$ on X/E.
- For a type-definable and *E*-saturated Z ⊆ X, the stabiliser in Gal_L(T) of {Z/E} is closed.
- The preimage by *t* of a closed subgroup of Gal_L(T) is a closed subgroup of (uM)/H(uM).

The main theorem The trichotomy theorem

Subgroups of $(u\mathcal{M})/H(u\mathcal{M})$

- Aut(\mathfrak{C}) acts on $X = p(\mathfrak{C})$, which induces an action of $\operatorname{Gal}_L(T)$ on X/E.
- For a type-definable and *E*-saturated Z ⊆ X, the stabiliser in Gal_L(T) of {Z/E} is closed.
- The preimage by \overline{f} of a closed subgroup of $\operatorname{Gal}_{L}(T)$ is a closed subgroup of $(u\mathcal{M})/H(u\mathcal{M})$.

The main theorem The trichotomy theorem

Subgroups of $(u\mathcal{M})/H(u\mathcal{M})$

- Aut(\mathfrak{C}) acts on $X = p(\mathfrak{C})$, which induces an action of $\operatorname{Gal}_L(T)$ on X/E.
- For a type-definable and *E*-saturated Z ⊆ X, the stabiliser in Gal_L(T) of {Z/E} is closed.
- The preimage by \overline{f} of a closed subgroup of $\operatorname{Gal}_{L}(T)$ is a closed subgroup of $(u\mathcal{M})/H(u\mathcal{M})$.

The main theorem The trichotomy theorem

$$\ker \bar{h}_E \leq (u\mathcal{M})/H(u\mathcal{M}) \xrightarrow{h_E} X/E$$
$$\ker \bar{h}_E \cap G_2 = \ker(\bar{h}_E{\upharpoonright}_{G_2}) \leq G_2 \xrightarrow{\bar{h}_E{\upharpoonright}_{G_2}} Y/E$$

- We relativise to the (closed) subgroup G₂ of (uM)/H(uM) induced by Aut(𝔅/{Y}) (i.e. the *f*-preimage of the stabiliser of {Y/E} in Gal_L(T)).
- By the assumption, $\bar{h}_E |_{G_2}$ is onto Y/E.
- By part (I), if |Y/E| < 2^{ℵ₀}, X/E is Hausdorff, so h_E↾_{G₂} is a quotient mapping onto Y/E (as a continuous surjection).
- Then, by the key corollary, if |Y/E| < 2^ℵ₀, then ker (*h*_E↾_{G₂}) is open, so Y/E is discrete and E↾_Y is relatively definable.

The main theorem The trichotomy theorem

$$\begin{split} & \ker \bar{h}_E \leq (u\mathcal{M})/H(u\mathcal{M}) \xrightarrow{h_E} X/E \\ & \ker \bar{h}_E \cap G_2 = \ker (\bar{h}_E{\restriction}_{G_2}) \leq G_2 \xrightarrow{\bar{h}_E{\restriction}_{G_2}} Y/E \end{split}$$

- We relativise to the (closed) subgroup G₂ of (uM)/H(uM) induced by Aut(C/{Y}) (i.e. the *f*-preimage of the stabiliser of {Y/E} in Gal_L(T)).
- By the assumption, $\bar{h}_E|_{G_2}$ is onto Y/E.
- By part (I), if |Y/E| < 2^{ℵ₀}, X/E is Hausdorff, so h_E_□_{G₂} is a quotient mapping onto Y/E (as a continuous surjection).
- Then, by the key corollary, if |Y/E| < 2^ℵ₀, then ker (*h*_E↾_{G₂}) is open, so Y/E is discrete and E↾_Y is relatively definable.

The main theorem The trichotomy theorem

$$\begin{split} & \ker \bar{h}_E \leq (u\mathcal{M})/H(u\mathcal{M}) \xrightarrow{h_E} X/E \\ & \ker \bar{h}_E \cap G_2 = \ker (\bar{h}_E{\restriction}_{G_2}) \leq G_2 \xrightarrow{\bar{h}_E{\restriction}_{G_2}} Y/E \end{split}$$

- We relativise to the (closed) subgroup G₂ of (uM)/H(uM) induced by Aut(C/{Y}) (i.e. the *f*-preimage of the stabiliser of {Y/E} in Gal_L(T)).
- By the assumption, $\bar{h}_E |_{G_2}$ is onto Y/E.
- By part (I), if |Y/E| < 2^{ℵ₀}, X/E is Hausdorff, so h_E↾_{G₂} is a quotient mapping onto Y/E (as a continuous surjection).
- Then, by the key corollary, if |Y/E| < 2^ℵ₀, then ker (*h*_E↾_{G₂}) is open, so Y/E is discrete and E↾_Y is relatively definable.

The main theorem The trichotomy theorem

$$\begin{split} & \ker \bar{h}_E \leq (u\mathcal{M})/H(u\mathcal{M}) \xrightarrow{h_E} X/E \\ & \ker \bar{h}_E \cap G_2 = \ker (\bar{h}_E{\restriction}_{G_2}) \leq G_2 \xrightarrow{\bar{h}_E{\restriction}_{G_2}} Y/E \end{split}$$

- We relativise to the (closed) subgroup G₂ of (uM)/H(uM) induced by Aut(C/{Y}) (i.e. the *t*-preimage of the stabiliser of {Y/E} in Gal_L(T)).
- By the assumption, $\bar{h}_E|_{G_2}$ is onto Y/E.
- By part (I), if |Y/E| < 2^{ℵ₀}, X/E is Hausdorff, so h_E↾_{G₂} is a quotient mapping onto Y/E (as a continuous surjection).
- Then, by the key corollary, if |Y/E| < 2^{ℵ₀}, then ker (h_E↾_{G₂}) is open, so Y/E is discrete and E↾_Y is relatively definable.

The main theorem The trichotomy theorem

The main general theorem – reminder

Theorem

We are working in the monster model \mathfrak{C} of a complete, countable theory. Let $p \in S(\emptyset)$. Suppose we have:

- a bounded, invariant equivalence relation E on p(𝔅),
- a type-definable and *E*-saturated set $Y \subseteq p(\mathfrak{C})$.

Then, $E \upharpoonright_Y$ is either type-definable or non-smooth.

The main theorem The trichotomy theorem

The trichotomy theorem

Corollary

Assume that the language is countable. Let E be a bounded, Borel (or even analytic) equivalence relation on $p(\mathfrak{C})$, where $p \in S(\emptyset)$. Then, exactly one of the following holds:

- E is relatively definable (on p(C)), smooth, and has finitely many classes,
- E is not relatively definable, but it is type-definable, smooth, and has 2^{ℵ₀} classes,
- Is not type definable, non-smooth, and has 2^{\aleph_0} classes.

The main theorem The trichotomy theorem

The trichotomy theorem

Corollary

Assume that the language is countable. Let E be a bounded, Borel (or even analytic) equivalence relation on $p(\mathfrak{C})$, where $p \in S(\emptyset)$. Then, exactly one of the following holds:

- E is relatively definable (on p(C)), smooth, and has finitely many classes,
- ② E is not relatively definable, but it is type-definable, smooth, and has 2^{ℵ₀} classes,

 ${}^{\odot}$ E is not type definable, non-smooth, and has 2 leph_0 classes.

The main theorem The trichotomy theorem

The trichotomy theorem

Corollary

Assume that the language is countable. Let E be a bounded, Borel (or even analytic) equivalence relation on $p(\mathfrak{C})$, where $p \in S(\emptyset)$. Then, exactly one of the following holds:

- E is relatively definable (on p(C)), smooth, and has finitely many classes,
- ② E is not relatively definable, but it is type-definable, smooth, and has 2^{ℵ₀} classes,
- **(3)** *E* is not type definable, non-smooth, and has 2^{\aleph_0} classes.

The main theorem The trichotomy theorem

Proof of the trichotomy theorem

- If *E* has less than continuum many classes, then by the preceding theorem, it must be relatively definable (and thus it has finitely many classes, by compactness).
- Otherwise, E must have 2^{ℵ0} classes (as it can't have any more by countability assumptions).
- By the main theorem about smoothness of Borel equivalence relations, *E* is smooth if and only if it is type-definable.

The main theorem The trichotomy theorem

Proof of the trichotomy theorem

- If *E* has less than continuum many classes, then by the preceding theorem, it must be relatively definable (and thus it has finitely many classes, by compactness).
- Otherwise, E must have 2^{ℵ0} classes (as it can't have any more by countability assumptions).
- By the main theorem about smoothness of Borel equivalence relations, *E* is smooth if and only if it is type-definable.

The main theorem The trichotomy theorem

Proof of the trichotomy theorem

- If *E* has less than continuum many classes, then by the preceding theorem, it must be relatively definable (and thus it has finitely many classes, by compactness).
- Otherwise, E must have 2^{ℵ0} classes (as it can't have any more by countability assumptions).
- By the main theorem about smoothness of Borel equivalence relations, *E* is smooth if and only if it is type-definable.

Neccessity of the assumptions – regularity

Example (Kaplan–Miller–Simon)

There is a definable group *G* in a countable theory with an invariant subgroup $H \le G$ of index 2 which is not type-definable.

Corollary

The discussed theorems do not hold in general without any regularity (e.g. Borelness, analyticity) assumptions about E.

Proof.

If we add a sort for an "affine copy of *G*", the resulting structure will have an invariant equivalence relation with two classes (corresponding to *H*), whose domain is the set of the realisations of a single type, but which is not type-definable. \Box

Neccessity of the assumptions – regularity

Example (Kaplan-Miller-Simon)

There is a definable group *G* in a countable theory with an invariant subgroup $H \le G$ of index 2 which is not type-definable.

Corollary

The discussed theorems do not hold in general without any regularity (e.g. Borelness, analyticity) assumptions about E.

Proof.

If we add a sort for an "affine copy of *G*", the resulting structure will have an invariant equivalence relation with two classes (corresponding to *H*), whose domain is the set of the realisations of a single type, but which is not type-definable. \Box

- $T = \text{Th}(2^{\omega}, E_n)_{n \in \omega}$, where E_n is the equality on the *n*-th coordinate,
- $E = \bigcap_n E_n$.
- Then $\mathfrak{C}/E \approx 2^{\omega}$.
- Let Y ⊆ ℭ correspond to a convergent sequence along with its limit.
- Then Y is type-definable and |Y/E| = ℵ₀, so E↾_Y is not relatively definable.

- $T = \text{Th}(2^{\omega}, E_n)_{n \in \omega}$, where E_n is the equality on the *n*-th coordinate,
- $E = \bigcap_n E_n$.
- Then $\mathfrak{C}/E \approx 2^{\omega}$.
- Let Y ⊆ ℭ correspond to a convergent sequence along with its limit.
- Then Y is type-definable and |Y/E| = ℵ₀, so E↾_Y is not relatively definable.

- $T = \text{Th}(2^{\omega}, E_n)_{n \in \omega}$, where E_n is the equality on the *n*-th coordinate,
- $E = \bigcap_n E_n$.
- Then $\mathfrak{C}/E \approx 2^{\omega}$.
- Let Y ⊆ ℭ correspond to a convergent sequence along with its limit.
- Then Y is type-definable and |Y/E| = ℵ₀, so E↾_Y is not relatively definable.

- $T = \text{Th}(2^{\omega}, E_n)_{n \in \omega}$, where E_n is the equality on the *n*-th coordinate,
- $E = \bigcap_n E_n$.
- Then $\mathfrak{C}/E \approx 2^{\omega}$.
- Let Y ⊆ ℭ correspond to a convergent sequence along with its limit.
- Then Y is type-definable and |Y/E| = ℵ₀, so E↾_Y is not relatively definable.

- $T = \text{Th}(2^{\omega}, E_n)_{n \in \omega}$, where E_n is the equality on the *n*-th coordinate,
- $E = \bigcap_n E_n$.
- Then $\mathfrak{C}/E \approx 2^{\omega}$.
- Let Y ⊆ ℭ correspond to a convergent sequence along with its limit.
- Then Y is type-definable and $|Y/E| = \aleph_0$, so $E \upharpoonright_Y$ is not relatively definable.