
INNER ULTRAHOMOGENEOUS GROUPS

TOMASZ RZEPECKI

Abstract. We define and study the class of inner ultrahomogeneous
groups, which includes Hall’s universal group and the universal locally re-
cursively presentable group. We provide simple criteria for ample generic
automorphisms, straight maximality, uniform simplicity and divisibility
(all of which apply to both Hall’s universal group and the universal locally
recursively presentable group). We show that such groups of infinite ex-
ponent are not ℵ0-saturated, their theories are not small, not rosy and
have TP2+SOP+IPn for all n. This strengthens and generalises known re-
sults about ample generic automorphisms and unstability of Hall’s universal
group. We also show that the exponents of finite exponent inner ultrahomo-
geneous groups are uniformly bounded, andwe provide a series of examples
of inner ultrahomogeneous groups.

1. Introduction

Hall’s universal group ΓF was introduced by Phillip Hall in [Hal59]. He
showed that it is universal for the class of countable locally finite groups
and homogeneous in a rather strong sense. While Hall did not explicitly
use the Fraïssé construction (developed by Fraïssé around the same time),
he essentially showed that the class of finite groups is a Fraïssé class and
described its limit.
ΓF has a rather curious ultrahomogeneity property, which we call inner

ultrahomogeneity: every finite partial automorphism can be extended to not
only an automorphism of the whole group, but to an inner automorphism (see
Definition 3.2). This property is related to a strengthening of the extension
property of partial automorphisms (EPPA, also called Hrushovski’s property)
which we call here inner EPPA (see Definition 3.1) and which, due to Hall,
holds for the class of finite groups.

Another inner ultrahomogeneous group isΓR, the generic locally recursively
presentable group (the Fraïssé limit of the class of finitely generated, recur-
sively presentable groups, or equivalently, of finitely presentable groups). This
group, while very natural, seems to not have been studied before, although
its existence is folklore. We will describe it in more detail in Section 7.

Independently in [Son19], [Sin17] and implicitly [Iva06] (and also in
unpublished work by Grebík and Geschke), the authors showed that Hall’s
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universal group has ample generic automorphisms. This is a dynamical prop-
erty of the automorphism group as a permutation group which is of interest
in both model theory and dynamics.

[Son19] also observed that the group is unstable (in the sense of model
theory). In fact, the proof of [SU06, Proposition 3.1] easily implies that many
groups are SOP3 (which is a stronger property than unstability), including
ΓR and ΓF . In contrast, [SU06, Theorem 3.2] shows that a suitably chosen
“universal” group is NSOP4 in the Robinson sense, which is a tameness prop-
erty.

It turns that inner ultrahomogeneity, along with some very natural hy-
potheses about the underlying Fraïssé class, suffices to prove many proper-
ties of Hall’s group (both known before and new) in greater generality, for
instance divisibility, uniform (group-theoretic) simplicity, ample generic au-
tomorphisms, as well as (first-order) unstability, independence property, TP2,
and straight maximality, using relatively simple formulas related to commut-
ing. This implies in particular that many groups, including those considered
in [SU06], are actually extremely wild with respect to full first order logic.

We also observe that some of these groups, including ΓR, have a natural
stationary independence relation (see Proposition 7.9), although this is not
strictly related to inner ultrahomogeneity.

The main results are summarised in Main Theorem below, from which we
deduce in Section 7 the aforementioned properties of Hall’s universal group
ΓF , the group ΓR and other inner ultrahomogeneous groups.

Main Theorem. For every inner ultrahomogeneous group Γ:
(1) If Γ has more than 6 elements, then it is infinite and not ℵ0-saturated

(in particular, it is not ℵ0-categorical),
(2) If Γ is either torsion and embeds all finite groups, or Age(Γ) is closed

under ∗Z, or Γ is torsion-free, then it is uniformly simple.
(3) If Age(Γ) is closed under either× or under×Z (which holds in particular

if it is closed under free products or finitary HNN-extensions) and Γ is
countable, then it has ample generic automorphisms.

(4) If the centre of Γ is nontrivial, then its only nonidentity element is the
unique element of Γ of order 2. In this case, Γ has 2 elements or is not
torsion.

(5) If Γ has finite exponent, then it has a finitely generated subgroup A such
thatAut(Γ/A) is trivial (i.e. Aut(Γ) is discrete) and every automorphism
of Γ is inner; in particular, if |Γ| ̸= 2, then Γ ∼= Aut(Γ).

(6) Γ does not have finite exponent if and only if it contains a copy of
(Z/2Z)6 or an abelian subgroup with at least 2100 elements.

(7) If Γ is not of finite exponent, then:
• if it is torsion, then it embeds every countable torsion abelian group,
• if it is not torsion, then it embeds every countable torsion-free
abelian group and every countable free group,
• it does not admit elimination of quantifiers,
• it has the strict order property and the tree property of the sec-
ond kind (in particular, it is unstable and has the independence
property), as well as the n-independence property for all n,
• the theory of Γ is not small.
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(8) If Age(Γ) has disjoint amalgamation (e.g. if it is closed under amalga-
mated free products or it is the class of finite groups), then for every
finite A0 ⊆ A, C2(A0) = 〈A0〉. In particular, for each n, the family of
n-generated subgroups of Γ is uniformly definable.

(9) If Γ has elements of all finite orders (in particular, if it is torsion and
not of finite exponent), then it is straightly maximal.

Proof. In (1), that Γ has to be infinite if it has more than 6 elements is true
even if we only assume that every automorphism of a finite subgroup of
Γ extends to an inner automorphism, see [Hol21]. The fact that it is not
ℵ0-saturated and its theory is not ℵ0-categorical is Corollary 5.11 and Corol-
lary 5.12.

(2) follows from Proposition 4.24, Proposition 4.23 and Remark 3.3.
(3) is Theorem 6.5.
(4) is Proposition 4.16 and Corollary 4.17.
(5) is Proposition 4.10 and Remark 4.11.
(6) follows from Theorem 4.7.
(7) follows fromCorollary 4.15, Proposition 5.10, Theorem 5.18 and Propo-

sition 5.7.
(8) is Proposition 4.33 (and Fact 2.4 for the locally finite case).
(9) follows from Theorem 5.26 and (7) □

Structure. In the second section, we very briefly recall some of the elemen-
tary notions and fundamental observations used in the paper. In the third
section, we introduce the notions of inner ultrahomogeneity and inner EPPA,
and prove some initial lemmata which will be of importance in later sections.
The fourth section is dedicated to various algebraic properties of inner ultra-
homogeneous groups. In particular, it contains a characterisation of finite
exponent inner ultrahomogeneous groups, and a trichotomy related to the
existence of various abelian subgroups (see Corollary 4.15). It also discusses
simplicity, divisibility and normal subgroups, particularly the centre. The
fifth section is devoted to model-theoretic properties of inner ultrahomoge-
neous groups, and essentially showing that under some weak assumptions
they lie on the wild side of all sorts of dividing lines in model theory. The
sixth section is about providing criteria showing that many groups of this
sort have ample generic automorphisms. Finally, the seventh section contains
various examples of inner ultrahomogeneous groups and a discussion of their
properties, mostly deduced via Main Theorem.

2. Preliminaries

2.1. Some conventions and notation. Given a group G and A⊆ G, we write
C(A) for the centraliser of A and C2(A) for the double centraliser, i.e. C(C(A));
when A ≤ G, we will write N(A) for the normaliser (the background group
will always be clear from the context). We will write Z(G) for the centre of
G.

Given g, h ∈ G, we will use the exponentiation convention for conjugation:
gh = h−1 gh, so that it is written as a right action, i.e. (gh1)h2 = gh1h2 (although
in all but a handful of places in the paper, the statements are essentially
agnostic about the direction of conjugation).
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This gives a homomorphism G→ Aut(G) given by h 7→ (g 7→ gh−1
), and for

A≤ G, this induces a homomorphism N(A)→ Aut(A) whose kernel is C(A).
We will sometimes implicitly refer to the conjugation action and say that

e.g. h fixes g if it commutes with it (so that gh = g), it doubles g if gh = g2

and it inverts g if gh = g−1.
For a group G, we will write G⊕N for the direct sum/restricted product of

countably infinitely many copies of G.

2.2. Fraïssé theory and EPPA. We will routinely use Fraïssé-theoretic ter-
minology in the paper. For a detailed account, see e.g. [Hod97, Section 7.1].
Most important definitions and facts are the following.

By a hereditary class we will mean a class of finitely generated structures
in a fixed signature (in our case, usually, in the language of groups) which is
closed under taking finitely generated substructures and isomorphism.

Given a hereditary class K , the joint embedding property (shortly, JEP)
means that any two elements of K embed into another element of K . Simi-
larly, amalgamation property (AP)means that for any three structures A, B, C ∈
K and fixed embeddings of A into B and C , we can find embeddings of B
and C into some D ∈ K such that the two induced embeddings of A into D
coincide.

We say that a hereditary class is essentially countable if there are countably
many isomorphism types of elements of K .

The age of a structure M , denoted Age(M), is the class of finitely generated
structures which embed into M .

A finite partial isomorphism M → N is either an isomorphism between two
finitely generated substructures of M and N or a finite partial function from
M to N which preserves the truth of all quantifier-free formulas (the two
notions are essentially equivalent). When M = N , we call it a finite partial
automorphism. A partial isomorphism and partial automorphism is defined
the same way, only without the cardinality restrictions.

We say that a structure M is ultrahomogeneous if every finite partial auto-
morphism of M can be extended to an automorphism of M .

Now, given a structure M , we have the following:
• Age(M) is a hereditary class with JEP,
• if M is ultrahomogeneous, then Age(M) has the AP,
• if M is countable, then Age(M) is essentially countable,
• if K is a hereditary class which is essentially countable, has the JEP
and AP, then there is a unique countable ultrahomogeneous structure
whose age is K , which we dub the Fraïssé limit of K .

The notion of EPPA (extension property for partial automorphisms, also
called Hrushovski’s property) will not be used directly in this paper, but we
recall one variant here, since it motivates the crucial for us notion of inner
EPPA (see Definition 3.1).

Definition 2.1. We say that a hereditary classK has 1-EPPA if for any A∈K
and finite partial automorphism p of A, there is a B ∈ K extending A and a
σ ∈ Aut(B) which extends p.

2.3. Amalgamated free products and HNN extensions. The notions of
free products and HNN extensions are very relevant to some of the main
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motivating examples (although the main technical results do not rely on
them as much). We recall some of the most important notions here. For more
background, see [LS01]. Some rudimentary Bass-Serre theory will also be
useful for some observations, see e.g. [Bas93] for background on that.

Let A, B, C be groups with fixed embeddings A→ B, C . Then the amalga-
mated free product B ∗A C is the unique (up to isomorphism) group in which
B, C embed in such a way that any homomorphisms B → D, C → D which
agree on (the images of) A extend uniquely to a homomorphism B ∗A C → D.
We will call the amalgamated free product finitary if the base A is finitely
generated. Note that if we identify B and C with their images in B ∗A C , then
B ∩ C = A. When A is trivial, we write simply B ∗ C and we call this the free
product of B and C .

If G is a group and α is a partial automorphism G → G, then the HNN-
extension G∗α = 〈G, t〉 of G by α is the universal extension of G by a new
generator (called a stable letter) t such that for g ∈ domα we have g t = α(g)
(so that G∗p has a unique homomorphism onto any other such group). We
call a HNN extension finitary if p is a finite partial automorphism (i.e. its
domain is finitely generated). We similarly define HNN extensions given by
an arbitrary family of partial automorphisms of G (in which case, there is a
separate new stable letter for each partial automorphism).

Note that in particular, we have for each G the HNN-extensions G∗id G =
G × Z and G∗; = G ∗ Z.

Both (amalgamated) free products and HNN extensions have well-known
descriptions in terms of group presentations, and in each case, the factor
groups naturally embed into the product.

We finish this section by noting an important nontrivial property of HNN-
extensions, which will be useful in some examples.
Fact 2.2 (Torsion theorem for HNN extensions). Given any group G and set P
of partial automorphisms of G, every element of G∗P of finite order is conjugate
to an element of G.
Proof. See [LS01, Theorem 2.4 of Chapter IV] for the case of P = {p}. The
general case follows by induction. □

2.4. Amalgamation and partial automorphisms of finite groups. In the
paper [Hal59], Hall defined the universal countable locally finite group ΓF .
In the same paper, he proved the following:
Fact 2.3. If A is a finite group and p is a finite partial automorphism of A, then
there is a finite group B ≥ A and an element b ∈ B such that ab = p(a) for
a ∈ dom p.
Proof. This is [Hal59, Lemma 1]. □

Hall’s construction, via Fraïssé theory, easily implies that the class of finite
groups has the amalgamation property. However, an explicit construction of
the amalgam, using permutation groups, was given by B.H. Neumann.
Fact 2.4. If A≤ B, C are finite groups, then there is a finite group D in which
B, C embed in such a way that the intersection of the two embeddings is A.
Proof. The construction (and the proof of this property) is given in [Neu60,
Section 2]. □
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2.5. Model theory. Purely model-theoretic terminology will only be used in
Section 5 and in discussing the model-theoretic properties of specific exam-
ples. We will not define most of it in this paper, including type spaces, satu-
rated models, the properties of smallness, stability, pseudofiniteness, quanti-
fier elimination, decidability, independence property, n-independence prop-
erty, or the tree property of the second kind. See e.g. [Hod97] for general
background on model theory, [Che14] for the tree property of the second
kind, and [She14] for n-(in)dependence property.

3. Definitions and preliminary observations

3.1. Inner EPPA and ultrahomogeneity. In this section, we will define the
main notions of this paper.
Definition 3.1. We say that a class K of groups has inner EPPA if for every
A∈K and every finite partial automorphism p of A, there is a B ≥ A inK and
an element b ∈ B, a witness of inner EPPA for p, such that for each a ∈ dom p
we have ab = p(a).
Definition 3.2. We say that a group Γ is inner ultrahomogeneous if for every
finite partial automorphism p of Γ there is some g ∈ Γ, a witness of inner
ultrahomogeneity for p such that for a ∈ dom p we have ag = p(a).

In this paper, unless stated otherwise, the capital letter Γ will be used to
refer to an inner ultrahomogeneous group (but most of the time, we will
repeat this hypothesis when necessary).
Remark 3.3. If Γ is inner ultrahomogeneous, then a, b ∈ Γ are conjugate if
and only if they have the same order (because then a 7→ b is clearly a partial
automorphism).
Proposition 3.4. IfΓ is any group, then Γ is inner ultrahomogeneous if and only
if it is ultrahomogeneous and Age(Γ) has inner EPPA. In particular, the Fraïssé
limit of a Fraïssé class of groups with inner EPPA is inner ultrahomogeneous.
Proof. The fact that inner ultrahomogeneity of Γ implies ultrahomogeneity
and inner EPPA for Age(Γ) is trivial. Suppose now that Γ is ultrahomogeneous
and Age(Γ) has inner EPPA. Fix a finite partial automorphism of Γ. Let A≤ Γ
be generated by the domain and range of p, so that p is a partial automorphism
of A. Let B ≥ A in Age(Γ) contain a witness b of inner EPPA for p. Then by
inner ultrahomogeneity, we may assume that A≤ B ≤ Γ, and then the same
b works as a witness of inner ultrahomogeneity. □

Corollary 3.5. If Γ is ultrahomogeneous and Γ0 ≤ Γ is inner ultrahomogeneous
and Age(Γ) = Age(Γ0), then Γ is inner ultrahomogeneous.
Proof. Immediate by the preceding proposition. □

HNN-extensions show that the class of all finitely generated groups has in-
ner EPPA, and it is not hard to see that so do the classes of finitely presentable
and finitely generated recursively presentable groups. Fact 2.3 shows that so
does the class of finite groups. This leads to the groups ΓR, ΓF mentioned in
the introduction. There are also three finite inner ultrahomogeneous groups,
namely the first three symmetric groups. See Section 7 for more details and
more examples.
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3.2. Implications between properties. The following proposition estab-
lishes some relations between some properties of hereditary classes of groups.
This will be useful mainly to simplify the description of examples in Section 7.

Proposition 3.6. LetK be a hereditary class of groups with the joint embedding
property (e.g. the age of a fixed group). Then:

(1) if K is closed under ∗Z if and only if it contains a nontrivial group and
is closed under (binary) free products,

(2) if K is closed under ∗Z and has inner EPPA, then it is closed under ×Z;
(3) K is closed under finitary HNN-extensions, then it has inner EPPA and

is closed under finitary amalgamated free products (so it has the amal-
gamation property).

Proof. For (1), in one direction, note that if A is a nontrivial group, then A∗A
is not torsion, so it contains a copy of Z. In the other direction, suppose
A, B ∈K andK is closed under ∗Z. Let C be a supergroup of A and B inK (it
exists, because K has the JEP). Then A∗ B embeds into C ∗C , which embeds
into C ∗ Z as 〈C , C t〉, where t is the generator of Z.

For (2), if K has inner EPPA and A∗ Z ∈K , then this group has a partial
automorphism which fixes A and squares the generator of Z. Given B ≥
A ∗ Z and element g ∈ B witnessing inner ultrahomogeneity for this partial
automorphism, it is easy to see 〈A, g〉 ∼= A× Z.

Now, for (3), suppose K is closed under finitary HNN-extensions. Then
clearly K has inner EPPA (immediately by definition) and is closed under ∗Z
(by taking a trivial partial automorphism), so by (1), it is closed under free
products. To see that it is closed under finitary amalgamated free products,
fix B, C ∈ K and their isomorphic f.g. subgroups AB, AC . Let G be a graph
of groups with vertices B and C and two edges, one of which has trivial
edge group connected to B and C , and the other embedding into B and C
as AB and AC , respectively. Then by elementary Bass-Serre theory we have
(B ∗AB=AC

C) ∗ Z ∼= π1(G) ∼= (B ∗ C)∗At
C=AB

. Since the right hand side is in K ,
the conclusion follows. □

Corollary 3.7. If Γ is an ultrahomogeneous group and Age(Γ) is closed under
finitary HNN-extensions, then it is inner ultrahomogeneous.

Proof. Immediate by Proposition 3.6 and Proposition 3.4. □

Corollary 3.8. IfK is an essentially countable hereditary class of groups which
is closed under finitary HNN-extensions and has JEP (e.g. it is closed under direct
products or under free products), then K is a Fraïssé class with inner EPPA.

Proof. Immediate by Proposition 3.6. □

3.3. Abelian groups of automorphisms. In this section, we will establish
some lemmas which will allow us to find abelian subgroups of inner ultra-
homogeneous groups, which will be very useful to obtain information about
their algebraic structure.

For a group A, we will write Emb(A) for the monoid of self-embeddings of
A (i.e. injective endomorphisms).
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Lemma 3.9. Suppose A, B ≤ Γ and B ≤ N(A). Suppose furthermore that
D = BA (= 〈A, B〉, since B normalises A) is finitely generated and σ ∈ Emb(A)
commutes with conjugation by elements of B and fixes all elements of A∩ B.

Then there is a g ∈ C(B) such that for all a ∈ A we have ag = σ(a).

Proof. We will show that σ̄(ba) = bσ(a) yields a well-defined self-embedding
of D. Then the conclusion will follow immediately by inner ultrahomogeneity.

Suppose b1a1 = b2a2. Then a2a−1
1 = b−1

2 b1 ∈ A∩ B, so σ(a2)σ(a1)−1 =
σ(a2a−1

1 ) = a2a−1
1 = b−1

2 b1, whence b1σ(a1) = b2σ(a2), so σ̄ is well-defined.
To see that σ̄ is a homomorphism, note that b1a1 b2a2 = b1 b2ab2

1 a2, so
b1σ(a1)b2σ(a2) = b1 b2σ(a1)b2σ(a2) = b1 b2σ(a

b2
1 )σ(a2) = b1 b2σ(a

b2
1 a2).

Finally, to see that σ̄ is injective, observe that if bσ(a) = 1, then σ(a) =
b−1 ∈ A∩ B, so σ(a) = σ(σ(a)), whence σ(a) = a (by injectivity of σ), so
a = b−1 and ba = 1. □

Lemma 3.10. Suppose A ≤ Γ is finitely generated, Σ ⊆ Emb(A) consists of
commuting elements and there is a σ0 ∈ Σ such that every σ ∈ Σ fixes all the
fixed points of σ0 (and possibly more).

Then we can assign to eachσ ∈ Σ some gσ in Γ in such a way that 〈gσ | σ ∈ Σ〉
is abelian and for a ∈ A and σ ∈ Σ we have agσ = σ(a).

Proof. First, by inner ultrahomogeneity, we can find a g0 ∈ Γ such that for
a ∈ A we have ag0 = σ0(a). We can also assume without loss of generality
that Σ is a monoid (i.e. idA ∈ Σ and Σ is closed under composition).

Now, extend (σ0) to (σi)i∈N, a (possibly non-injective) enumeration of Σ
(this exists, because Σ is countable, because A is finitely generated).

We will recursively build a sequence (gi)i∈N of commuting elements of Γ
such that for a ∈ A we have agi = σi(a), which will complete the proof.

Suppose we have commuting g0, g1, . . . , gk ∈ Γ. Let Bk := 〈g0, . . . , gk〉 and
Ak := 〈ABk〉. We want to extend σk+1 to a self-embedding of Ak which com-
mutes with conjugation by elements of Bk and fixes all elements of Ak ∩
Bk. Since 〈Ak, Bk〉 = 〈A, g0, . . . , gk〉 is finitely generated, we can then apply
Lemma 3.9 to obtain gk+1 as desired.

Using the fact that Bk is a finitely generated abelian group, it is not hard
to see that for any b1, b2 ∈ Bk there is b ∈ Bk (“−min(b1, b2)”) and τ1,τ2 ∈ Σ
such that for all a ∈ A we have abi−b = τi(a) for i = 1,2.

It follows that for any a1, a2 ∈ A we have ab1
1 ab2

2 = (τ1(a1)τ2(a2))b ∈ ABk , so
Ak = ABk . Now, we want to show that σ̄k+1(ab) = σk+1(a)b defines the desired
embedding.

First, to see that it is well-defined, suppose ab1
1 = ab2

2 and let b,τ1,τ2

be as before, so abi
i = τi(ai)b for i = 1,2. By commutativity of Σ, we

have for i = 1, 2 that σk+1 ◦ τi(ai) = τi(σk+1(ai)) = σk+1(ai)bi−b, so
σk+1(ai)bi = σk+1(τi(ai))b. Since τ1(a1) = (a

b1
1 )
−b = (ab2

2 )
−b = τ2(a2),

we have that σk+1(a1)b1 = σk+1(a2)b2 .
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Now, to see that σ̄k+1 is a homomorphism, choose any a1, a2 ∈ Aand b1, b2 ∈
Bk, along with τ1,τ2 as before. Then

σ̄k+1(a
b1
1 ab2

2 ) = σ̄k+1((τ1(a1)τ2(a2))
b) =

= σk+1(τ1(a1)τ2(a2))
b = σk+1(τ1(a1))

bσk+1(τ2(a2))
b =

= σ̄k+1(τ1(a1)
b)σ̄k+1(τ2(a2)

b) = σ̄k+1(a
b1
1 )σ̄k+1(a

b2
2 ).

The fact that the kernel of σ̄k+1 is trivial is immediate by definition of σ̄k+1
and the injectivity of σk+1. The fact that σ̄k+1 commutes with conjugation by
elements of Bk follows immediately from the fact that it is well-defined.

Finally, if ab ∈ Bk ∩ ABk , then ab commutes with Bk, whence ab = a and
a commutes with g0, so it is fixed by σ0. By hypothesis, it is fixed by every
element of Σ, which includes σk+1. Thus σ̄k+1(ab) = σk+1(a) = a. □

Corollary 3.11. Suppose Γ is torsion inner ultrahomogeneous, A≤ Γ is finite,
while B ≤ Aut(A) is abelian, of order coprime with the order of A. Then there
is a finite abelian C ≤ N(A) such that B is the image of C via the conjugation
map N(A) → Aut(A) and the orders of A and C are coprime. (In particular,
〈A, C〉 is the (internal) semidirect product of A and C and we have the natural
epimorphism 〈A, C〉 → A⋊ B.)

Proof. Enumerate B as σ1, . . . ,σn. We will recursively find commuting
g1, . . . , gn ∈ N(A) such that for a ∈ A, j = 1, . . . , n we have ag j = σ j(a) and for
each k, the order of Ck := 〈g1, . . . , gk〉 is coprime with the order of A.

Suppose k < n and we already have g1, . . . , gk satisfying the above. It
follows that Ck ∩ A = {1} (since every non-identity element of Ck has order
not dividing the order of A). Thus, the hypotheses of Lemma 3.9 hold (with
B = Ck, σ = σk+1), so there is a g ∈ C(Ck) such that ag = σk+1(a).

Now, let n be such that n|A| ≡ 1 modulo the order of σk+1 (it exists by
hypothesis). Since Γ is torsion, the order of g is finite, and it follows that for
a sufficiently large K, the order of gk+1 := g(n|A|)

K is coprime with the order
of A, and for a ∈ A we have ag(n|A|)

K

= σ(n|A|)
K

k+1 (a) = σ1K

k+1(a) = σk+1(a).
Finally, since gk+1 ∈ C(Ck), the order of Ck+1 := 〈Ck, gk+1〉 divides the

product of the order of Ck and the order of gk+1, so it is coprime with the
order of A, which completes the induction step.

C := Cn clearly works. The parenthetical remark follows from the fact that
A∩ Cn = {1} and Cn ≤ N(A). □

The following fact will be especially useful for extracting finite abelian
subgroups of torsion inner ultrahomogeneous groups.

Fact 3.12. If B is a finite abelian group and A≤ B, then there is a B0 ≤ B such
that B0

∼= B/A.

Proof. This is [Lan02, Exercise 43 of Chapter I], follows from the structure
theorem for finite abelian groups. □

Corollary 3.13. If Γ is torsion inner ultrahomogeneous, A ≤ Γ is finite, B ≤
Aut(A) is abelian of order coprime with the order of A and A0 ≤ A is abelian and
fixed pointwise by B. Then Γ has a subgroup isomorphic to A0 × B.
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Proof. Let C be as in Corollary 3.11. Then we have a natural epimorphism
〈A0, C〉 → A0 ⋊ B = A0 × B (because B acts trivially on A0). Furthermore,
C clearly centralises A0, so 〈A0, C〉 is abelian. Since 〈A0, C〉 is finite abelian
(because it is finitely generated abelian and torsion), by Fact 3.12, it has a
subgroup isomorphic to A0 × B. □

Corollary 3.14. If Γ is torsion inner ultrahomogeneous, A ≤ Γ is finite and
B ≤ Aut(A) is finite abelian of order coprime with the order of A, then Γ has a
subgroup isomorphic to B.

Proof. Immediate by Corollary 3.13 with trivial A0. □

Remark 3.15. In some of the above corollaries, we can weaken the hypothesis
to only assume that N(A) is torsion, and not necessarily Γ, and A is possibly
infinite, but B has no element of the same order as a nonidentity element of
A. Then the C in the conclusion will have the same property.

4. Group-theoretic properties

4.1. Groups of finite exponent. An inner ultrahomogeneous group can have
exponent 1,2 or 6, as witnessed by the finite ultrahomogeneous groups.

However, it is not clear whether an infinite ultrahomogeneous group can
have finite exponent. In this section, we provide (in Theorem 4.7) several
characterisations of the inner ultrahomogeneous groups of finite exponent in
terms of their abelian subgroups.

Lemma 4.1. SupposeΓ is torsion inner ultrahomogeneous and it has a subgroup
isomorphic to (Z/2Z)6. Then for each n, it has a subgroup isomorphic to (Z/2Z)n.

Proof. Fix any n. Suppose G = (Z/2Z)n embeds into Γ.
Put m := ⌊n/2⌋. Write elements of G as (v1, w, v2), where v1, v2 ∈ (Z/2Z)m

and w is either an empty tuple or in Z/2Z (depending on whether n is even
or odd).

For each f ∈ End((Z/2Z)m), let σ f be the endomorphism of G given by
σ f (v1, w, v2) = (v1 + f (v2), w, v2). Observe that σ f ◦ σg = σ f +g . Thus σ− de-
fines an isomorphism between the additive group of End((Z/2Z)m) (which is
elementary abelian of order 2m = 2⌊n/2⌋) and a subgroup of Aut(G). Further-
more, they all fix elements of the form (v1, w, 0), and it is not hard to see that
σ0 = σid fixes no other elements.

Thus, by Lemma 3.10, there is an abelian (and hence finite abelian, since
Γ is torsion) B ≤ Γ which admits an epimorphism onto (Z/2Z)⌊n/2⌋

2 , so by
Fact 3.12, the group (Z/2Z)⌊n/2⌋

2 embeds into Γ.
Since ⌊n/2⌋2 > n for n≥ 6, the conclusion follows. □

Remark 4.2. In fact, Aut((Z/2Z)5) has a subgroup Σ isomorphic to (Z/2Z)6,
but there is no σ0 ∈ Σ which fixes all the common fixed points of Σ, so
Lemma 3.10 does not apply.

Lemma 4.3. Suppose Γ is torsion inner ultrahomogeneous. Then for k ≥ 2,
m≥ 0:

• if the group (Z/2kZ)×(Z/2Z)m embeds into Γ, then so does (Z/2k−2Z)×
(Z/2Z)m+1,
• if the group Z/2kZ embeds into Γ, then so does (Z/2Z)⌈k/2⌉.
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Proof. The second dot follows from the first by straightforward induction.
Consider first the first dot, in the case of k ≥ 3 (the case of k = 2 is trivial).
Consider the following automorphisms of G = (Z/2kZ)× (Z/2Z)m:

• σ1(a, j1, . . . , jm) = (3a, j1, . . . , jm),
• σ2(a, j1, . . . , jm) = (−a, j1, . . . , jm),
• τi(a, j1, . . . , jm) = (a, j1, . . . , ji−1, ji+a, ji+1, . . . , jm), where i = 1, . . . , m.

(Here, we operate mod 2k on the first coordinate and mod 2 on the others.)
It is easy to see that σ1,σ2 and all τi commute, it is well-known that the

order of σ1 (= the order of 3 ∈ (Z/2kZ)×) is 2k−2 and σ2 /∈ 〈σ1〉; it is easy to
see that the orders of all the others are all equal to 2. Using this, it is not
hard to see that σ1,σ2,τ1, . . . ,τm naturally generate a group isomorphic to
(Z/2k−2Z)× (Z/2Z)m+1.

Then (2k−1Z/2kZ)× (Z/2Z)m is the set of fixed points of σ2, and it is easy
to see that its elements are fixed by σ1 and each τi. The conclusion follows
from Lemma 3.10 and Fact 3.12. □

Corollary 4.4. If Γ is torsion inner ultrahomogeneous and K is such that Γ has
no subgroup isomorphic to (Z/2Z)K+1, then it Γ has no abelian 2-subgroup of
order greater than 22K2 .

Proof. Let A≤ Γ be an abelian 2-group. We may assume that it is finite (since
every abelian 2-group is locally finite).

By fundamental theorem on finite abelian groups, A is the direct sum of
some m nontrivial cyclic 2-groups. Clearly, there can be no more than K of
them. Furthermore, by Lemma 4.3, each of them has order at most 22K . The
conclusion follows. □

Lemma 4.5. Suppose Γ is torsion and inner ultrahomogeneous. Let A≤ Γ be
a finite abelian subgroup of order divisible by an odd prime p. Then Γ has a
finite abelian subgroup B of order divisible by p−1

p |A|. (In particular, it has an
abelian subgroup of order exactly p−1

p |A|.)

Proof. By the fundamental theorem on finitely generated abelian groups,
A∼= (Z/pkZ)× A′ for some A′; for simplicity, suppose A= (Z/pkZ)× A′. Note
that the automorphism group of Z/pkZ is cyclic of order pk−1 · (p − 1). It
follows that there is some σ ∈ Aut(A) of order pk−1 · (p−1) which fixes A′. By
inner ultrahomogeneity, there is a g ∈ Γ such that ag = σ(a) for a ∈ A.

We claim that B = 〈g, A′〉 works. Indeed, it is clearly abelian, and the
conjugation map B → Aut(A) contains A′ in its kernel and σ in its image.
Hence the order of B is a multiple of the order of A′ (= 1

pk |A|) times the order
of σ (=pk−1 · (p − 1)). The conclusion follows. (The parenthetical remark
easily follows from the observation that if A is finite abelian and q is a prime
dividing |A|, then A has a subgroup of index q.) □

Corollary 4.6. If Γ is torsion inner ultrahomogeneous and it has no abelian
2-subgroup of order 2K+1, then it has no abelian subgroup of order greater than
22K .

Proof. Note that if 2k divides the order of a finite abelian group A, then A has
a subgroup of order 2k.
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Fix any abelian A≤ Γ; we will show that |A| ≤ 22K . Since a torsion abelian
group is locally finite, we may assume without loss of generality that A is
finite. We recursively define a finite sequence of abelian groups A j ≤ Γ and
integers l j , n j such n j is odd and the order of A j is 2l j n j, starting with A0 := A.

Suppose we already have A0, . . . , A j. If n j = 1, then we terminate. Other-
wise, let p j+1 be the largest prime divisor of n j and write p j+1 = 2k j+1 m j+1+1,
where m j+1 is odd. Then by Lemma 4.5, there is a A j+1 ≤ Γ of order
2l j n j(p j+1−1)

p j+1
= 2l j+k j+1 m j+1

n j
p j+1

. Put n j+1 = m j+1
n j

p j+1
and l j+1 = l j + k j+1, so

that the order of A j+1 is 2l j+1 n j+1, as prescribed.
Note that the sequence l j is strictly increasing and bounded by K. It follows

that we terminate after at most K steps, yielding some A j0 with j0 ≤ K which
is an abelian 2-group of order 2l j0 , where l j0 = l0 + k1 + . . . + k j0 ≤ K. On
the other hand, for j = 1, . . . , j0, we have n j = m j

n j−1

p j
=

n j−1(p j−1)

2k j p j
≥ n j−1 ·

2−1−k j . It follows that n j ≥ n0 · 2−k1−k1−...−k j− j, so in particular, 1 = n j0 ≥
n0 · 2

−k1−k2−...−k j0− j0 , so n0 ≤ 2k1+k2+...+k j0+ j0 ≤ 22K−l0 , whence |A0|= n0 · 2l0 ≤
22K . □

Theorem 4.7. If Γ is torsion inner ultrahomogeneous, then the following are
equivalent:

(1) all abelian subgroups of Γ have order smaller than 2100,
(2) Γ is of finite exponent (at most (2100)!),
(3) there is some finite abelian group which does not embed into Γ,
(4) (Z/2Z)6 does not embed into Γ.

Proof. It is clear that 1⇒2⇒3.
For 3⇒4 we argue by contraposition. Suppose (4) fails. Fix a finite abelian

group A; we claim that it embeds into Γ. Let n = |A|. Consider first the
case when n is odd, and note that by Lemma 4.1, Γ has a subgroup B ∼=
(Z/2Z)n. Note that A acts faithfully on B, and their orders are coprime. By
Corollary 3.14, Γ has a subgroup isomorphic to A. Otherwise, if n is even, let
p be a prime not dividing |A|. Then pn is odd, so by the odd n case, Γ has
a subgroup isomorphic to (Z/pZ)n on which A acts faithfully, and similarly,
Corollary 3.14 implies that A embeds into Γ.

It remains to show that 4⇒1. But its contrapositive is an easy consequence
of Corollary 4.6 and Corollary 4.4. □

Remark 4.8. The explicit estimates in Theorem 4.7 are very rough and their
proofs can easily be refined to obtain much lower ones. It is also not very
difficult to see that instead of (Z/2Z)6 in (4) we can put (Z/pZ)6 for any prime
p, or indeed G6 for any nontrivial finite G. Optimistically, one can conjecture
that the only inner ultrahomogeneous groups of finite exponent are the three
finite ones, which would be improve the bounds a great deal.

Remark 4.9. Inner ultrahomogeneity easily implies that inner automorphisms
are dense in Aut(Γ), which implies in particular that if A≤ Γ is finitely gen-
erated, then orbits of Aut(Γ/A) (the stabiliser of A) in Γ and its finite powers
are exactly the orbits of C(A) acting by conjugation.
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Proposition 4.10. If Γ is inner ultrahomogeneous of finite exponent, then
Aut(Γ) is discrete, i.e. there is a finitely generated A≤ Γ such that Aut(Γ/A) is
trivial and every automorphism of Γ is inner (in particular, Aut(Γ)∼= Γ/Z(Γ)).

Proof. Let Γ be inner ultrahomogeneous of finite exponent. By Theorem 4.7,
there is an upper bound on the order of abelian subgroups of Γ. So there
is a finite maximal abelian subgroup A0 ≤ Γ, thus satisfying A0 = C(A0).
Thus, for each element of A0 \ Z(Γ), we can find an element of Γ which does
not commute with it. If we take for A the group generated by A0 and all
these witnesses, then we will have C(A) = Z(Γ). The conclusion follows by
Remark 4.9. □

Remark 4.11. Actually, as we will see later in Corollary 4.17, a torsion inner
ultrahomogeneous group with more than 2 elements has trivial centre, and
in this case, the conclusion of Proposition 4.10 says that Aut(Γ)∼= Γ.

4.2. Torsion-free subgroups. Hall’s universal group shows that an inner ul-
trahomogeneous group can be infinite and remain torsion. In this section, we
will see that as soon as Γ has an element of infinite orders, it has all count-
able abelian torsion-free groups and all countable non-abelian free groups as
subgroups.

Proposition 4.12. Suppose Γ is inner ultrahomogeneous and it is not torsion.
Then it has a subgroup isomorphic to Z⊕N

Proof. Let g ∈ Γ be of infinite order. Fix any n, and let (pn)n be a sequence
of distinct primes.

Then for each j, we have a σ j ∈ Emb(〈g〉) given by σ j(g) = gp j . Then
σ1, . . . ,σn commute and they have no fixed points other than the identity.
Thus, Lemma 3.10 yields a set {gn | n ∈ N} of commuting elements such that
g gn = gpn for each n. It is easy to see that this implies that they freely generate
an abelian subgroup of Γ. □

Corollary 4.13. If Γ is inner ultrahomogeneous and not torsion, then it has a
subgroup isomorphic to Q⊕N (a countably infinite direct sum of copies of Q). In
particular, it embeds every countable torsion-free abelian group.

Proof. By the preceding proposition, for each n, Γ has a subgroup Gn isomor-
phic to Zn.

Now, for each n, we have an embedding of Gn into n!Gn+1, which extends
to an automorphism of Γ (by ultrahomogeneity). By reversing it, we obtain
a G′n ≥ Gn such that G′n

∼= Zn+1 and Gn ⊆ n!G′n. Going all the way back to G0
we obtain a direct system of subgroups of Γ whose union is isomorphic to
⋃

n∈N
1
n!Z

n = Q⊕N.
The “in particular” follows from the fact that every countable abelian

torsion-free group embeds into Q⊕N. □

Corollary 4.14. Let Γ be an inner ultrahomogeneous group. Then the following
are equivalent:

• Γ is not torsion,
• every countable torsion-free abelian group embeds into Γ,
• every countable (non-abelian) free group embeds into Γ.
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Proof. The equivalence of the first two bullets is the preceding corollary. The
third bullet clearly implies the first. For the converse, it is enough to consider
the free group of rank 2 (since all countable free groups embed into it).

By the second bullet, Γ has a subgroup G isomorphic to Z2. It is well-known
that Aut(Z2)∼= GL2(Z) has a free subgroup of rank 2. Letσ1,σ2 ∈ Aut(G) freely
generate a subgroup. By inner ultrahomogeneity, there are g1, g2 ∈ Γ which
act on G asσ1 andσ2, and it is easy to check that they generate a free subgroup
of Γ. □

Corollary 4.15. If Γ is inner ultrahomogeneous, then at least one of the follow-
ing holds:

• Γ is of finite exponent (and all of its abelian subgroups have order smaller
than 2100),
• Γ has a subgroup isomorphic to (Q/Z)⊕N (and every countable torsion
abelian group),
• Γ has a subgroup isomorphic to Q⊕N (and every countable torsion-free
abelian group, as well as every countable free group).

Proof. If Γ is not torsion, then the conclusion is a part of Corollary 4.14.
Otherwise, it is torsion, so by Theorem 4.7 either the first bullet holds or
else every finite abelian group embeds into Γ, in which case we can use
ultrahomogeneity to conclude that the second bullet holds. □

4.3. Centre.

Proposition 4.16. If Γ is inner (1-)ultrahomogeneous, then it its centre is
trivial or it is cyclic of order 2, and in the latter case, its nonidentity element is
the unique element of order 2.

Proof. By Remark 3.3, if g is central, then no other element of Γ has the same
order. This is only possible if the order of g is 2 or 1 (otherwise, g−1 ̸= g has
the same order). □

Corollary 4.17. If Γ is torsion with more than 2 elements, then Z(Γ) is trivial.

Proof. Suppose towards contradiction Γ is torsion and has a nontrivial cen-
tre. Then it has exactly one element of order 2, so by Lemma 4.3, it has no
elements of order 23 = 8.

Note that if g ∈ Γ is not of order 2 or 1, then there is some h ∈ Γ such that
gh = g−1 ̸= g. Since Γ is torsion, there is an odd power h′ of h whose order
is a power of 2, and it is not hard to see that gh′ = g−1. Since the order of h′

cannot be 2 (because the unique element of order 2 is central) or 8 (because
there are no elements of order 8), every non-central element of Γ is inverted
by an element of order 4.

Since Γ has more than 2 elements, it is not equal to its centre, so it follows
that there is an element of order 4.

In particular, there are two elements g, h of order 4 such that gh = g−1

and g2 = h2. It follows that G = 〈g, h〉 is a group of order 8 which is not
cyclic and has a unique element of order 2. It follows (from classification of
groups of order 8) that G ∼=Q8. But Q8 has an automorphism of order 4. By
inner ultrahomogeneity, this is realised by conjugation by some γ ∈ Γ. We
may assume without loss of generality that the order of γ is a power of 2 (by
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replacing it by γn for an appropriate n ≡ 1 (mod 4)), and clearly, γ2 is not
central. It follows that the order of γ is at least 8, a contradiction. □

Note that the torsion hypothesis is essential: Example 7.15 shows that a
non-torsion inner ultrahomogeneous group can have a nontrivial centre.

4.4. Divisibility.
Proposition 4.18. If G is an ultrahomogeneous group, n is a positive integer
and g has order m, then g is an n-th power if and only if G has an element of
order nm (where n∞=∞).
Proof. Let h be an element of order nm. Then hn has order m, so it is conjugate
to g via an automorphism. If k is the image of h via this automorphism, then
kn = g. □

Observe that, as noted in Main Theorem, Proposition 4.18 easily implies
that if Γ is torsion free, then it is divisible, and otherwise, it is divisible if and
only if it has elements of all finite orders.

4.5. Normal subgroups. In this section, we will give some sufficient condi-
tions for (uniform) simplicity of an inner ultrahomogeneous groups, and also
discuss some particular normal subgroups other than the centre.
Remark 4.19. If Γ is inner ultrahomogeneous, then all normal subgroups of Γ
are characteristic. In particular, Γ is simple if and only if it is characteristically
simple.

Per Remark 3.3, for any n ∈ N∪{∞}, the elements of order n form a single
conjugacy class, and so they generate normal subgroup. Within this section,
we will call them Γn.

Furthermore, for each prime p, we will write Γp∞ for the union
⋃

nΓpn .
(Note that this is a normal subgroup, for if Γpn+1 is nontrivial, then it contains
Γpn .) Finally, let us write Γ<∞ for the subgroup generated by all elements of
finite order.
Remark 4.20. An inner ultrahomogeneous Γ is simple if and only if for each
p prime or∞, the group Γp is trivial or equal to Γ.

Remark 4.21. Note that we always have Γ = Γ∞ or Γ = Γ<∞ (if Γ ̸= Γ<∞,
then Γ∞ contains its complement, and the complement of any proper sub-
group always generates the whole group).
Remark 4.22. If Age(Γ) is closed under ×Z, then Γ∞ = Γ (because every
element is a product of two elements of infinite order).
Proposition 4.23. IfAge(Γ) is closed under ∗Z (in particular, by Proposition 3.6,
if it is closed under finitary HNN-extensions), and Γ is inner ultrahomogeneous,
then it is uniformly simple.
Proof. Let a ∈ Γ is nonidentity. By hypothesis, we have a g ∈ Γ of infinite
order such that 〈a, g〉 is the free product of 〈a〉 and 〈g〉. Then ag is of infinite
order, so it follows that a = (ag)g−1 is the product of two elements of infinite
order. On the other hand, gag−1 is of the same order as a, and a(gag−1) is
of infinite order. It follows, via Remark 3.3, that every element is a product
of at most 4 conjugates of any other element. □
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Proposition 4.24. Suppose Γ is a torsion inner ultrahomogeneous group into
which all finite groups embed. Then Γ is uniformly simple.

Proof. Since any permutation is the product of a most two involutions, and
for every n > 2, there are two n-cycles in Sn+1 whose product is a pair of
disjoint transpositions: (1,2, . . . , n)(n, n+ 1, n− 1, . . . , 2) = (1,2)(n, n+ 1), it
is clear from the hypothesis (and Remark 3.3) that for every n, the product
of at most 4 elements of order n can have any finite order and Γ is uniformly
simple. □

Proposition 4.25. If Γ is inner ultrahomogeneous, then Γ = Γ∞ · Γ2∞ . In
particular, if Γ is torsion, then Γ = Γ2∞ , and if Γ has no elements of order 2,
then Γ = Γ∞.

Proof. Fix any g ∈ Γ. If the order of g is infinite or a power of 2, then clearly
g ∈ Γ∞ ·Γ2∞ . Consider the case when the order of g is finite and odd. Then
there is some h ∈ Γ such that gh = g−1. By raising h to an odd power, we can
ensure that h ∈ Γ∞ or h ∈ Γ2∞ .

But then 1 = gh g = h−1 ghg = h−1hg−1
g2, so g−2 = hg−1

h−1 ∈ Γ∞ · Γ2∞

(because Γ∞ · Γ2∞ is normal). Since the order of g is odd, it follows that
g ∈ Γ∞ ·Γ2∞ .

Finally, if g ∈ Γ is of order 2nm, where m is odd, then clearly g ∈ 〈gm, g2n〉
which is contained in Γ∞·Γ2∞ , since gm ∈ Γ2∞ and the order of g2n is odd. □

Corollary 4.26. If Γ is torsion inner ultrahomogeneous, not of finite exponent,
then for each prime p, Γ = Γp∞ .

Proof. Fix any p and n. We will find an element g of p-power order such that
a product of its conjugates is of order n, which will complete the proof by
inner ultrahomogeneity.

Let N = max(2n, p, 5). Note that by Theorem 4.7, Γ has a subgroup A
isomorphic to (Z/2Z)N , generated by g1, . . . , gN .

Note that by inner ultrahomogeneity, for any σ ∈ SN , there is a gσ such
that for k = 1, . . . , N we have g gσ

k = gσ(k). In particular, for any τ,σ ∈ SN , we
have

g g gτ
σ

k = (gk)
g−1
τ gσ gτ = g gσ gτ

τ−1(k) = gτστ−1(k) = gστ−1 (k).

Let g = g(1,...,p). We may assume without loss of generality that the order
of g is a p-power (by raising it to an appropriate power if necessary).

Since N ≥ 5, all nontrivial normal subgroups of SN contain AN . In particular,
the normal subgroup generated by (1, . . . , p) contains AN . It follows that if
σ ∈ AN , then we can choose gσ in the group generated by gΓ.

In particular, this holds for σ = (1,2, . . . , n)(n + 1, . . . , 2n). Clearly, the
order of gσ is divisible by n in this case, so a power of gσ is of order n, which
completes the proof. □

Remark 4.27. If Age(Γ) is closed under ×G for some fixed nontrivial G, then
the conclusion of Corollary 4.26 can be improved to say that for each p, there
is a fixed k such that Γ = Γpk .

Proposition 4.28. If Γ is inner ultrahomogeneous, then it is not a nontrivial
direct product.
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Proof. We will argue by contraposition: suppose towards contradiction that
Γ = G1×G2 is ultrahomogeneous with nontrivial factors. If G1 has an element
g of infinite order and h ∈ G2 is nonidentity, then gh ∈ G1h is of infinite order,
so it is conjugate to g, a contradiction, since G1 Ã Γ. Thus, G1 is torsion, and
similarly G2.

Now, it is not hard to see that G1 and G2 must also be inner ultrahomoge-
neous, so by Proposition 4.25, if they are nontrivial, each has an element of
order 2. But by Remark 3.3, this contradicts their normality in Γ. □

Proposition 4.29. If Γ is an inner ultrahomogeneous group, then its commu-
tator subgroup is the group generated by the set of squares. In particular, if Γ
is 2-divisible, then it is equal to Γ. In any case, the index of the commutator
subgroup is at most 2.
Proof. By inner ultrahomogeneity, for every g there is some h such that
h−1 gh= gh = g−1. In particular, [g, h−1] = g2.

The opposite inclusion is true for any group: the subgroup of G generated
by squares is normal, and the quotient is a group of exponent 2, hence abelian.

The fact that the commutator subgroup is of index at most 2 follows from
the first part and Proposition 4.18, since they imply that all nontrivial cosets
contain an element of order 2n (for a fixed n), so nonidentity elements in the
abelianisation are conjugate. □

(Note that Γ = S3 shows that the derived subgroup can be a proper sub-
group of Γ.)

4.6. Disjoint amalgamation and the definability of subgroups. Recall the
following definition.
Definition 4.30. Let K be a class of first order structures. We say that K
has disjoint amalgamation if for every diagram of the shape A← C → B in
K , there is some D ∈K into which A, B embed and such the images of C via
both embeddings are exactly the intersection of images of A and B.

For example,K has disjoint amalgamation if either it is either closed under
amalgamated free products, or it is the class of finite groups (by Fact 2.4).
Remark 4.31. If K has the amalgamation property, then in the above, it suf-
fices to consider the case when A= B and the two embeddings of C coincide.
Fact 4.32. If M is an ultrahomogeneous structure and Age(M) has disjoint
amalgamation, then for every finitely generated substructure A⊆ M and element
b ∈ M \ A, the orbit Aut(M/A) · b is infinite.
Proof. This is well-known and the proof is standard. □

The following proposition shows that in a quite general context, we can
actually quite easily define the subgroup of an inner ultrahomogeneous group
generated by a given finite set.
Proposition 4.33. If Γ is inner ultrahomogeneous and Age(Γ) has disjoint
amalgamation (or, more generally, Γ satisfies the conclusion of Fact 4.32), then
for every finite A0 ⊆ Γ we have C2(A0) = 〈A0〉; in particular, 〈A0〉 is a definable
subset of Γ and for each n, the family of n-generated subgroups of Γ is uniformly
definable.
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Proof. Immediately follows from Fact 4.32 and Remark 4.9. □

Remark 4.34. Note that the conclusion of Proposition 4.33 is false if Γ is
nontrivial centre and 〈A0〉 does not contain the centre (clearly, Z(Γ)≤ C2(A0)).
For instance, this happens for A0 generating a torsion-free subgroup of the
group in Example 7.15.

Remark 4.35. On the other hand, at least in some special cases, variants of
Proposition 4.33 do hold without assuming disjoint amalgamation, possibly
with different formulas. See e.g. Proposition 5.24.

5. Model-theoretic properties

5.1. Preliminary observations. In this section, we make some preliminary
observations of mostly model-theoretic nature which will be useful through-
out.

We start by noting an important consequence of the trichotomy in Corol-
lary 4.15.

Lemma 5.1. If Γ is an inner ultrahomogeneous, then the following are equiva-
lent:

• Γ is not of finite exponent,
• Γ contains an infinite indiscernible set,
• for each n, Γ contains an indiscernible sequence of n elements.

Proof. If Γ is not of finite exponent, then by Corollary 4.15, it contains a copy
of either Z⊕N or (Z/2Z)⊕N, and by ultrahomogeneity, their generators form
an indiscernible set. The rest is straightforward. □

Remark 5.2. IfΓ is inner ultrahomogeneous and p is any partial automorphism
of Γ (not necessarily finite) and Γ∗ ⪰ Γ is |p|+-saturated, then there is some
g0 ∈ Γ∗ such that for g ∈ dom p we have g g0 = p(g).

Lemma 5.3. Suppose Γ is inner ultrahomogeneous, not of finite exponent. Fix
n ∈ N, n > 1 and g ∈ Γ which is either of infinite order or, if Γ is torsion, of
order divisible by n. Then C(g) ⊊ C(gn).

Furthermore, for each N , we can find g1, g2, . . . , gN each of the same order
as g, such that 〈g, g1, . . . , gN 〉 is naturally isomorphic to 〈g〉N+1 and moreover
C(g, g1, . . . , gN ) ⊊ C(gn, g1, . . . , gN ).

Proof. Consider first the case when the order of g is infinite. Then Γ is not
torsion, so by Proposition 4.12, it contains a subgroup isomorphic to Zn+1.
Then by inner ultrahomogeneity, there is a h ∈ Γ which squares the first
generator and cyclically permutes the other n generators. This implies that h
has infinite order, so by ultrahomogeneity, we may assume that h= g. Now,
let γ be one of the cyclically permuted generators. Then γ ∈ C(gn) \ C(g).

Now, suppose Γ is torsion and n divides the order of g. By Theorem 4.7,
we may assume without loss of generality that Γ ≥ 〈g〉 × (Z/nZ). Let g0 be
a generator of Z/nZ. Then by inner ultrahomogeneity, there is a h ∈ Γ such
that gh = g g0 and gh

0 = g0. It follows that h ∈ C(gn) \ C(g).
For the “furthermore” part, just note that in the non-torsion case, we can

instead start with ZN+n+1 and have h commute with the extra N generators.
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Then 〈h〉 trivially intersects the group generated by them, because no non-
identity element of 〈h〉 commutes with the generator squared by h. In the
torsion case, start with a group isomorphic to 〈g〉N+1 × (Z/nZ) and ensure
that h commutes with the generators of other copies of 〈g〉. □

Remark 5.4. The first part of Lemma 5.3 holds also for arbitrary inner ultra-
homogeneous Γ if g is of finite order divisible by n and either n> 2 or n= 2
and the order of g is divisible by 4.

Furthermore, under the assumptions of the Lemma (i.e. if g is of infinite
order or Γ is torsion of infinite exponent), one can actually show that the
centralisers are not only properly contained, but [C(gn) : C(g)] is infinite.

Corollary 5.5. If Γ is inner ultrahomogeneous and not of finite exponent and
Γ∗ ⪰ Γ is ℵ1-saturated, then there is an infinite indiscernible set X ⊆ Γ∗ such
that:

• X freely generates an abelian subgroup of Γ∗,
• given any injective partial function f : X → X there is a g ∈ Γ∗ such
that for x ∈ dom f we have x g = f (x),
• for every f : X → N, there is a g ∈ Γ∗ such that for each x ∈ X we have

g ∈ C(x f (x)) \ C(x) if f (x) ̸= 1 and g ∈ C(x) otherwise.

Proof. Note that for the third part, by compactness, it is enough to consider
f which is equal to 1 for all but one x ∈ X .
If Γ is not torsion, we can take for X a subset of Γ freely generating an

abelian subgroup (this exists by Proposition 4.12). Then the second bullet is
immediate by Remark 5.2. Finally, the third bullet follows from the preceding
paragraph and Lemma 5.3.

If Γ is torsion, then by Theorem 4.7, for each N , Γ has a subgroup iso-
morphic to (Z/N !Z)N . Then the conclusion follows via a standard argument
similar to the non-torsion case, using compactness and Lemma 5.3. □

5.2. Pseudofiniteness.

Remark 5.6. If Γ is torsion or torsion-free inner ultrahomogeneous of infinite
exponent, then by Lemma 5.3 (or, more generally, by Remark 5.4, if Γ is e.g.
divisible), it satisfies the following sentence:

∀x1∃x2C(x2) ⊊ C(x1),

which is not true in any finite group, and hence these groups are not pseu-
dofinite. Note that written explicitly in group language, it is a ∀∃∀-sentence;
on the other hand, if Γ is locally finite, then any ∃∀-sentence true in Γ is true
in a finite group.

5.3. Failure of ℵ0-saturation, q.e. and smallness.

Proposition 5.7. If Γ is inner ultrahomogeneous and not of finite exponent,
then Th(Γ) is not small (in fact, S3(;) is uncountable).

Proof. For each A⊆ N, put:

pA(x , y, z) := {(x yk
)z = x yk

| k ∈ A} ∪ {(x yk
)z ̸= x yk

| k /∈ A}.

It is clear that pA are pairwise inconsistent.
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On the other hand, if Γ is inner ultrahomogeneous and it is not of finite
exponent, then by Lemma 5.1, it contains an infinite indiscernible set (an)n∈N.
Then we have partial automorphisms σ such that σ(an) = an+2 for each n and,
for each A, τA such that τA(a2n) = a2n if n ∈ A and τA(a2n) = a2n+1 if n /∈ A.
This and Remark 5.2 easily imply that each pA is consistent. □

Proposition 5.8. If Γ is inner ultrahomogeneous and not of finite exponent,
then the 2-type p(x , y) expressing that C(x) ⊊ C(y) and x , y freely generate an
abelian subgroup of Γ is (consistent and) omitted in Γ.
Proof. In more detail, p(x , y) consists of a formula expressing C(x) ⊊ C(y)
(which implies that x and y commute) as well as, for every (k, l) ∈ Z2\{(0,0)},
the formula xk y l ̸= 1.

To see that this is consistent, fix any integer N > 0 and let g ∈ Γ be of order
infinite or N2 if Γ is torsion (in the torsion case, this exists by Theorem 4.7).
Then if −N < k, l < N , then gk(gN )l = gk+Nl . Then |k+ Nl| ≤ |k| + N |l| <
N − 1 + N(N − 1) = N2 − 1 < N2, and k + Nl ̸= 0, so gk(gN )l ̸= 1, and by
Lemma 5.3, C(g) ⊊ C(gN ).

To see that this type is omitted, just note that if g1, g2 freely generate an
abelian subgroup of Γ, then there is a partial automorphism which fixes g1
and squares g2. The corresponding witness to inner ultrahomogeneity is in
C(g1) \ C(g2). □

Remark 5.9. If Γ is inner ultrahomogeneous and it has elements of all finite
orders, then one can use Remark 5.4 to show that for each set A of odd primes,
the set of formulas saying that for each odd prime p, C(x) = C(x p) if and only
if p ∈ A is consistent. Since these sets are obviously pairwise inconsistent,
this implies that S1(;) is uncountable. Since inner ultrahomogeneity easily
implies that there are only countably many 1-types realised in Γ (even if
Γ is uncountable), we see that in such case, most of the types in S1(;) are
necessarily omitted.
Proposition 5.10. If Γ is inner ultrahomogeneous and not of finite exponent,
then the formula C(x) ⊆ C(y) is not equivalent to any quantifier-free formula
(in the language of groups); in particular, Γ does not admit elimination of
quantifiers.
Proof. By Proposition 5.8, we have in a saturated model two elements a, b
such that (a, b) and (b, a) have the same quantifier-free type, but C(a) ⊆
C(b) ̸⊆ C(a). □

Corollary 5.11. If Γ is infinite inner ultrahomogeneous, then it does not realise
all finitary types over ;. In particular, it is not ℵ0-saturated.
Proof. If Γ is of finite exponent, then by Lemma 5.1, it omits some n-type
defining an indiscernible sequence (which is consistent, since Γ is infinite).

Otherwise, Γ is not of finite exponent, then it omits a 2-type by Proposi-
tion 5.8. □

Corollary 5.12. If Γ is infinite inner ultrahomogeneous, then it is not ℵ0-
categorical.
Proof. Immediate by Corollary 5.11, since every ℵ0-categorical structure is
ℵ0-saturated. □
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Corollary 5.13. Every infinite inner ultrahomogeneous group has an elementary
extension which is not inner ultrahomogeneous.

Proof. Immediate, since every structure is elementarily equivalent to an ℵ0-
saturated one. □

Remark 5.14. It is easy to see that an elementary substructure of an inner
ultrahomogeneous group is also inner ultrahomogeneous.

Remark 5.15. If Γ is inner ultrahomogeneous and Γ∗ ≡ Γ, then for any finite
tuples a, b ∈ Γ∗, if qftp(a) = qftp(b) is isolated, then they are conjugate in Γ∗

Corollary 5.16. If Γ is inner ultrahomogeneous and Γ∗ is an atomic model of
Th(Γ), then Γ∗ is inner ultrahomogeneous.

Proof. Immediate by the preceding remark. □

Remark 5.17. It is possible for an inner ultrahomogeneous group to be atomic,
for instance, this is true if it is locally finite.

5.4. Untameness.

Theorem 5.18. Let Γ be an inner ultrahomogeneous group of infinite exponent.
Then:

• the formula x y = y x has the independence property (in particular, it
has the order property),
• for each n, the formula ϕ( x̄; y1, y2) = y x1 x2···xn

1 ∈ C(y2) has the n-
independence property,
• the formula C(x) ⊆ C(y) has the strict order property,
• the formula x ∈ C(y2) \ C(y1) has the tree property of the second kind.

Proof. Recall that by Lemma 5.1, not having finite exponent is equivalent to
having an infinite indiscernible set X in Γ. Let (an)n∈N enumerate one. Fix a
|Γ|+ saturated Γ∗ ⪰ Γ.

Then by Remark 5.2, every injective partial function X → X is extended by
conjugation by some γ ∈ Γ∗.

In particular, for each A ⊆ N, we can take γA ∈ Γ∗ such that aγA
2n = a2n

for n ∈ A and aγA
2n = a2n+1(̸= a2n) for n /∈ A, thus showing IP for the formula

x y = y x .
For IPn, let (av,i)v∈Z⊕N,i∈{0,1} enumerate an indiscernible set in Γ, as per

Lemma 5.1. Via Remark 5.2, for each A⊆ Z⊕N, let gA ∈ Γ∗ be such that agA
v,0

equals av,0 if v ∈ A, and av,1 otherwise, and for each w ∈ Z⊕N, let gw ∈ Γ∗ be
such that agw

v,0 = av+w,0.
For each i, j ∈ N2, let gi, j = g jei

, where ei is the i-th vector in the stan-
dard basis of Z⊕N. Then for any i0, . . . , in ∈ N we have a

g0,i0 g1,i1 ···gn,in
0,0 =

a(i0,i1,...,in,0,0,...),0, and hence for A⊆ Z⊕N we have a
g0,i0 g1,i1 ···gn,in
0,0 ∈ C(gA) if and

only if (i0, i1 . . . , in, 0, . . .) ∈ A. The conclusion follows.
To see that C(x) ⊆ C(y) has the strict order property, just note that we

have a type
p(x) = {C(x2n

) ⊊ C(x2n+1
) | n ∈ N}
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This is consistent by Lemma 5.3: if Γ is not torsion, then this is simply realised
by any element of Γ infinite order. If Γ is torsion, then any finite part is
realised by an element of order 2n for a sufficiently large n.

Finally, for TP2, fix a set as in Corollary 5.5, enumerate it as (gn)n∈N. Let
(pn)n∈N be an enumeration of prime numbers. Then TP2 for x ∈ C(y2)\C(y1)
is witnessed by the array ((gn, gpm

n )n,m. Indeed, by Corollary 5.5, for each
f : N→ N there is a g such that for all n we have g ∈ C(g

p f (n)
n )\C(gn), so every

path is consistent, but if p, q are distinct primes, then C(gp
n)∩ C(gq

n) = C(gn),
so every row is 2-inconsistent. □

Remark 5.19. In the language of groups, the formulas witnessing IP and IPn
are positive quantifier-free, the formula witnessing TP2 is quantifier-free, but
not positive, while the formula witnessing SOP is universal and not positive
(and not equivalent to any quantifier-free formula by Proposition 5.10). By
[SU06, Theorem 4.2], SOP (or even SOP4) cannot be witnessed by a quantifier-
free formula, or even a quantifier-free type.

5.5. Non-rosiness. One might think that due to the existence of a stationary
independence relation in some inner ultrahomogeneous groups (see Propo-
sition 7.9), there is a hope that they might be rosy (see [EKP08] for the
definition and more details). However, this is not true, at least for the groups
of infinite exponent.

Corollary 5.20. If Γ is inner ultrahomogeneous and not of finite exponent, then
it is not rosy.

Proof. By Corollary 5.5 (or Lemma 5.3), an inner ultrahomogeneous group
does not satisfy the ucc condition of [EKP08, Proposition 1.3]. Hence, it is
not rosy. □

5.6. Straight maximality. Recall the following property of a first order the-
ory, defined in e.g. [Coo82] (as [1]) and in [She00, Definition 5.20].

Definition 5.21. We say that a complete first order theory T is straightly
maximal if here is a formula ϕ( x̄ , ȳ) such that for every quantifier-free for-
mula χ(z1, . . . , zn) in the language of Boolean algebras and every (equiv-
alently, some) M |= T , we can find b̄1, . . . , b̄n ∈ M such that P (M x̄) |=
χ(ϕ(M , b̄1), . . . ,ϕ(M , b̄n)).

Note that straight maximality implies e.g. TP2 and the strict order property,
and true to its name, it is the strongest in a certain class of “wildness” condi-
tions (it does not, however, seem to imply the n-independence property).

We will use the following simple criterion for straight maximality.

Fact 5.22. T is straightly maximal if and only if there is a formula ϕ( x̄ , ȳ) such
that for every n ∈ N, there are n disjoint nonempty ϕ-definable sets such that
the union of any number of them is ϕ-definable.

Proof. This is [Coo82, Lemma 3, Section 2.0] (and not hard to prove directly).
□

Lemma 5.23. If G is a finite abelian group of odd order and g ∈ G does not
generate G, then there is a nontrivial automorphism of G which fixes g.
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Proof. If the order of g equals the exponent of G, then 〈g〉 is a direct factor.
Since it is not equal to G, we have an automorphism which fixes it and inverts
the group complementing it (which is of odd order greater than 1, so this is
nontrivial).

Otherwise, if we decompose G into direct sum of cyclic groups of prime
order, the projection of 〈g〉 into one of them, say G1, is not onto.

Write G = G1 × G2 and g = g1 + g2 where g1 ∈ G1, g2 ∈ G2. Then g1 does
not generate G1 and G1 is a p-group for an odd prime p.

Let d be the order of g1. Then d = 1 or p divides d, so p does not divide
d + 1. It follows that G1 has a nontrivial automorphism given by x 7→ xd+1

which fixes g1, which we can extend by identity on G2, yielding a nontrivial
automorphism fixing g. □

Proposition 5.24. Suppose Γ is inner ultrahomogeneous and g ∈ Γ is of finite
odd order. Then

〈g〉= {h2 | h ∈ C2(g)}
Proof. ⊆ is clear since the order of 〈g〉 is odd, so squaring is bijective. For ⊇,
let h ∈ C2(g).

Note that this implies that any finite partial automorphism of 〈h, g〉 which
fixes g must fix its entire domain. Furthermore, this implies also that for
every k ∈ Z we have hk ∈ C2(g). Write n for the order of h.

If n =∞, then 〈g, h〉 ∼= 〈g〉 × 〈h〉, so 〈g, h〉 has a nontrivial automorphism
which fixes g and inverts h, which is a contradiction.

If n is divisible by 4, then similarly, g generates a direct factor of 〈g, hn/4〉,
and inverting hn/4 yields a nontrivial automorphism fixing g.

Thus, the order of h2 is finite and odd. But then 〈g, h2〉 is abelian of odd
order. Since every automorphism fixing g is trivial, by Lemma 5.23, it follows
that 〈g, h2〉= 〈g〉, so h2 ∈ 〈g〉. □

Corollary 5.25. There is a formula ϕ(x , y) such that for any g ∈ Γ of finite
odd order we have ϕ(g, h) if and only if h ∈ 〈g〉 and the order of h is prime.
Proof. Letψ(x , y) be a formula expressing that y is the square of an element of
C2(x) (so that for g ∈ Γ of odd order we have, per Proposition 5.24, ψ(g,Γ) =
〈g〉). Let χ(x) be the formula saying that x ̸= 1 ∧ ∀y(ψ(x , y) ∧ y ̸= 1 →
ψ(y, x)), so that for g ∈ Γ of odd order, Γ |= χ(g) if and only if the order of g
is prime. Then it is not hard to see that ϕ(x , y) = ψ(x , y)∧ χ(y) works. □

Theorem 5.26. Suppose Γ is inner ultrahomogeneous and for each n, there is a
g ∈ Γ of finite order with at least n distinct prime divisors. Then Γ is straightly
maximal.
Proof. Let ϕ(x , y) be the formula as in Corollary 5.25. Note that the hypoth-
esis of the theorem implies that for each n, we can find a set P of n odd
primes and an element g ∈ Γ of order

∏

P. Clearly, for any A ⊆ P if we
put gA = g

∏

(P\A), then the order of gA is
∏

A, and ϕ(gA,Γ) = {h ∈ 〈g〉 |
the order of h is in A}. The conclusion follows by Fact 5.22. □

It may be interesting to ask whether the hypotheses of Theorem 5.26 are
necessary. For example:
Question 5.27. Suppose Γ is infinite torsion-free inner ultrahomogeneous. Can
Γ be straightly maximal?
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6. Ample generic automorphisms

In this section, we provide simple sufficient conditions for the ampleness
of generic automorphisms of an inner ultrahomogeneous group, generalising
known results about Hall’s universal group.

Definition 6.1. Fix a topological group G. A generic n-tuple in G is an n-tuple
ḡ ∈ Gn such that ḡG (the orbit of diagonal action of G via conjugation) is
comeagre in Gn. We say that G has ample generics if for each n ∈ N, it has a
generic n-tuple.

If M is a first order structure, then we say that M has ample generic auto-
morphisms if Aut(M) (with the usual group topology, given by stabilisers of
finite sets) has ample generics.

The main tool in the proof will be the following lemma.

Lemma 6.2. Suppose K is a hereditary class of groups with inner EPPA and
AP. Suppose furthermore that K is closed under × or under ×Z.

Let A≤ B, C be K -groups. Fix partial automorphisms p1, p2, . . . , pn of B and
q1, . . . , qn of C , such that for each j we have p j↾A = q j↾A ∈ Aut(A).

Then there is an amalgam D ∈K of B, C over A and elements g1, . . . , gn ∈ D
such that (identifying B, C with subgroups of D containing A) for each b ∈ B, c ∈
C and j we have bg j = p j(b) and cg j = q j(c).

Proof. Let us first prove the following Claim:

Claim 1. IfK is closed under ×Z, then for each G ∈K and n-tuple p1, . . . , pn of
partial automorphisms of G, we can find H ≥ G in K and h1, . . . , hn ∈ H which
witness inner EPPA for p1, . . . , pn and freely generate a subgroup of H which
intersects G trivially.

Proof. By hypothesis, G×Z2 ∈K . Fix f1, . . . , fn ∈ Aut(Z2) which freely gener-
ate a subgroup of Aut(Z2). Then for each k, pk ∪ fk is a finite partial automor-
phism of G × Z. If we take H ≥ G × Z with witnesses h1, . . . , hn ∈ H of inner
EPPA for p1 ∪ f1, . . . , pn ∪ fn, then it is easy to see that they work. □(claim)

Claim 2. For any A, B, C , pk, qk as in the statement of the theorem, we can find
groups B̄ ≥ B, C̄ ≥ C , and for k = 1, . . . , n some bk ∈ B̄, ck ∈ C̄ which are
witnesses of inner EPPA for pk and qk, respectively, and such that

〈A, b1, . . . , bn〉 ∼= 〈A, c1, . . . , cn〉

via an isomorphism fixing A and sending bk to ck for k = 1, . . . , n.

Proof. IfK is closed under ×Z, then first, apply the preceding claim to G = B
and p1, . . . , pn, and put B̄ = H, bk = hk for k = 1, . . . , n. Then, since 〈b1, . . . , bn〉
normalizes A and intersects it trivially, 〈A, b1, . . . , bn〉 ∼= A⋊ Fn (where Fn is the
free group of rank n), where the action is given by abk = pk(a).

Since we can repeat the same procedure for C , and for a ∈ A we have
pk(a) = qk(a), the conclusion follows.

Now, ifK is closed under ×, consider B×C . Put A′ = A×{1}, A′′ = {1}×A.
Then for each k, pk × qk is a partial automorphism of B × C . Let G ≥ B × C
and g1, . . . , gn ∈ G be the corresponding witnesses of inner EPPA. Put H =
G × 〈g1, . . . , gn〉.
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Finally, put B̄ = 〈B × {1}2, (g1, g1), . . . , (gn, gn)〉 ≤ H and similarly, C̄ =
〈{1}×C ×{1}, (g1, g1), . . . (gn, gn)〉 ≤ H (identified with supergroups of B and
C respectively), and for k = 1, . . . , n put bk = ck = (gk, gk). Again, the group
generated by (gk, gk), k = 1, . . . , k normalises and intersects trivially both
A′ × {1} and A′′ × {1} (i.e. the copies of A in B̄ and C̄ , respectively), we
conclude as in first two paragraphs. □(claim)

Finally, to prove the lemma, take B̄ and C̄ as in Claim 2. Then if we take for
D their amalgam along 〈A, b1, . . . , bn〉 ∼= 〈A, c1, . . . , cn〉, the conclusion is clearly
satisfied. □

The following proposition basically says that inner EPPA implies (n-)EPPA.

Proposition 6.3. If Γ is inner ultrahomogeneous, A≤ Γ is finitely generated
and p1, . . . , pn is an n-tuple of partial automorphisms of A, then there is B ≤ Γ
containing A and σ1, . . . ,σn ∈ Aut(B) such that σi extends pi for i = 1, . . . , n.

Proof. Let g1, . . . , gn be witnesses for inner ultrahomogeneity of Γ correspond-
ing to p1, . . . , pn and take B = 〈B, g1, . . . , gn〉 and let σi be the inner automor-
phism given by gi for i = 1, . . . , n. □

We will use the following standard criterion for the existence of generic
automorphisms.

Fact 6.4. Let K be a Fraïssé class and M its limit.
Fix any n ∈ N. Let K (n)

p be the class of K -structures with n-tuples of partial
automorphisms.

Then ifK (n)
p has the joint embedding property and a cofinal subclass of amal-

gamation bases, then there is a generic n-tuple in Aut(M). In particular, if this
is true for all n, then M has ample generic automorphisms.

Proof. This follows from [Iva99, Theorem 1.2] or [KR07, Theorem 6.2]. The
special case of n= 1 is [Tru92, Theorem 2.1]. □

Theorem 6.5. Suppose Γ is a countable inner ultrahomogeneous group and
Age(Γ) is closed under × or ×Z. Then Γ has ample generic automorphisms.

Proof. Let K = Age(M), so that M is the Fraïssé limit of K (since it is count-
able and ultrahomogeneous). By Fact 6.4, it suffices to show that for each
n ∈ N, K (n)

p has JEP and a cofinal subclass of amalgamation bases. Note that
Lemma 6.2 implies that the class ofK (n)

t ofK -groups with n-tuples of (total)
automorphisms consists of amalgamation bases. This class is cofinal by by
Proposition 6.3. JEP ofK (n)

p follows, since every partial automorphism can be
extended to one with the identity element in its domain (which is then nec-
essarily fixed), and the trivial group with an n-tuple of trivial automorphisms
is in K (n)

t . □

Remark 6.6. If Γ is torsion, then in order to obtain a single generic automor-
phism, it is actually enough to assume that Age(Γ) is closed under products
with all finite cyclic groups.

Remark 6.7. Proposition 3.6 implies that Theorem 6.5 applies in particular
to any countable inner ultrahomogeneous group whose age is closed under
∗Z or under finitary HNN-extensions.
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Remark 6.8. Note that while under hypotheses of Theorem 6.5 generic au-
tomorphisms exist, and by inner ultrahomogeneity, they can be arbitrarily
closely approximated by inner automorphisms, an inner automorphism of a
countable group Γ cannot be generic (unless Aut(Γ) is trivial). This follows
from the fact that inner automorphisms form a countable normal subgroup
of Aut(Γ).

7. Examples

7.1. Finite groups. As noted in Main Theorem, there are no finite inner
ultrahomogeneous groups of more than 6 elements. It follows that there are
exactly three isomorphism classes of finite inner ultrahomogeneous group:
the trivial group, the cyclic group of order 2, and the nonabelian group of
order 6. (Incidentally, those are the first three symmetric groups.)

Example 7.1. The cyclic group of order 2 is inner ultrahomogeneous and
abelian (and it is the only such nontrivial group, up to isomorphism), while S3
is inner ultrahomogeneous, has trivial centre, but it is not simple (its derived
subgroup is a nontrivial proper normal subgroup).

7.2. Hall’s universal locally finite group. Let ΓF be Hall’s universal group,
i.e. the Fraïssé limit of the class of all finite groups. In fact, the original
paper of Hall giving the first construction (which was explicit and did not use
Fraïssé theory) already contains a proof that ΓF is inner ultrahomogeneous
[Hal59, Lemma 3] and the fact that the class of finite groups has inner EPPA
(Fact 2.3).

Remark 7.2. The universal theory of ΓF is the universal theory of finite groups
(this follows from the fact that it is locally finite and every finite group embeds
into it).

Remark 7.3. By [Slo81], the universal theory of finite groups (= the universal
theory of ΓF) is not decidable.

Example 7.4. By Main Theorem and the above remarks, ΓF is uniformly
simple, it has ample generic automorphisms, it is not ℵ0-saturated, its theory
is not decidable, does not admit q.e., is not small, is straightly maximal (so it
has SOP, TP2 and the order property), and it has IPn for all n.

(Note that, as noted in the introduction, at least some of the properties of
ΓF noted in Example 7.4 were known, particularly the fact that it is unstable
and has ample generic automorphisms.)

7.3. Universal locally recursively presentable group. Consider the class
of finitely generated, recursively presentable groups. Corollary 3.8 easily
implies that it is a Fraïssé class with inner EPPA.

Thus, it has a Fraïssé limit ΓR which is inner ultrahomogeneous. Equiva-
lently, we can define ΓR as the limit of the class of finitely presentable groups
— it is a non-hereditary class which still has inner EPPA, amalgamation and
joint embedding, and its hereditary closure is the above class by Higman’s
embedding theorem, so the limit is the same.
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Remark 7.5. Similarly to ΓF , universal theory of ΓR is the universal theory
of finitely generated recursively presentable groups. Since every such group
embeds in a finitely presentable group, this is the same as the universal theory
of finitely presentable groups. Undecidability of the word problem for groups
implies that this universal theory is undecidable.
Remark 7.6. It is not hard to see that every existential statement true in some
group is true in a finitely presentable group, so the universal theory of ΓR is
in fact the universal theory of groups.
Remark 7.7. Since the universal theory of groups is not the universal theory of
finite groups (briefly, because a finitely presentable group satisfies the latter
if and only if it is residually finite), the universal theories of ΓF and ΓR do not
coincide. In particular, ΓF and ΓR are not elementarily equivalent.

We finish by noting that the following relation gives us a stationary inde-
pendence relation in ΓR (in the sense of [TZ13]).
Definition 7.8. Given three finite subsets A, B, C of a group G, let us say
that A, B are freely independent over C if 〈A, B, C〉 is naturally isomorphic to
〈A, B〉 ∗〈B〉 〈B, C〉.
Proposition 7.9. Suppose G is an ultrahomogeneous group andAge(G) is closed
under finitary amalgamated free products. Then free independence is a station-
ary independence relation on finite subsets of G.
Proof. We check the axioms as listed in [TZ13, Definition 2.1]. Invariance
is clear, as is symmetry. Existence follows from ultrahomogeneity and the
assumption that Age(G) is closed under amalgamated free products. Station-
arity follows from ultrahomogeneity.

Monotonicity and transitivity follow from the observations that if B ≤
A, C , D ≤ Γ, then A ∗B C ≤ A ∗B 〈C , D〉 and (A ∗B C) ∗C 〈C , D〉 ∼= A ∗B (C ∗C
〈C , D〉). □

Note that the free independence is not stationary in saturated extensions
of ΓR, as they do not have quantifier elimination, see Proposition 5.8 and
Proposition 5.10.
Example 7.10. By Main Theorem and the above remarks, ΓR is uniformly
simple, it has ample generic automorphisms, it is not ℵ0-saturated, its theory
is not decidable, does not admit q.e., is not small, is straightly maximal (so
SOP, TP2 and the order property), and it has IPn for all n.

Moreover ΓR ̸≡ ΓF and ΓR admits a stationary independence relation.
7.4. Closure under HNN-extensions. Let us start with any group Γ0. We
recursively define an ascending sequence of groups of length ω.

Suppose we have Γn. Then enumerate all finite partial automorphisms
Γn→ Γn as (pi)i∈I . Then let Γn+1 be the HNN-extension Γn∗(pi)i∈I

(with a set
of stable letters indexed by I). Finally, put Γ =

⋃

nΓn. Then it is easy to check
(using Corollary 3.7) that Γ is inner ultrahomogeneous of cardinality at most
|Γ0|+ℵ0.
Example 7.11. The group Γ constructed above is an inner ultrahomogeneous
group containing an arbitrary group Γ0, of cardinality 〈Γ0〉+ℵ0. By Main The-
orem it follows that e.g. it is it is uniformly simple, not ℵ0-saturated, it has
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TP2 and SOP, and if it is countable, then it has ample generic automorphisms.
Moreover, by Proposition 3.6, Age(Γ) is closed under finitary amalgamated
free products, so by Proposition 7.9, free independence is a stationary inde-
pendence relation on Γ.

Finally, by the torsion theorem for HNN extensions (Fact 2.2), the only
finite orders of elements of Γ are the finite orders of elements of Γ0, so in
particular, we can obtain groups which are torsion-free in this way, or groups
which are not divisible (e.g. if Γ0 is a nontrivial finite group).
Example 7.12. If K0 is any set of groups, then we can build a group Γ0 as
the direct sum of elements of K0 and then apply the above construction. In
particular, if K0 is a countable set of finitely generated groups, the age of the
group Γ we obtain is a Fraïssé class of groups with inner EPPA containingK0.
Alternately, we can do this by simply closing K0 under direct products and
finitary HNN-extensions (and finitely generated embedded subgroups) and
applying Corollary 3.8.
7.5. Existentially closed groups. In a similar vein to the previous example,
as noted in e.g. [Hod97, Exercise 9 for Section 8.1], any group which is
existentially closed in the class of groups is inner ultrahomogeneous. Indeed,
if Γ is existentially closed and p : Γ→ Γ is a finite partial automorphism, then
the HNN-extension Γ∗p satisfies ∃x(dom(p)x = p(dom p)), so the same must
be true in Γ. Similarly, any torsion-free group which is existentially closed in
the class of torsion-free groups is inner ultrahomogeneous.

In particular, one can show that the group ΓR is existentially closed, as
is any ultrahomogeneous group whose age is the class of finitely generated,
recursively presentable groups.

Likewise, any locally finite group which is existentially closed in the class
of locally finite groups is inner ultrahomogeneous. This follows from e.g. the
argument sketched after [She17, Definition 0.1] (see also [Hod97, Exercise
7 for Section 11.6]). Note that in this class, there is only one countable
group, namely ΓF . Furthermore, as noted in [She17, Claim 0.14], inner
ultrahomogeneity and existential closedness are equivalent for a locally finite
group whose age is the class of all finite groups (by Proposition 3.4, in this
case, inner ultrahomogeneity is also equivalent to ultrahomogeneity).
Example 7.13. These groups are obviously divisible, infinite, and uniformly
simple, but Main Theorem implies easily that all these groups are also not
ℵ0-saturated, they have TP2 and SOP (and are straightly maximal, apart from
the torsion-free ones). It is not clear whether all the countable ones have
ample generic automorphisms.
7.6. An example with nontrivial centre. In this section, we will use a vari-
ant of the construction from Example 7.11 to get an example of an infinite
inner ultrahomogeneous group whose centre is nontrivial (so in particular, it
is not simple).

First, let us make the following observation.
Fact 7.14. Suppose G is a group and an n ∈ N is such that all elements of order
n are central. Suppose in addition that p is a partial automorphism of G such
that all elements of order n are in dom p and fixed by p. Then all elements of
order n in G∗p are in G.



INNER ULTRAHOMOGENEOUS GROUPS 29

Proof. By the torsion theorem for HNN extensions (Fact 2.2), every element
of order n in G∗p is conjugate to an element of G. But by hypothesis, every
element of order n in G is central in G∗p. The conclusion follows. □

Consider the following construction. Let Γ0 be cyclic of order 2, generated
by g0. Then given Gn, we construct Γn+1 as follows. Let P be the set of all
isomorphisms between finitely generated subgroups of Γn which contain g0.
Then Γn+1 is the HNN-extension Γn∗P .

Finally, put Γ =
⋃

nΓn; clearly, it is a countable group. Furthermore, note
that by Fact 7.14 and straightforward induction, g0 is the only nonidentity
finite order element in each Γn, and hence also in Γ. In particular, it is
central, and if A≤ Γn is a finitely generated subgroup, then either g0 ∈ A or
〈g0, A〉 ∼= 〈g0〉 × A (because g0 commutes with A and is not in A).

It follows that every isomorphism between finitely generated subgroups of
Γ can be extended to an isomorphism between finitely generated subgroups
containing g0. This easily implies that Γ is in fact inner ultrahomogeneous.

Example 7.15. In summary, Γ constructed above is a countably infinite inner
ultrahomogeneous group which has nontrivial centre and an unique noniden-
tity element of finite order (so it is not simple, although centre is its only
nontrivial proper normal subgroup). Since its age is closed under ×Z, many
consequences of Main Theorem apply to it. In particular, it embeds every
countable torsion-free abelian group, it has SOP and TP2 and it has ample
generic automorphisms.

Remark 7.16. Instead of a cyclic group of order 2, we could start with any
group which has a unique element of order 2, for instance Q/Z. Then the
resulting group will be inner ultrahomogeneous with nontrivial centre and
also have elements of all finite orders. Thus, even more consequences of Main
Theorem would apply to it.

Remark 7.17. A similar argument can be used to show that a group which is
existentially closed in the class of groups having at most one element of order
2 is inner ultrahomogeneous with nontrivial centre.

7.7. Finite exponent groups? The following question remains open.

Question 7.18. Is there an infinite finite exponent inner ultrahomogeneous
group? If yes, can it be stable?

By Main Theorem we can say the following for any hypothetical infinite
inner ultrahomogeneous Γ of finite exponent: it is necessarily of exponent
smaller than (2100)!, it contains no copy of (Z/2Z)6, it is not ℵ0-saturated, it
has trivial centre and it is isomorphic to Aut(Γ) (which is discrete, so Γ has
no generic automorphisms).

Moreover, it is not hard to see that inner ultrahomogeneity is inherited by
elementary subgroups, so by the downwards Löwenheim-Skolem, if such Γ
exists, there is a countable one, which is then a Fraïssé limit. Thus, we may
rephrase Question 7.18 in the following way:

Question 7.19. Is there a Fraïssé class of groups of uniformly bounded exponent
with inner EPPA?
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In fact, it is not clear whether there are infinite torsion inner ultrahomoge-
neous groups which are not existentially closed locally finite.
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