Uniform distribution of the Fibbonacci sequence Światosław R. Gal Wrocław University http://www.math.uni.wroc.pl/~sgal/

Note: In this paper we use a position system with a base five.

Theorem. For each j = 0, 1, 2, 3 the sequence F_{4n+j} is uniformelly distributed modulo 10^N . Moreover it is a permutation sequence.

Corrolary. The Fibbonacci sequence is uniformelly distributed modulo 10^N.

Proof of the Theorem:

Claim 1. $F_{k+13} = 12F_{k+4} - F_k$.

This follows by induction #.

Define \mathcal{G}_4 := $\begin{pmatrix} 12 & -1 \\ 1 & 0 \end{pmatrix}$. Then $\mathcal{G}_4\begin{pmatrix} F_{k+4} \\ F_k \end{pmatrix} = \begin{pmatrix} F_{k+13} \\ F_{k+4} \end{pmatrix}$.

Claim 2. $\mathcal{G}_{4}^{10^{N}} \equiv 1 + 10^{N} (\mathcal{G}_{4} - 1) (\text{mod} 10^{N+1}).$

This follows by induction. Define $R_N = \left(\mathcal{G}_4^{10^N} - 1 - 10^N(\mathcal{G}_4 - 1)\right)/10^{N+1}$. One needs to rize $\mathcal{G}_4^{10^N} = 1 + 10^N(\mathcal{G}_4 - 1) + 10^{N+1}R_N$ to the 10th power and examine Newton coefficients using the fact that $10|(\mathcal{G}_4 - 1)^2 \#$.

As a corrolary we see $F_{j+10^N} \equiv F_j + 10^N (F_{j+4} - F_j) (mod10^{N+1})$, and what follows $F_{j+k10^N} \equiv F_j + k10^N (F_{j+4} - F_j) (mod10^{N+1})$. By hypothesis $F_{4n+j} \equiv F_{4n+j+k10^N} (mod10^N)$ gives all residue classes modulo 10^N for $n = 1, ..., 10^N$. But $F_{4n+j+k10^N}$ are all different mod 10^{N+1} for k = 1, ..., 4, since $10 \ /F_{j+4} - F_j$. This proves the theorem.

3.02.'01