Uniform distribution of the Fibbonacci sequence
 Światosław R. Gal
 Wrocław University
 http://www.math.uni.wroc.pl/~sgal/

Note: In this paper we use a position system with a base five.
Theorem. For each $j=0,1,2,3$ the sequence $F_{4 n+j}$ is uniformelly distributed modulo 10^{N}. Moreover it is a permutation sequence.

Corrolary. The Fibbonacci sequence is uniformelly distributed modulo 10^{N}.
Proof of the Theorem:
Claim 1. $\mathrm{F}_{\mathrm{k}+13}={ }_{12} \mathrm{~F}_{\mathrm{k}+4}-\mathrm{F}_{\mathrm{k}}$.
This follows by induction \#.
Define $\mathcal{G}_{4}:=\left(\begin{array}{cc}12 & -1 \\ 1 & 0\end{array}\right)$. Then $\mathcal{G}_{4}\binom{F_{k+4}}{F_{k}}=\binom{F_{k+13}}{F_{k+4}}$.
Claim 2. $\mathcal{G}_{4}{ }^{10^{\mathrm{N}}} \equiv 1+10^{\mathrm{N}}\left(\mathcal{G}_{4}-1\right)\left(\bmod 10^{\mathrm{N}+1}\right)$.
This follows by induction. Define $R_{N}=\left(\mathcal{G}_{4}{ }^{10^{N}}-1-10^{N}\left(\mathcal{G}_{4}-1\right)\right) / 10^{N+1}$. One needs to rize $\mathcal{G}_{4}{ }^{10^{\mathrm{N}}}=1+10^{\mathrm{N}}\left(\mathcal{G}_{4}-1\right)+10^{\mathrm{N}+1} \mathrm{R}_{\mathrm{N}}$ to the 10th power and examine Newton coefficients using the fact that $10 \mid\left(\mathcal{G}_{4}-1\right)^{2} \#$.
As a corrolary we see $F_{j+10^{N}} \equiv F_{j}+10^{N}\left(F_{j+4}-F_{j}\right)\left(\operatorname{modio}{ }^{N+1}\right)$, and what follows $F_{j+k_{10} \mathrm{~N}} \equiv$ $F_{j}+k_{10}{ }^{N}\left(F_{j+4}-F_{j}\right)\left(\bmod 10^{N+1}\right)$. By hypothesis $F_{4 n+j} \equiv F_{4 n+j+k 10^{N}}\left(\bmod 10^{N}\right)$ gives all residue classes modulo 10^{N} for $n=1, \ldots, 10^{N}$. But $F_{4 n+j+k 10^{N}}$ are all different mod 10^{N+1} for $k=1, \ldots, 4$, since $10 \backslash F_{j+4}-F_{j}$. This proves the theorem.

