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Note: In this paper we use a position system with a base five.

Theorem. For each j = 0, 1, 2, 3 the sequence F4n+j is uniformelly distributed modulo 10
N.

Moreover it is a permutation sequence.

Corrolary. The Fibbonacci sequence is uniformelly distributed modulo 10
N.

Proof of the Theorem:

Claim 1. Fk+13 = 12Fk+4 − Fk.

This follows by induction #.
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This follows by induction. Define RN =
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N+1. One needs to
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N+1RN to the 10th power and examine Newton coefficients
using the fact that 10|(G

4
− 1)2 #.

As a corrolary we see Fj+10
N ≡ Fj +10

N(Fj+4−Fj)(mod10
N+1), and what follows Fj+k10

N ≡
Fj + k10

N(Fj+4 − Fj)(mod10
N+1). By hypothesis F4n+j ≡ F

4n+j+k10
N (mod10

N) gives all
residue classes modulo 10

N for n = 1, . . . , 10
N. But F

4n+j+k10
N are all different mod10

N+1

for k = 1, . . . , 4, since 10 6 |Fj+4 − Fj. This proves the theorem.
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