Counting faces of flag spheres
Światosław R. Gal

$$
13 \cdot 4 \cdot 2005
$$

original paper:
http://www.math.uni.wroc.pl/~sgal/papers/dc.ps or at arXiv:math.CO/0501046
to appear in Discrete \& Computational Geometry

Let L be a finite simplicial complex with a vertex set S. Definition. f-polynomial of a simplicial complex L is a generating function defined as:

$$
\begin{aligned}
f_{L}(t) & :=\sum_{\sigma \in L} t^{\# \sigma}=\sum_{i} f_{i} t^{i}, \\
f_{i} & :=\#\{\text { simplices with } i \text { vertices }\} .
\end{aligned}
$$

Questions:

- What can be said in general about f-polynomials of simplicial complexes?
- What can be said in general about f-polynomials of certain classes of simplicial complexes (eg. triangulations of spheres or flag triangulations of spheres)?

Examples:

- $f_{L}=1+5 t+4 t^{2}+t^{3}$.
- dodecahedron: $f_{I_{12}}=1+20 t+30 t^{2}+12 t^{3}$.
- boundary of k-simplex: $f_{\partial \Delta^{k}}=(1+t)^{k+1}-t^{k}$,
- boundary of a cross-poytope: $f_{O^{k}}=(1+2 t)^{k}$.

Definition. A simplicial complex L is called flag if for any clique T (a subset $T \subset S$ such that any two vertices of T are joined by an edge) T is a face of L.
Example. The baricentric subdivision of a regular CWcomplex (eg. polytopial complex) is a flag simplicial complex.

The construction of M. Davis associates with any flag triangulation of a sphere L a compact aspherical manifold M_{L}. There is defined a cubing of M_{L} (M_{L} is a cubical complex), such that the link of any vertex in M_{L} is isomorphic to L. Conjecture (Hopf). The Euler Characteristic of a compact aspherical manifold M of dimension $2 n$ fulfils

$$
(-1)^{n} \chi(M) \geq 0 .
$$

In the case of M_{L} the above Corollary admits the following reformulation:
Conjecture (Charney-Davis). Assume that L is a flag triangulation of $S^{2 n-1}$. Then

$$
(-1)^{n} f_{L}\left(-\frac{1}{2}\right) \geq 0
$$

The Charney-Davis Conjecture is known to be true for

- $n=1$,
- $n=2$ (Davis i Okun, 2001),
- barycentric subdivisions (Babson, Stanley 1994, Okun 2001, Karu 2004),
- locally convex triangulations of spheres (Reiner-Leung 2002).

Useful change of variables

Definition. h-polynomial of an ($n-1$)-dimensional complex
L is given by the formula

$$
(1+t)^{n} h_{L}\left(\frac{1}{1+t}\right)=t^{n} f_{L}(1 / t)
$$

h-polynomial is more efficient:

- if L is a triangulation of S^{n-1} then h_{L} is reciprocal (palindromic), i.e. $h_{L}(1 / t)=t^{n} h_{L}(t)$),
- if L is a convex triangulation of a sphere, then h_{L} is unimodal (e.g $h_{\left\lceil\frac{n}{2}\right\rceil} \geq \ldots h_{2} \geq h_{1} \geq h_{0}=1$),
- the Charney-Davis Conjecture holds for $L \Longleftrightarrow$

$$
(-1)^{n} h_{L}(-1) \geq 0,
$$

- when L is a convex triangulation of a sphere then h_{L} has a simple interpretation in terms of the height function.

$$
h=1+4 t+4 t^{2}+t^{3}
$$

- if L is a triangulation of S^{n-1} with m vertices, then

$$
h_{i} \leq\binom{ m-n+i-1}{i}
$$

for $2 i<n$,

Real Root Conjecture (2003). If L is a flag triangulation of a sphere/GHS then $h_{L}\left(f_{L}\right)$ has only real non-positive roots.

The Real Root Conjecture would imply

- unimodularity of h-polynomials,
- Charney-Davis Conjecture,
- Neggers-Stanley Conjecture for naturally labeled posets of width 2 .

Fact. When L is a flag complex (different from a simplex) then h_{L} has a real root.
Fact. When L is a flag complex (different from the join of a simplex and a cross-polytope) then h_{L} has a real root different from -1 .
Corollary. The Real Root Conjecture holds for triangulations of S^{1} and S^{2}.

Corollary (from the Davis-Okun Theorem). The Root Conjecture holds for triangulations of S^{3}
Theorem (G.). The Root Conjecture holds for triangulations of S^{4}
Proof: It is easy to find three real roots.
The sum of f-polynomials of links of all vertices of L equals to f_{L}^{\prime}.
The links of L fulfils the assumptions of the Davis-Okun Theorem, thus computing the sign of $f_{L}^{\prime}(-1 / 2)$ we obtain the claim.

Theorem (G.). Let h be a quartic monic reciprocal polynomial with integer polynomials. If $h(t)-t(1+t)^{2}$ has only real non-positive roots then h is a h-polynomial of a (convex) triangulation of S^{3}.

Open Question. Is $1+13 t+54 t^{2}+82 t^{3}+41 t^{4}$ (the mean of f-polynomials of joins of five- and eightgons and six- and sevengons) an f-polynomial of a flag triangulation of a sphere?

Reciprocal polynomial h may be expressed as

$$
h(t)=(1+t)^{n} \gamma\left(\frac{t}{\left(t+t^{-1}\right)^{2}}\right),
$$

where γ has degree $\lfloor\operatorname{deg} h / 2\rfloor$.

What is known about γ_{L} ?

- γ_{L} has only real nonpositive roots if and only if h_{L} does,
- Charney-Davis Conjecture is equivalent to the non-negativity of the highest coefficient of γ_{L},
- $\gamma_{1}(L) \geq 0$,
- γ_{L} has at least one nonpositive real root unless $\gamma_{1}(L)=0$ $\left(\Longleftrightarrow \gamma_{L} \equiv 1 \Longleftrightarrow L\right.$ is a cross-polytope),
- if L is flag triangulation of S^{n-1} and $n \leq 5$, then γ_{L} has nonnegative coefficients,
- if L is a baricentric subdivision of a convex polytope (regular CW complex) P then γ_{L} has all coefficients nonnegative, moreover if Φ_{P} is a cd-index of P then

$$
\gamma_{L}(t)=\Phi_{P}(1,2 t)
$$

Fact. $f_{\bullet}, h_{\bullet}, \gamma_{\bullet}$ are multiplicative with respect to the operation of join.
Fact. If $\mathrm{Sub}_{e} L$ is a subdivision of L along an edge e. Then $\gamma_{\text {Sub }_{e} L}(t)=\gamma_{L}(t)+t \gamma_{L k(e)}(t)$.

Corollary. If γ-polynomials of both L and $\operatorname{Lk}(e)$ have nonnegative coefficients then so does also $\gamma_{\text {Sub }_{e} L}$.

Conjecture (G.). All coefficients of γ_{L} are nonnegative when L is flag triangulation of a sphere/GHS.
Question. What is the combinatorial/geometric interpretation of the coefficients of γ-polynomial?

Fact. If the polynomial $1+g_{1} t+g_{2} t^{2}+g_{3} t^{3}=(1+x t)(1+$ $y t)(1+z t)$ has only real roots, then

$$
g_{2}^{2} \geq 3 g_{3} g_{1}
$$

Proof :

$$
\begin{aligned}
& 2\left((x y+y z+z x)^{2}-3 x y z(x+y+z)\right) \\
& \quad=x^{2}(y-z)^{2}+y^{2}(z-x)^{2}+z^{2}(x-y)^{2} .
\end{aligned}
$$

Corollary (G). If L is a flag triangulation of S^{5}, such that, $h_{L}(-1)<0$ and some edge has a link, which is a crossed polytope, then a (multiple) subdivision along this edge provides a counterexample to the Real Root Conjecture.
Recollection : $\gamma_{\mathrm{Sub}_{e} L}(t)=\gamma_{L}(t)+t \gamma_{\operatorname{Lk}(e)}(t)$.
Let V be a 5 -gon. Let W be a subdivision of $V * V$ along an edge, whose link is a quadrilateral. Then $L=V * W$ fulfils the assumptions of the above Corollary.
Remark. The operation of a subdivision along an edge may be done geometrically. That means, if L can be realized as a boundary of a convex polytope, ten so does $\operatorname{Sub}_{e} L$.

