
Algebra ISIM 2. Wyk lad 16: Cia la

Charakterystyka.

Niech K be
‘
dzie cia lem. Homomorfizm pierścieni Z ∋ n 7→ n · 1 ∈ K ma ja

‘
dro, które jest idea lem Z,

wie
‘
c jest postaci (p) dla pewnego p ∈ Z zwanego charakterystyka

‘
cia la K. Obraz tego homomorfizmu –

izomorficzny z Z/(p) – jest dziedzina
‘
, wie

‘
c p jest liczba

‘
pierwsza

‘
lub zerem.

Rozszerzenie pojedyncze.

Niech E/K be
‘
dzie rozszerzeniem cia l (znaczy to, że K jest podcia lem E). Dla e ∈ E oznaczamy przez

K(e) najmniejsze podcia lo cia la E zawieraja
‘
ce K ∪ {e}. Aby zrozumieć strukture

‘
tego cia la pos lużymy

sie
‘

homomorfizmem ewaluacji: η:K[X ] → E, η(P (X)) = P (e). Jak poprzednio: obraz η jest dziedzina
‘
,

wie
‘
c ker η jest albo idea lem pierwszym maksymalnym, generowanym przez pewien wielomian nierozk ladalny

Q(X), albo też idea lem zerowym. W pierwszym przypadku mówimy, że e jest algebraiczny nad K; mamy
wówczas K(e) ≃ K[X ]/(Q(X)) i Q(e) = 0. W drugim przypadku η rozszerza sie

‘
na cia lo u lamków pierścienia

K[X ] daja
‘
c izomorfizm cia l K(X) ≃ K(e); mówimy, że e jest przeste

‘
pny nad K.

Rozszerzenia algebraiczne.

Rozszerzenie E/K nazywamy algebraicznym, jeśli każdy element E jest algebraiczny nad K. Rozsz-
erzenie jest skończone, jeśli jego stopień dimK E jest skończony. Rozszerzenie skończone jest algebraiczne:
pote

‘
gi dowolnego elementu sa

‘
liniowo zależne nad K. W szczególności rozszerzenie pojedyncze o element

algebraiczny jest algebraiczne.
Lemat. Niech E/F i F/K be

‘
da

‘
rozszerzeniami. Jeśli oba te rozszerzenia sa

‘
algebraiczne, to i E/K

jest algebraiczne; jeśli oba sa
‘

skończone, to i E/K jest skończone.

Dowód. Skończoność: jeśli (ei) jest baza
‘
E nad F , zaś (fj) baza

‘
F nad K, to (eifj) jest baza

‘
E nad K.

Algebraiczność. Jeśli e ∈ E, to e jest pierwiastkiem wielomianu o wspó lczynnikach z F . Rozszerzamy K
o kolejne wspó lczynniki, a na końcu o e. Każdy etap jest rozszerzeniem pojedynczym o element algebraiczny,
wie

‘
c jest rozszerzeniem skończonym. A zatem cia lo uzyskane na końcu jest skończonym rozszerzeniem K,

ska
‘
d wynika algebraiczność e nad K.

Algebraiczne domknie
‘
cie.

Rozszerzenie E/K jest algebraicznym domknie
‘
ciem, jeśli jest algebraiczne i jeśli cia lo E nie ma nietry-

wialnych algebraicznych rozszerzeń. (Ten drugi warunek można też wyrazić tak: nie ma w E[X ] nierozk la-
dalnych wielomianów stopnia > 1.)

Twierdzenie. Każde cia lo ma algebraiczne domknie
‘
cie, jedyne z dok ladnościa

‘
do izomorfizmu.

Dowód.
Istnienie. Moc algebraicznego rozszerzenia K nie przekracza mocy K × Z; weźmy zbiór X o mocy

jeszcze wie
‘
kszej, zawieraja

‘
cy K. Wśród rozszerzeń algebraicznych cia la K zawartych w X wybierzmy maksy-

malne E (LKZ). Gdyby E mia lo nietrywialne rozszerzenie algebraiczne, to mia loby też rozszerzenie postaci
E[X ]/(Q(X)), a to da loby sie

‘
izomorficznie w lożyć w X – sprzeczność z maksymalnościa

‘
E. Jest wie

‘
c E

domknie
‘
ciem algebraicznym K.

Jedyność. Niech E, E′ be
‘
da

‘
domknie

‘
ciami algebraicznymi K. Wybieramy (LKZ) maksymalna

‘
pare

‘
(F, f), gdzie cia lo F spe lnia K ⊆ F ⊆ E, a f :F → E′ jest w lożeniem cia l identycznościowym na K.

Pokażemy, że F = E. Gdyby nie, to niech e ∈ E\F . Wtedy F (e) ≃ F [X ]/(Q(X)). Wielomian Q(X), po
przekszta lceniu wspó lczynników przez f , ma pierwiastek e′ w E′. Dostajemy (f(F ))(e′) ≃ F [X ]/(Q(X)) ≃
F (e), co przeczy maksymalności pary (F, f).

Cia lo E′ jest algebraicznym rozszerzeniem K, wie
‘
c i algebraicznym rozszerzeniem f(E); ale f(E) ≃ E

nie ma nietrywialnych rozszerzeń algebraicznych. Sta
‘
d f(E) = E′.

Cia la skończone.

Na algebraicznym domknie
‘
ciu E cia la Fp dzia la automorfizm Frobeniusa: F (x) = xp. Zb/iór punktów

sta lych n-tej pote
‘
gi F jest podcia lem Fpn cia la E. Elementy Fpn to pierwiastki wielomianu Xpn

− X ,
których jest dok ladnie pn gdyż wielomian ów nie ma pierwiastków wielokrotnych z uwagi na niezerowość
swej pochodnej.

Dalej, każde podcia lo E maja
‘
ce pn elementów jest równe Fpn . Istotnie, grupa multyplikatywna tego

podcia la ma rza
‘
d pn − 1, wie

‘
c ka/dy jej element spe lnia równanie Xpn

−1 = 1, zatem należy do Fpn .
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Jeśli L jest innym cia lem o pn elementach, to Fp ⊆ L ⊆ E′, gdzie E′ jest algebraicznym domknie
‘
ciem

L (wie
‘
c i Fp). Niech φ:E′ → E be

‘
dzie izomorfizmem. Wtedy φ(L) jest podcia lem E o pn elementach, wie

‘
c

φ(L) = Fpn . Pokazalísmy:
Twierdzenie. Dla każdej liczby pierwszej p i każdej liczby ca lkowitej dodatniej n istnieje cia lo o pn

elementach, jedyne z dok ladnościa
‘

do izomorfizmu.
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