
Algebra ISIM 2. Wyk lad 12: Bazy Groebnera

“Pierścień wielomianów” be
‘
dzie oznaczać pierścień K[X1, . . . , Xn]; skrótowo be

‘
dziemy go zapisywać

jako K[X ] i używać multiindeksów α ∈ Nn (0 ∈ N).

Aby określić stopień wielomianu wielu zmiennych potrzebujemy porza
‘
dku na zbiorze multiindeksów.

Porza
‘
dek jednomianowy na zbiorze Nn to dobry porza

‘
dek spe lniaja

‘
cy warunek: α > β ⇒ (α + γ > β + γ).

Przyk lady:
• lex: α > β ⇐⇒ pierwszy niezerowy wyraz α− β jest dodatni;
• grlex: α > β ⇐⇒ |α| > |β| lub |α| = |β| i pierwszy niezerowy wyraz α− β jest dodatni;
• grevlex: α > β ⇐⇒ |α| > |β| lub |α| = |β| i ostatni niezerowy wyraz α− β jest ujemny.

Przy ustalonym porza
‘
dku jednomianowym określamy stopień i wyraz wioda

‘
cy z lożony z wspó lczynnika

wioda
‘
cego i jednomianu wioda

‘
cego.

Dzielenie z reszta
‘
.

Przy ustalonym porza
‘
dku wielomianowym można wykonać dzielenie z reszta

‘
wielomianu f przez cia

‘
g

wielomianów F = (f1, . . . , fk). Bierzemy wyraz wioda
‘
cy f i sprawdzamy, czy dzieli sie

‘
on przez wyrazy

wioda
‘
ce kolejnych fi. Jeśli tak, to pierwszego pasuja

‘
cego fi używamy do skasowania tego wyrazu wioda

‘
cego;

jeśli nie, to wyraz wioda
‘
cy odejmujemy od f i dodajemy do reszty R. Powtarzamy te

‘
procedure

‘
aż do

wyzerowania f . Ostateczna
‘
wartość R nazywamy reszta

‘
f modulo F , i oznaczamy f

F
lub f modF .

Przyk lad (lex). Niech f = xy2 − x, F = (xy + 1, y2 − 1). Wtedy f modF = −x − y. Jeśli jednak
zamienić kolejność wyrazów F , to dostajemy reszte

‘
0; oznacza to, że f należy do idea lu generowanego przez

F , mimo że f modF 6= 0. Jest to oczywíscie sytuacja bardzo niepoża
‘
dana.

Bazy Groebnera.

Skończony podzbiór G idea lu I ⊳ K[X ] nazywamy baza
‘

Groebnera tego idea lu, jeśli wyrazy wioda
‘
ce

elementów G generuja
‘
ten sam idea l pierścienia K[X ], co wyrazy wioda

‘
ce wszystkich elementów I.

Z noetherowskości K[X ] wynika, że każdy idea l ma bazy Groebnera. Reszta z dzielenia elementu I

przez baze
‘

Groebnera I wynosi 0; wynika sta
‘
d, że baza Groebnera idea lu generuje ten idea l. Okazuje sie

‘
, że

reszta z dzielenia dowolnego wielomianu f przez baze
‘

Groebnera pewnego idea lu I nie zależy od kolejności
elementów bazy, a zerowanie sie

‘
tej reszty jest równoważne należeniu f do I. Wynika to z naste

‘
puja

‘
cego

faktu charakteryzuja
‘
cego reszte

‘
.

Fakt. Niech f ∈ K[X ] i niech G be
‘
dzie baza

‘
Groebnera idea lu I⊳K[X ]. Istnieje wtedy jedyne r ∈ K[X ],

takie że
1) f = g + r dla pewnego g ∈ I;
2) żaden wyraz r nie dzieli sie

‘
przez żaden wyraz wioda

‘
cy żadnego elementu G.

Dowód. Istnienia dostarcza opisany wyżej algorytm dzielenia z reszta
‘
. Jednoznaczność: z 1) widzimy,

że różnica dwóch wersji r należy do I, zatem jej wyraz wioda
‘
cy dzieli sie

‘
przez wyraz wioda

‘
cy pewnego

elementu G; to jednak przeczy warunkowi 2).

Algorytm Buchbergera.

Jest to procedura przerabiaja
‘
ca uk lad generatorów idea lu na jego baze

‘
Groebnera. Używa ona poje

‘
cia

S-wielomianu, który określamy – dla f, g ∈ K[X ] – jako

S(f, g) =
Xγ

LT (f)
f −

Xγ

LT (g)
g,

gdzie Xγ to najmniejsza wspó lna wielokrotność wyrazów wioda
‘
cych LT (f), LT (g) wielomianów f, g. Innymi

s lowy, kasujemy wyrazy wioda
‘
ce wielomianów f, g, domnażaja

‘
c przedtem tak, by przyje

‘
 ly wspólny stopień.

Tw. Niech G,F be
‘
da

‘
skończonymi podzbiorami K[X ].

K) (Kryterium Buchbergera) G jest baza
‘

Groebnera idea lu I = (G) ⇐⇒ (∀g, g′ ∈ G)(S(g, g′) modG = 0).
A) (Algorytm Buchbergera) Niech I = (F ). Dla każdej pary f, f ′ ∈ F policzmy S(f, f ′) modF ; otrzymane

niezerowe reszty do la
‘
czmy do F . Powtarzanie tej procedury w skończenie wielu krokach prowadzi do

bazy Groebnera I.
Przyk lad. Baza

‘
Groebnera idea lu (xy + 1, y2 − 1) jest G = (xy + 1, y2 − 1, x + y).
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Lemat. Jeśli wielomiany fi ∈ K[X ] sa
‘

stopnia δ, zaś stopień
∑

i aifi jest < δ (dla pewnych ai ∈ K),
to

∑
i aifi =

∑
i,j aijS(fi, fj) (dla pewnych aij ∈ K).

Istotnie, można za lożyć LT (fi) = Xδ; wtedy S(fi, fj) = fi− fj. Mamy też wówczas
∑

i ai = 0, a zatem∑
i aifi jest kombinacja

‘
różnic fi − fi+1.

Dowód tw. K)
(⇐) Wynika wprost z S(g, g′) ∈ I.
(⇒) Niech G = (g1, . . . , gk) i niech f ∈ I = (G). Wtedy f da sie

‘
przedstawić w postaci f =

∑
i higi;

pokażemy, że istnieje takie przedstawienie dodatkowo spe lniaja
‘
ce δ := maxi deg(higi) = deg(f). (Ten

dodatkowy warunek wymusza już LT (gi)|LT (f) dla pewnego gi, co daje teze
‘
.) Jeśli δ > deg(f), to wyrazy

stopnia δ w
∑

i higi sumuja
‘

sie
‘

do zera. Można wie
‘
c zastosować lemat do tych fi = LT (hi)gi, które sa

‘
stopnia δ. Dla takich i, j:
(1) S(LT (hi)gi, LT (hj)gj) = XγS(gi, gj) i ma stopień < δ (dla pewnego γ zależnego od i, j);
(2) S(gi, gj) =

∑
s wijsgs, gdzie sk ladniki sa

‘
stopnia ≤ degS(gi, gj) (z warunku S(gi, gj) modG = 0).

Lemat pozwala wie
‘
c zasta

‘
pić wyrażenie

∑
i higi wyrażeniem tej samej postaci, ale o sk ladnikach stopnia < δ.

Iteruja
‘
c opisana

‘
procedure

‘
dostajemy ostatecznie δ = deg f .

A) Każdy krok algorytmu powie
‘
ksza idea l generowany przez wyrazy wioda

‘
ce elementów F . Ale K[X ]

jest noetherowski, wie
‘
c algorytm zatrzymuje sie

‘
.
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