
Algebra ISIM 2. Wyk lad 4: Kraty

Kraty w Rn.

Podgrupe
‘
Λ przestrzeni euklidesowej V (z dodawaniem jako dzia laniem) zwie sie

‘
dyskretna

‘
, jeśli w pewnej kuli

wokó l zera nie ma niezerowych elementów tej podgrupy. Dyskretna podgrupa pozostanie taka
‘
po dowolnej

zmianie iloczynu skalarnego; jest wie
‘
c sens mówić o dyskretnej podgrupie skończenie wymiarowej przestrzeni

liniowej nad R (zad.).
Jeśli kula wokó l zera, o której mowa w definicji, ma promień r, to kule o promieniu r/2 wokó l różnych
elementów Λ sa

‘
roz la

‘
czne. Sta

‘
d wynika, że ograniczony podzbiór V ma skończony przekrój z Λ. Sta

‘
d

wnioskujemy dalej, że w (nietrywialnej) Λ istnieje wektor niezerowy o minimalnej d lugości.

Tw. Dyskretna podgrupa R2 jest postaci {0}, Zv (dla niezerowego v) lub Zv + Zw (dla lnz v, w).
Za v wybieramy najkrótszy niezerowy wektor Λ; wtedy Lin(v) ∩ Λ = Zv, i za w bierzemy wektor spoza
Lin(v) leża

‘
cy najbliżej Lin(v).

Wniosek: nietrywialna podgrupa Z2 jest izomorficzna z Z lub Z2. W Rn dyskretna podgrupa sk lada sie
‘

z
ca lkowitoliczbowych kombinacji liniowych co najwyżej n lnz wektorów (zad.).

Krystalografia

Grupa I+(R2) parzystych izometrii R2 jest produktem pó lprostym grupy translacji (izomorficznej z samym
R2) i grupy obrotów SO(2). Dzia lanie to po prostu definiuja

‘
ce dzia lanie SO(2) na R2.

Podgrupe
‘
Γ grupy I+(R2) nazywamy dyskretna

‘
, jeśli nie ma w niej translacji o krótkie wektory ani obrotów o

ma le ka
‘
ty. Obraz Γ grupy Γ w SO(2) (obraz przez ilorazowe odwzorowanie I+(R2) = R2

⋊SO(2) → SO(2))
jest dyskretny, wie

‘
c skończony i cykliczny, powiedzmy rze

‘
du n.

Tw. Jeśli w Γ sa
‘
nietrywialne translacje, to n = 1, 2, 3, 4 lub 6.

Po pierwsze, cze
‘
ść translacyjna grupy Γ, tzn. Λ = Γ ∩ R2 jest dyskretna w R2 i zachowywana przez Γ.

Najkrótszy wektor Λ \ {0} jest bliżej zera niż swych obrazów przez Γ, sta
‘
d n ≤ 6. Wykluczamy 5 patrza

‘
c

na d lugość sumy najkrótszego niezerowego wektora Λ i jego obrazu przez obrót o 4π/5.

Skończone podgrupy SO(3).

Powiedzmy, że taka skończona grupa G ma n elementów. Zbiór osi nietrywialnych elementów G jest G-
niezmienniczy; wygodniej rozważać bieguny, tzn. punkty przecie

‘
cia osi ze sfera

‘
jednostkowa

‘
(wygodniej, bo

na osi jej stabilizator może dzia lać nietrywialnie). Jeśli rx to rza
‘
d stabilizatora bieguna x, to suma liczb

rx − 1 (po wszystkich x) daje 2(n− 1). Grupuja
‘
c bieguny w G-orbity i dziela

‘
c przez n dostajemy

∑

i

(1 −
1

ri
) = 2 −

2

n
.

Sk ladniki po lewej sa
‘
co najmniej 1/2, po prawej stoi mniej niż 2; zatem orbit może być:

- jedna: sprzeczność arytmetyczna;
- dwie: G jest cykliczna, kre

‘
ci wokó l jednej osi;

- trzy: możliwe uk lady ri to (2, 2, n/2), (2, 3, 3), (2, 3, 4) i (2, 3, 5). Odpowiadaja
‘
grupom: dihedralnej, tetrae-

dralnej, oktaedralnej i dodekaedralnej.

Izomorficzność i prostota grupy ikosaedralnej i A5.

Grupa I obrotów 12-ścianu ma 60 elementów, które rozmieszczaja
‘
sie

‘
w pie

‘
ciu klasach sprze

‘
żoności wedle

swych ka
‘
tów obrotu:

60 = 1 + 12 + 12 + 15 + 20.

Żadna podsuma prawej strony (ze sk ladnikiem 1) nie daje dzielnika liczby 60; zatem grupa ikosaedralna jest
prosta: nie ma nietrywialnego w laściwego dzielnika normalnego.
W dwunastościan można wpisać 5 sześcianów (zaczynaja

‘
c od dowolnej przeka

‘
tnej ściany). I nietrywialnie

dzia la na tym zbiorze pie
‘
ciu sześcianów: dostajemy nietrywialny homomorfizm φ: I → S5. Musi on być

1-1 (z powodu prostoty dziedziny ma trywialne ja
‘
dro); ma obraz w A5 (przeciwobraz A5 jest normalnym

dzielnikiem dziedziny). Ale |I| = |A5| = 60; w konsekwencji: φ jest izomorfizmem, A5 jest prosta.
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