
Analiza matematyczna 3, Notatki z wyk ladu 13a

Niech f(x, y) be
‘
dzie określona na krzywej L ⊆ IR2. Dla podzia lu L = L1∪L2∪. . .∪Ln

o d lugościach ∆ℓi i dla punktów (xi, yi) ∈ Li tworzymy sume
‘

∑
i≤n

f(xi, yi)·∆ℓi. Napis∫
L

f(x, y) dℓ ≈
∑
i≤n

f(xi, yi) · ∆ℓi

oznacza, że ca lka krzywoliniowa nieskierowana z f po L jest przybliżana przez owe
sumy tym lepiej, im drobniejszy jest podzia l (dla ’porza

‘
dnych’ funkcji i krzywych).

Ca lke
‘

te
‘

można interpretować wielorako, np. (pomyśl o jednostkach):

– jako pole p lotu (jednej strony) ustawionego na linii L o sztachetach o szerokościach
...... i wysokościach f(xi, yi),

– jako cene
‘

u lożenia rurocia
‘
gu wzd luż linii L, gdzie f(xi, yi) mówi o koszcie budowy

jednego metra(milimetra?) w miejscu (xi, yi),

– jako minimalny czas przejazdu (zgodny z przepisami!) trasy L , gdzie f(x, y)
podaje odwrotność ograniczenie maksymalnej szybkości w miejscu (x, y),
– ......

Przyk lady. (’na palcach’)

a) Okra
‘
g L z rysunku obok jest podzielony na sześć cze

‘
ści

o d lugościach ...... , ...... , ...... , ...... , ...... , ......

Funkcja f(x, y) = [x+y]2 jest na tych cze
‘
ściach sta la (niemal).

Zatem wybieraja
‘
c punkty z tych cze

‘
ści (poza kropami) mamy:∫

L
[x+ y]2 dℓ = 9 · π

2 + 4 · π
4 + 1 · π

4 + 0 · π
2 + ... · π

4 + ... · π
4 = 7π.
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b) Dla K = brzeg [0, 1]2 i f(x, y) = y + 1 :∫
K

f(x, y) dℓ =
∫

[0,1]×{0}
...... dℓ +

∫
{1}×[0,1]

...... dℓ +
∫

[0,1]×{1}
...... dℓ +

∫
............

...... dℓ =

= ...... = 6.

c) Dla V = {(x, |x|) : |x| ≤ 1} i f(x, y) = πx + y
√

3 :∫
V

f(x, y) dℓ = π ·
∫
V

... dℓ + ... ·
∫
V

... dℓ =

= ...... + ...... =
√

6.

d)
∫

x2+y2=1
x,y≥0

arcsin y ds = ...... = 1
8π

2.

Tw. Gdy L ma paremetryzacje
‘

(x(t), y(t)) , t ∈ [a, b] klasy C1 i f jest cia
‘
g la na L,

to

∫
L

f(x, y) dℓ =

b∫
a

f(x(t), y(t)) ·
√(dx

dt

)2

+
(dy
dt

)2

dt.

.

Dowód.∫
L

f(x, y) dℓ ≈
∑
i≤n

f(xi, yi) · ∆ℓi ≈ istnieja
‘
a = t0 < t1 . . . < tn = b takie, że

≈
∑
i≤n

f(x(ti), y(ti)) ·
√

(x(ti) − x(ti−1))2 + (y(ti) − y(ti−1))2 =

=
∑
i≤n

f(x(ti), y(ti)) ·
√(

x(ti)−x(ti−1)
ti−ti−1

)2

+
(

y(ti)−y(ti−1)
ti−ti−1

)2

· (ti − ti−1) =

=
∑
i≤n

f(x(ti), y(ti)) ·
√(

x′(t̂i)
)2

+
(
y′(t̂i)

)2 · ∆ti ≈ (z tw. Lagrange’a)

≈
b∫
a

f(x(t), y(t)) ·
√

(x′(t))
2

+ (y′(t))
2
dt 2



Przyk lad.

a) Dla L = {(x, x2) : x ∈ [0, 1]} z parametryzacja
‘
: x = t, y = ..., t ∈ [..., ...]:∫

L

y3

√
1+4x2

dℓ =
1∫
0

t6√
1+4t2

·
√

( ...... )2 + ( ...... )2 dt = . . . . . . . . . . . . . . . . . . . . . .= 1
7 .

b)
∫

x2+y2=4
y≤0

sin(x9) + 2y2 dℓ =
∫

x2+y2=4
y≤0

sin(x9) dℓ +
∫

x2+y2=4
y≤0

2y2 dℓ = . . . . . = 8π.

Tw. Gdy r⃗ : [a, b] → Γ, r⃗ = (x(t), y(t), z(t)) jest g ladka
‘
1-1 parametryzacja

‘
 luku Γ,

to

∫
Γ

f dℓ =

b∫
a

f(x(t), y(t), z(t)) ·
√(dx

dt

)2

+
(dy
dt

)2

+
(dz
dt

)2

dt.

Wniosek. Gdy r⃗ : [a, b] → Γ, r⃗ = (x(t), y(t), z(t)) jest g ladka
‘

parametryzacja
‘

(jednokrotna
‘
)  luku Γ, to d lugość tego  luku można opisać ca lka

‘
:

|Γ| =

∫
Γ

1 dℓ =

b∫
a

1 ·
√(dx

dt

)2

+
(dy
dt

)2

+
(dz
dt

)2

dt.

Przyk lad. Gdy Γ jest  lamana
‘
ABC, gdzie A(0, 1, 0), B(2, 2, 3), C(2, 2, 1), to

parametryzujemy oddzielnie odcinki AB i BC np.

r⃗AB : [0, 1] → AB, r⃗AB = (2t, ... + t, 3t) i r⃗BC : [0, 2] → BC, r⃗BC = (2, ..., 3 − t).

Wtedy
∫
Γ
... =

∫
AB

... +
∫
BC

... , czyli∫
Γ

2ey−1+2z dℓ =
1∫
0

(2et+6t)·
√

22 + 12 + 32dt+
2∫
0

(2e1+6−2t)·
√

02 + 02 + (−1)2dt =

=
√

14 · [2et + 3t2]10 + [(2e + 6)t− t2]20 = (2e + 1)
√

14 + 4e + 8.

Ca lka powierzchniowa niezorientowana

Niech f(x, y, z) be
‘
dzie określona na powierzchni S. Podzia l ω = {S1, S2, . . . , Sm}

powierzchni S na ’prawie roz la
‘
czne p laty’ o polach |Si| i wybór punktów ai ∈ Si

wyznacza pewne przybliżenie ca lki powierzchniowej niezorientowanej:∫∫
S

f(x, y, z) dS ≈
m∑
i=1

f(ai) · |Si|

Dok ladniej: jeśli dla coraz drobniejszych podzia lów (o średnicach zbieżnych do 0) sumy
po prawej stronie sa

‘
coraz bliżej pewnej liczby (niezależnie od wyboru punktów), to te

‘
liczbe

‘
nazywamy ca lka

‘
powierzchniowa

‘
niezorientowana

‘
funkcji f po powierzchni S.

Interpretacje.
∫∫

S
f(x, y, z) dS :

- masa powierzchni S, której ge
‘
stość w punkcie (x, y, z) ma wartość f(x, y, z) [kg/m2],

- koszt wy lożenia pow. S kafelkami, których cena w (x, y, z) wynosi f(x, y, z) [z l/m2].

.



1. Na powierzchni S sześcianu [0, 1]3 f(x, y, z) = [x + y + z] · π
przyjmuje wartości: 0 · π, 1 · π, . . . . . . . . . . . . . . . . . . . . . . . . . Zatem∫∫
S

[x + y + z] · π dS = (0 · π) · (3 · 1
2 ) + ...... + ...... = ...... .

Dla funkcji f(x, y, z) = [z] · [y + 7] mamy:∫∫
S

[z] · [y + 7] dS =
∫∫

............
[z] · [y + 7] dS = ............

-
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Tw. Jeśli powierzchnia S ⊆ IR3 jest wykresem funkcji g ladkiej g(x, y) określonej
na obszarze D ⊆ IR2, czyli gdy S = {(x, y, z) : z = g(x, y), (x, y) ∈ D}, to ca lke

‘
powierzchniowa

‘
z funkcji f : S → IR zamieniamy na ca lke

‘
podwójna

‘∫∫
S

f(x, y, z) dS =
∫∫
D

f(x, y, g(x, y)) ·
√

1+( ∂g
∂x )2+(∂g

∂y )2 dω .

2. S = {(x, y, z) : 2x+3y+z = 6, x, y, z ≥ 0} jest wykresem f-cji g(x, y) = 6−2x−...
o dziedzinie D = {(x, y) : 0 ≤ x ≤ 3, ...... ≤ y ≤ ............ }; zatem∫∫
S

(z − 6)2 dS =
∫∫
D

((6 − 2x− 3y) − 6)
2 ·

√
1 + (−2)2 + ... dω = ...... = 54

√
14

3. Pó lsfera S = {(x, y, z) : x2 + y2 + z2 = 2z, z ≥ 1} jest wykresem funkcji
g(x, y) = . . . . . . . . . . . . . . . o dziedzinie D = {(x, y) : . . . . . . . . . . . . . . .}; zatem∫∫
S

z dS =
∫∫
D

( . . . . . . . . . . . ) ·
√

1 + ( ...... )2 + ( ...... )2 dω = ...... = 3π

4. Dla brzegu S czworościanu 0ABC (p.rys.) poniższe ca lki powierzchniowe można
obliczyć ’na palcach’:

a)
∫∫

S
e[x+y] dS = ............ = e0 · |S| = ...

b)
∫∫

S
e[x−y] dS = ............

c)
∫∫

S
e[x+z] dS = ............

d)
∫∫

S
e[x+y+z] dS = ............

Do których ca lek pomocne sa
‘
rysunki (z prawej)?
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4’. Oblicz. (Poniższe ca lki opisuja
‘
obje

‘
tości pewnych ostros lupów; opisz je (s lowami).)

e)
∫∫
ABC

z dS = {obj. ostros lupa o podstawie ∆ABC i wysokości 2} = ......

f)
∫∫
ABC

x dS = ............

g)
∫∫
ABC

x + y dS = ............

5. Oblicz
∫∫

z+x2+y2=1
z≥0

3
√

1 + 4x2 + 4y2 dS = ...... = 3
22π(511/6 − 1).

.


