
Fantasmagorie?

[ Na ćwiczeniach:
wymyśl własne sposoby pisania takich wzorów, jak niżej albo
modyfikuj (renewcommand) podany rozkaz rekurencyjny. ]

1 Pierwiastkowce

Obrazek (niemal) taki, jak poniższy, widziałem w podręczniku akademickim.
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Ma coś z fraktala; fragment jest ‘podobny’ do całości.
To ‘podobieństwo’ można zakodować:

(∗) A =
√
2 +A

Toż to równanie, które nietrudno rozwiązać (zrób to!); A = 2.
W podręczniku dostrzeżono co innego; rekurencyjną definicję ciągu:

(∗∗) An+1 =
√
2 +An, A1 = 1.

W miarę jasne jest, że gdy jest on zbieżny, to jest zbieżny do rozwiązania
równania (*), czyli do 2 (czemu nie do -1?). W podręczniku dowodzono
(używając indukcji), że jest rosnący i ograniczony, więc jest zbieżny.

Dla Newtona celem były równania (trudniejsze niż (*)), które chciał roz-
wiązać. Przeksztalcał równania do (sprytnej) postaci takiej, że mógł zoba-
czyć rekurencję jak w (**). Obliczał kilka wyrazów (pod jabłonią) i dostawał
przybliżenie rozwiązania równania.
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Dziś tak liczą komputry, a my... mamy czas bawić się wzorkami:

Zad. 1. Oblicz B, C
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Zad. 2. Która z liczb jest większa:
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Zad. 3. Która z liczb jest większa:
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2 Ułamkowce

Już starożytni dziwili się widząc w ‘przyrodzie’ takie zjawiska:
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Oczywiście inaczej je pisali. Dziś nazywa się to ułamkami łańcuchowymi.
Wiele ciekawego potrafili zobaczyć; np.
‘okresowe’ nieskonczone ułamki łańcuchowe są ....

Zad. 4. Oblicz H, I, J
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Nie bawili się jednak takimi potworami:
Zad. 5. Oblicz K, L
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Zad. 6. Oblicz M
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3 Nawiasowce

Dla szósto, siódmoklasisty:

N6 = 6−(5−(4−(3−(2−(1)))))

N11 = 11−(10−(9−(8−(7−(6−(5−(4−(3−(2−(1))))))))))

N12 = 12−(11−(10−(9−(8−(7−(6−(5−(4−(3−(2−(1)))))))))))

N13 = 13−(12−(11−(10−(9−(8−(7−(6−(5−(4−(3−(2−(1))))))))))))

Zad. 7. Oblicz N7, N8, N9, N10

Zad. 8. Oblicz N123, N124, N125, N126

Zad. 9. Oblicz N2k−1, N2k, N2k+1, N2k+2

Zad. 10. Oblicz Nm
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