DifferentialExtension RΒΆ

catdef.spad line 268 [edit on github]

Differential extensions of a ring R. Given a differentiation on R, extend it to a differentiation on %.

0: %

from AbelianMonoid

1: %

from MagmaWithUnit

*: (%, %) -> %

from Magma

*: (Integer, %) -> %

from AbelianGroup

*: (NonNegativeInteger, %) -> %

from AbelianMonoid

*: (PositiveInteger, %) -> %

from AbelianSemiGroup

+: (%, %) -> %

from AbelianSemiGroup

-: % -> %

from AbelianGroup

-: (%, %) -> %

from AbelianGroup

=: (%, %) -> Boolean

from BasicType

^: (%, NonNegativeInteger) -> %

from MagmaWithUnit

^: (%, PositiveInteger) -> %

from Magma

~=: (%, %) -> Boolean

from BasicType

annihilate?: (%, %) -> Boolean

from Rng

antiCommutator: (%, %) -> %

from NonAssociativeSemiRng

associator: (%, %, %) -> %

from NonAssociativeRng

characteristic: () -> NonNegativeInteger

from NonAssociativeRing

coerce: % -> OutputForm

from CoercibleTo OutputForm

coerce: Integer -> %

from NonAssociativeRing

commutator: (%, %) -> %

from NonAssociativeRng

D: % -> % if R has DifferentialRing

from DifferentialRing

D: (%, List Symbol) -> % if R has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

D: (%, List Symbol, List NonNegativeInteger) -> % if R has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

D: (%, NonNegativeInteger) -> % if R has DifferentialRing

from DifferentialRing

D: (%, R -> R) -> %

D(x, deriv) differentiates x extending the derivation deriv on R.

D: (%, R -> R, NonNegativeInteger) -> %

D(x, deriv, n) differentiate x n times using a derivation which extends deriv on R.

D: (%, Symbol) -> % if R has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

D: (%, Symbol, NonNegativeInteger) -> % if R has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

differentiate: % -> % if R has DifferentialRing

from DifferentialRing

differentiate: (%, List Symbol) -> % if R has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

differentiate: (%, List Symbol, List NonNegativeInteger) -> % if R has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

differentiate: (%, NonNegativeInteger) -> % if R has DifferentialRing

from DifferentialRing

differentiate: (%, R -> R) -> %

differentiate(x, deriv) differentiates x extending the derivation deriv on R.

differentiate: (%, R -> R, NonNegativeInteger) -> %

differentiate(x, deriv, n) differentiate x n times using a derivation which extends deriv on R.

differentiate: (%, Symbol) -> % if R has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

differentiate: (%, Symbol, NonNegativeInteger) -> % if R has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

latex: % -> String

from SetCategory

leftPower: (%, NonNegativeInteger) -> %

from MagmaWithUnit

leftPower: (%, PositiveInteger) -> %

from Magma

leftRecip: % -> Union(%, failed)

from MagmaWithUnit

one?: % -> Boolean

from MagmaWithUnit

opposite?: (%, %) -> Boolean

from AbelianMonoid

recip: % -> Union(%, failed)

from MagmaWithUnit

rightPower: (%, NonNegativeInteger) -> %

from MagmaWithUnit

rightPower: (%, PositiveInteger) -> %

from Magma

rightRecip: % -> Union(%, failed)

from MagmaWithUnit

sample: %

from AbelianMonoid

subtractIfCan: (%, %) -> Union(%, failed)

from CancellationAbelianMonoid

zero?: % -> Boolean

from AbelianMonoid

AbelianGroup

AbelianMonoid

AbelianSemiGroup

BasicType

BiModule(%, %)

CancellationAbelianMonoid

CoercibleTo OutputForm

DifferentialRing if R has DifferentialRing

LeftModule %

Magma

MagmaWithUnit

Monoid

NonAssociativeRing

NonAssociativeRng

NonAssociativeSemiRing

NonAssociativeSemiRng

PartialDifferentialRing Symbol if R has PartialDifferentialRing Symbol

RightModule %

Ring

Rng

SemiGroup

SemiRing

SemiRng

SetCategory

unitsKnown