GeneralModulePolynomial(vl, R, IS, E, ff, P)ΒΆ

modmonom.spad line 31 [edit on github]

This package undocumented

0: %

from AbelianMonoid

*: (%, P) -> %

from RightModule P

*: (%, R) -> %

from RightModule R

*: (Integer, %) -> %

from AbelianGroup

*: (NonNegativeInteger, %) -> %

from AbelianMonoid

*: (P, %) -> %

p*x undocumented

*: (PositiveInteger, %) -> %

from AbelianSemiGroup

*: (R, %) -> %

from LeftModule R

+: (%, %) -> %

from AbelianSemiGroup

-: % -> %

from AbelianGroup

-: (%, %) -> %

from AbelianGroup

=: (%, %) -> Boolean

from BasicType

~=: (%, %) -> Boolean

from BasicType

build: (R, IS, E) -> %

build(r, i, e) undocumented

coerce: % -> OutputForm

from CoercibleTo OutputForm

latex: % -> String

from SetCategory

leadingCoefficient: % -> R

leadingCoefficient(x) undocumented

leadingExponent: % -> E

leadingExponent(x) undocumented

leadingIndex: % -> IS

leadingIndex(x) undocumented

leadingMonomial: % -> ModuleMonomial(IS, E, ff)

leadingMonomial(x) undocumented

monomial: (R, ModuleMonomial(IS, E, ff)) -> %

monomial(r, x) undocumented

multMonom: (R, E, %) -> %

multMonom(r, e, x) undocumented

opposite?: (%, %) -> Boolean

from AbelianMonoid

reductum: % -> %

reductum(x) undocumented

sample: %

from AbelianMonoid

subtractIfCan: (%, %) -> Union(%, failed)

from CancellationAbelianMonoid

unitVector: IS -> %

unitVector(x) undocumented

zero?: % -> Boolean

from AbelianMonoid

AbelianGroup

AbelianMonoid

AbelianSemiGroup

BasicType

BiModule(P, P)

BiModule(R, R)

CancellationAbelianMonoid

CoercibleTo OutputForm

LeftModule P

LeftModule R

Module P

Module R

RightModule P

RightModule R

SetCategory