GeneralizedUnivariatePowerSeries(Coef, Expon, var, cen)

genser.spad line 192 [edit on github]

Author: Waldek Hebisch

0: %

from AbelianMonoid

1: %

from MagmaWithUnit

*: (%, %) -> %

from Magma

*: (%, Coef) -> %

from RightModule Coef

*: (%, Fraction Integer) -> % if Coef has Algebra Fraction Integer

from RightModule Fraction Integer

*: (Coef, %) -> %

from LeftModule Coef

*: (Fraction Integer, %) -> % if Coef has Algebra Fraction Integer

from LeftModule Fraction Integer

*: (Integer, %) -> %

from AbelianGroup

*: (NonNegativeInteger, %) -> %

from AbelianMonoid

*: (PositiveInteger, %) -> %

from AbelianSemiGroup

+: (%, %) -> %

from AbelianSemiGroup

-: % -> %

from AbelianGroup

-: (%, %) -> %

from AbelianGroup

/: (%, %) -> % if Coef has Field and Expon has AbelianGroup

from Field

/: (%, Coef) -> % if Coef has Field

from AbelianMonoidRing(Coef, Expon)

=: (%, %) -> Boolean

from BasicType

^: (%, %) -> % if Coef has Algebra Fraction Integer

from ElementaryFunctionCategory

^: (%, Integer) -> % if Coef has Field and Expon has AbelianGroup

from DivisionRing

^: (%, NonNegativeInteger) -> %

from MagmaWithUnit

^: (%, PositiveInteger) -> %

from Magma

~=: (%, %) -> Boolean

from BasicType

acos: % -> % if Coef has Algebra Fraction Integer

from ArcTrigonometricFunctionCategory

acosh: % -> % if Coef has Algebra Fraction Integer

from ArcHyperbolicFunctionCategory

acot: % -> % if Coef has Algebra Fraction Integer

from ArcTrigonometricFunctionCategory

acoth: % -> % if Coef has Algebra Fraction Integer

from ArcHyperbolicFunctionCategory

acsc: % -> % if Coef has Algebra Fraction Integer

from ArcTrigonometricFunctionCategory

acsch: % -> % if Coef has Algebra Fraction Integer

from ArcHyperbolicFunctionCategory

annihilate?: (%, %) -> Boolean

from Rng

antiCommutator: (%, %) -> %

from NonAssociativeSemiRng

apply_taylor: (Stream Coef, %) -> %

apply_taylor(ts, s) applies Taylor series with coefficients ts to s, that is computes infinite sum ts(0) + ts(1)*s + ts(2)*s^2 + … Note: s must be of positive order

approximate: (%, Expon) -> Coef if Coef has coerce: Symbol -> Coef and Coef has ^: (Coef, Expon) -> Coef

from UnivariatePowerSeriesCategory(Coef, Expon)

asec: % -> % if Coef has Algebra Fraction Integer

from ArcTrigonometricFunctionCategory

asech: % -> % if Coef has Algebra Fraction Integer

from ArcHyperbolicFunctionCategory

asin: % -> % if Coef has Algebra Fraction Integer

from ArcTrigonometricFunctionCategory

asinh: % -> % if Coef has Algebra Fraction Integer

from ArcHyperbolicFunctionCategory

associates?: (%, %) -> Boolean if Coef has IntegralDomain

from EntireRing

associator: (%, %, %) -> %

from NonAssociativeRng

atan: % -> % if Coef has Algebra Fraction Integer

from ArcTrigonometricFunctionCategory

atanh: % -> % if Coef has Algebra Fraction Integer

from ArcHyperbolicFunctionCategory

center: % -> Coef

from UnivariatePowerSeriesCategory(Coef, Expon)

characteristic: () -> NonNegativeInteger

from NonAssociativeRing

charthRoot: % -> Union(%, failed) if Coef has CharacteristicNonZero

from CharacteristicNonZero

coefficient: (%, Expon) -> Coef

from AbelianMonoidRing(Coef, Expon)

coerce: % -> % if Coef has CommutativeRing

from Algebra %

coerce: % -> OutputForm

from CoercibleTo OutputForm

coerce: Coef -> % if Coef has CommutativeRing

from Algebra Coef

coerce: Fraction Integer -> % if Coef has Algebra Fraction Integer

from Algebra Fraction Integer

coerce: Integer -> %

from NonAssociativeRing

commutator: (%, %) -> %

from NonAssociativeRng

complete: % -> %

from PowerSeriesCategory(Coef, Expon, SingletonAsOrderedSet)

construct: List Record(k: Expon, c: Coef) -> %

from IndexedProductCategory(Coef, Expon)

constructOrdered: List Record(k: Expon, c: Coef) -> %

from IndexedProductCategory(Coef, Expon)

cos: % -> % if Coef has Algebra Fraction Integer

from TrigonometricFunctionCategory

cosh: % -> % if Coef has Algebra Fraction Integer

from HyperbolicFunctionCategory

cot: % -> % if Coef has Algebra Fraction Integer

from TrigonometricFunctionCategory

coth: % -> % if Coef has Algebra Fraction Integer

from HyperbolicFunctionCategory

csc: % -> % if Coef has Algebra Fraction Integer

from TrigonometricFunctionCategory

csch: % -> % if Coef has Algebra Fraction Integer

from HyperbolicFunctionCategory

D: % -> % if Coef has *: (Expon, Coef) -> Coef

from DifferentialRing

D: (%, List Symbol) -> % if Coef has *: (Expon, Coef) -> Coef and Coef has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

D: (%, List Symbol, List NonNegativeInteger) -> % if Coef has *: (Expon, Coef) -> Coef and Coef has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

D: (%, NonNegativeInteger) -> % if Coef has *: (Expon, Coef) -> Coef

from DifferentialRing

D: (%, Symbol) -> % if Coef has *: (Expon, Coef) -> Coef and Coef has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

D: (%, Symbol, NonNegativeInteger) -> % if Coef has *: (Expon, Coef) -> Coef and Coef has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

degree: % -> Expon

from PowerSeriesCategory(Coef, Expon, SingletonAsOrderedSet)

differentiate: % -> % if Coef has *: (Expon, Coef) -> Coef

from DifferentialRing

differentiate: (%, List Symbol) -> % if Coef has *: (Expon, Coef) -> Coef and Coef has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

differentiate: (%, List Symbol, List NonNegativeInteger) -> % if Coef has *: (Expon, Coef) -> Coef and Coef has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

differentiate: (%, NonNegativeInteger) -> % if Coef has *: (Expon, Coef) -> Coef

from DifferentialRing

differentiate: (%, Symbol) -> % if Coef has *: (Expon, Coef) -> Coef and Coef has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

differentiate: (%, Symbol, NonNegativeInteger) -> % if Coef has *: (Expon, Coef) -> Coef and Coef has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

divide: (%, %) -> Record(quotient: %, remainder: %) if Coef has Field and Expon has AbelianGroup

from EuclideanDomain

elt: (%, %) -> %

from Eltable(%, %)

elt: (%, Expon) -> Coef

from UnivariatePowerSeriesCategory(Coef, Expon)

euclideanSize: % -> NonNegativeInteger if Coef has Field and Expon has AbelianGroup

from EuclideanDomain

eval: (%, Coef) -> Stream Coef if Coef has ^: (Coef, Expon) -> Coef

from UnivariatePowerSeriesCategory(Coef, Expon)

exp: % -> % if Coef has Algebra Fraction Integer

from ElementaryFunctionCategory

expressIdealMember: (List %, %) -> Union(List %, failed) if Coef has Field and Expon has AbelianGroup

from PrincipalIdealDomain

exquo: (%, %) -> Union(%, failed) if Coef has IntegralDomain

from EntireRing

extend: (%, Expon) -> %

from UnivariatePowerSeriesCategory(Coef, Expon)

extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %) if Coef has Field and Expon has AbelianGroup

from EuclideanDomain

extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed) if Coef has Field and Expon has AbelianGroup

from EuclideanDomain

factor: % -> Factored % if Coef has Field and Expon has AbelianGroup

from UniqueFactorizationDomain

gcd: (%, %) -> % if Coef has Field and Expon has AbelianGroup

from GcdDomain

gcd: List % -> % if Coef has Field and Expon has AbelianGroup

from GcdDomain

gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial % if Coef has Field and Expon has AbelianGroup

from GcdDomain

infsum: Stream % -> %

infsum(x) computes sum of all elements of x. Degrees of elements of x must be nondecreasing and tend to infinity.

inv: % -> % if Coef has Field and Expon has AbelianGroup

from DivisionRing

latex: % -> String

from SetCategory

lcm: (%, %) -> % if Coef has Field and Expon has AbelianGroup

from GcdDomain

lcm: List % -> % if Coef has Field and Expon has AbelianGroup

from GcdDomain

lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %) if Coef has Field and Expon has AbelianGroup

from LeftOreRing

leadingCoefficient: % -> Coef

from PowerSeriesCategory(Coef, Expon, SingletonAsOrderedSet)

leadingMonomial: % -> %

from PowerSeriesCategory(Coef, Expon, SingletonAsOrderedSet)

leadingSupport: % -> Expon

from IndexedProductCategory(Coef, Expon)

leadingTerm: % -> Record(k: Expon, c: Coef)

from IndexedProductCategory(Coef, Expon)

leftPower: (%, NonNegativeInteger) -> %

from MagmaWithUnit

leftPower: (%, PositiveInteger) -> %

from Magma

leftRecip: % -> Union(%, failed)

from MagmaWithUnit

log: % -> % if Coef has Algebra Fraction Integer

from ElementaryFunctionCategory

map: (Coef -> Coef, %) -> %

from IndexedProductCategory(Coef, Expon)

monomial?: % -> Boolean

from IndexedProductCategory(Coef, Expon)

monomial: (Coef, Expon) -> %

from IndexedProductCategory(Coef, Expon)

multiEuclidean: (List %, %) -> Union(List %, failed) if Coef has Field and Expon has AbelianGroup

from EuclideanDomain

multiplyExponents: (%, PositiveInteger) -> %

from UnivariatePowerSeriesCategory(Coef, Expon)

one?: % -> Boolean

from MagmaWithUnit

opposite?: (%, %) -> Boolean

from AbelianMonoid

order: % -> Expon

from UnivariatePowerSeriesCategory(Coef, Expon)

order: (%, Expon) -> Expon

from UnivariatePowerSeriesCategory(Coef, Expon)

pi: () -> % if Coef has Algebra Fraction Integer

from TranscendentalFunctionCategory

plenaryPower: (%, PositiveInteger) -> % if Coef has Algebra Fraction Integer or Coef has CommutativeRing

from NonAssociativeAlgebra %

pole?: % -> Boolean

from PowerSeriesCategory(Coef, Expon, SingletonAsOrderedSet)

prime?: % -> Boolean if Coef has Field and Expon has AbelianGroup

from UniqueFactorizationDomain

principalIdeal: List % -> Record(coef: List %, generator: %) if Coef has Field and Expon has AbelianGroup

from PrincipalIdealDomain

quo: (%, %) -> % if Coef has Field and Expon has AbelianGroup

from EuclideanDomain

recip: % -> Union(%, failed)

from MagmaWithUnit

reductum: % -> %

from IndexedProductCategory(Coef, Expon)

rem: (%, %) -> % if Coef has Field and Expon has AbelianGroup

from EuclideanDomain

removeZeros: (%, Expon) -> %

removeZeros(s, k) removes leading zero terms in s with exponent smaller than k

rightPower: (%, NonNegativeInteger) -> %

from MagmaWithUnit

rightPower: (%, PositiveInteger) -> %

from Magma

rightRecip: % -> Union(%, failed)

from MagmaWithUnit

sample: %

from AbelianMonoid

sec: % -> % if Coef has Algebra Fraction Integer

from TrigonometricFunctionCategory

sech: % -> % if Coef has Algebra Fraction Integer

from HyperbolicFunctionCategory

sin: % -> % if Coef has Algebra Fraction Integer

from TrigonometricFunctionCategory

sinh: % -> % if Coef has Algebra Fraction Integer

from HyperbolicFunctionCategory

sizeLess?: (%, %) -> Boolean if Coef has Field and Expon has AbelianGroup

from EuclideanDomain

squareFree: % -> Factored % if Coef has Field and Expon has AbelianGroup

from UniqueFactorizationDomain

squareFreePart: % -> % if Coef has Field and Expon has AbelianGroup

from UniqueFactorizationDomain

subtractIfCan: (%, %) -> Union(%, failed)

from CancellationAbelianMonoid

tan: % -> % if Coef has Algebra Fraction Integer

from TrigonometricFunctionCategory

tanh: % -> % if Coef has Algebra Fraction Integer

from HyperbolicFunctionCategory

terms: % -> Stream Record(k: Expon, c: Coef)

from UnivariatePowerSeriesCategory(Coef, Expon)

truncate: (%, Expon) -> %

from UnivariatePowerSeriesCategory(Coef, Expon)

truncate: (%, Expon, Expon) -> %

from UnivariatePowerSeriesCategory(Coef, Expon)

unit?: % -> Boolean if Coef has IntegralDomain

from EntireRing

unitCanonical: % -> % if Coef has IntegralDomain

from EntireRing

unitNormal: % -> Record(unit: %, canonical: %, associate: %) if Coef has IntegralDomain

from EntireRing

variable: % -> Symbol

from UnivariatePowerSeriesCategory(Coef, Expon)

zero?: % -> Boolean

from AbelianMonoid

AbelianGroup

AbelianMonoid

AbelianMonoidRing(Coef, Expon)

AbelianProductCategory Coef

AbelianSemiGroup

Algebra % if Coef has CommutativeRing

Algebra Coef if Coef has CommutativeRing

Algebra Fraction Integer if Coef has Algebra Fraction Integer

ArcHyperbolicFunctionCategory if Coef has Algebra Fraction Integer

ArcTrigonometricFunctionCategory if Coef has Algebra Fraction Integer

BasicType

BiModule(%, %)

BiModule(Coef, Coef)

BiModule(Fraction Integer, Fraction Integer) if Coef has Algebra Fraction Integer

CancellationAbelianMonoid

canonicalsClosed if Coef has Field and Expon has AbelianGroup

canonicalUnitNormal if Coef has Field and Expon has AbelianGroup

CharacteristicNonZero if Coef has CharacteristicNonZero

CharacteristicZero if Coef has CharacteristicZero

CoercibleTo OutputForm

CommutativeRing if Coef has CommutativeRing

CommutativeStar if Coef has CommutativeRing

DifferentialRing if Coef has *: (Expon, Coef) -> Coef

DivisionRing if Coef has Field and Expon has AbelianGroup

ElementaryFunctionCategory if Coef has Algebra Fraction Integer

Eltable(%, %)

EntireRing if Coef has IntegralDomain

EuclideanDomain if Coef has Field and Expon has AbelianGroup

Field if Coef has Field and Expon has AbelianGroup

GcdDomain if Coef has Field and Expon has AbelianGroup

HyperbolicFunctionCategory if Coef has Algebra Fraction Integer

IndexedProductCategory(Coef, Expon)

IntegralDomain if Coef has IntegralDomain

LeftModule %

LeftModule Coef

LeftModule Fraction Integer if Coef has Algebra Fraction Integer

LeftOreRing if Coef has Field and Expon has AbelianGroup

Magma

MagmaWithUnit

Module % if Coef has CommutativeRing

Module Coef if Coef has CommutativeRing

Module Fraction Integer if Coef has Algebra Fraction Integer

Monoid

NonAssociativeAlgebra % if Coef has CommutativeRing

NonAssociativeAlgebra Coef if Coef has CommutativeRing

NonAssociativeAlgebra Fraction Integer if Coef has Algebra Fraction Integer

NonAssociativeRing

NonAssociativeRng

NonAssociativeSemiRing

NonAssociativeSemiRng

noZeroDivisors if Coef has IntegralDomain

PartialDifferentialRing Symbol if Coef has *: (Expon, Coef) -> Coef and Coef has PartialDifferentialRing Symbol

PowerSeriesCategory(Coef, Expon, SingletonAsOrderedSet)

PrincipalIdealDomain if Coef has Field and Expon has AbelianGroup

RightModule %

RightModule Coef

RightModule Fraction Integer if Coef has Algebra Fraction Integer

Ring

Rng

SemiGroup

SemiRing

SemiRng

SetCategory

TranscendentalFunctionCategory if Coef has Algebra Fraction Integer

TrigonometricFunctionCategory if Coef has Algebra Fraction Integer

TwoSidedRecip if Coef has CommutativeRing

UniqueFactorizationDomain if Coef has Field and Expon has AbelianGroup

unitsKnown

UnivariatePowerSeriesCategory(Coef, Expon)

VariablesCommuteWithCoefficients