NonAssociativeAlgebra RΒΆ
naalgc.spad line 195 [edit on github]
NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms r*
(a*b) = (r*a)*b
= a*(r*b
)
- 0: %
from AbelianMonoid
- *: (%, %) -> %
from Magma
- *: (%, R) -> %
from RightModule R
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- *: (R, %) -> %
from LeftModule R
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- ^: (%, PositiveInteger) -> %
from Magma
- antiCommutator: (%, %) -> %
- associator: (%, %, %) -> %
from NonAssociativeRng
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- commutator: (%, %) -> %
from NonAssociativeRng
- latex: % -> String
from SetCategory
- leftPower: (%, PositiveInteger) -> %
from Magma
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- plenaryPower: (%, PositiveInteger) -> %
plenaryPower(a, n)
is recursively defined to beplenaryPower(a, n-1)*plenaryPower(a, n-1)
forn>1
anda
forn=1
.
- rightPower: (%, PositiveInteger) -> %
from Magma
- sample: %
from AbelianMonoid
- subtractIfCan: (%, %) -> Union(%, failed)
- zero?: % -> Boolean
from AbelianMonoid
BiModule(R, R)
Module R