PowerSeriesCategory(Coef, Expon, Var)ΒΆ
pscat.spad line 1 [edit on github]
Coef: Ring
Expon: OrderedAbelianMonoid
Var: OrderedSet
PowerSeriesCategory is the most general power series category with exponents in an ordered abelian monoid.
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
- *: (%, %) -> %
from Magma
- *: (%, Coef) -> %
from RightModule Coef
- *: (%, Fraction Integer) -> % if Coef has Algebra Fraction Integer
from RightModule Fraction Integer
- *: (Coef, %) -> %
from LeftModule Coef
- *: (Fraction Integer, %) -> % if Coef has Algebra Fraction Integer
from LeftModule Fraction Integer
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- /: (%, Coef) -> % if Coef has Field
from AbelianMonoidRing(Coef, Expon)
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- associates?: (%, %) -> Boolean if Coef has IntegralDomain
from EntireRing
- associator: (%, %, %) -> %
from NonAssociativeRng
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- charthRoot: % -> Union(%, failed) if Coef has CharacteristicNonZero
- coefficient: (%, Expon) -> Coef
from AbelianMonoidRing(Coef, Expon)
- coerce: % -> % if Coef has CommutativeRing
from Algebra %
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: Coef -> % if Coef has CommutativeRing
from Algebra Coef
- coerce: Fraction Integer -> % if Coef has Algebra Fraction Integer
- coerce: Integer -> %
from NonAssociativeRing
- commutator: (%, %) -> %
from NonAssociativeRng
- complete: % -> %
complete(f)
causes all terms off
to be computed. Note: this results in an infinite loop iff
has infinitely many terms.
- construct: List Record(k: Expon, c: Coef) -> %
from IndexedProductCategory(Coef, Expon)
- constructOrdered: List Record(k: Expon, c: Coef) -> %
from IndexedProductCategory(Coef, Expon)
- degree: % -> Expon
degree(f)
returns the exponent of the lowest order term off
.
- exquo: (%, %) -> Union(%, failed) if Coef has IntegralDomain
from EntireRing
- latex: % -> String
from SetCategory
- leadingCoefficient: % -> Coef
leadingCoefficient(f)
returns the coefficient of the lowest order term off
- leadingMonomial: % -> %
leadingMonomial(f)
returns the monomial off
of lowest order.
- leadingSupport: % -> Expon
from IndexedProductCategory(Coef, Expon)
- leadingTerm: % -> Record(k: Expon, c: Coef)
from IndexedProductCategory(Coef, Expon)
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- map: (Coef -> Coef, %) -> %
from IndexedProductCategory(Coef, Expon)
- monomial?: % -> Boolean
from IndexedProductCategory(Coef, Expon)
- monomial: (Coef, Expon) -> %
from IndexedProductCategory(Coef, Expon)
- one?: % -> Boolean
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- plenaryPower: (%, PositiveInteger) -> % if Coef has CommutativeRing or Coef has Algebra Fraction Integer
from NonAssociativeAlgebra Coef
- pole?: % -> Boolean
pole?(f)
determines if the power seriesf
has a pole.
- recip: % -> Union(%, failed)
from MagmaWithUnit
- reductum: % -> %
from IndexedProductCategory(Coef, Expon)
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- sample: %
from AbelianMonoid
- subtractIfCan: (%, %) -> Union(%, failed)
- unit?: % -> Boolean if Coef has IntegralDomain
from EntireRing
- unitCanonical: % -> % if Coef has IntegralDomain
from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %) if Coef has IntegralDomain
from EntireRing
- zero?: % -> Boolean
from AbelianMonoid
AbelianMonoidRing(Coef, Expon)
Algebra % if Coef has CommutativeRing
Algebra Coef if Coef has CommutativeRing
Algebra Fraction Integer if Coef has Algebra Fraction Integer
BiModule(%, %)
BiModule(Coef, Coef)
BiModule(Fraction Integer, Fraction Integer) if Coef has Algebra Fraction Integer
CharacteristicNonZero if Coef has CharacteristicNonZero
CharacteristicZero if Coef has CharacteristicZero
CommutativeRing if Coef has CommutativeRing
CommutativeStar if Coef has CommutativeRing
EntireRing if Coef has IntegralDomain
IndexedProductCategory(Coef, Expon)
IntegralDomain if Coef has IntegralDomain
LeftModule Coef
LeftModule Fraction Integer if Coef has Algebra Fraction Integer
Module % if Coef has CommutativeRing
Module Coef if Coef has CommutativeRing
Module Fraction Integer if Coef has Algebra Fraction Integer
NonAssociativeAlgebra % if Coef has CommutativeRing
NonAssociativeAlgebra Coef if Coef has CommutativeRing
NonAssociativeAlgebra Fraction Integer if Coef has Algebra Fraction Integer
noZeroDivisors if Coef has IntegralDomain
RightModule Coef
RightModule Fraction Integer if Coef has Algebra Fraction Integer
TwoSidedRecip if Coef has CommutativeRing