PowerSeriesCategory(Coef, Expon, Var)ΒΆ
pscat.spad line 1 [edit on github]
- Coef: Ring 
- Expon: OrderedAbelianMonoid 
- Var: OrderedSet 
PowerSeriesCategory is the most general power series category with exponents in an ordered abelian monoid.
- 0: %
- from AbelianMonoid 
- 1: %
- from MagmaWithUnit 
- *: (%, %) -> %
- from Magma 
- *: (%, Coef) -> %
- from RightModule Coef 
- *: (%, Fraction Integer) -> % if Coef has Algebra Fraction Integer
- from RightModule Fraction Integer 
- *: (Coef, %) -> %
- from LeftModule Coef 
- *: (Fraction Integer, %) -> % if Coef has Algebra Fraction Integer
- from LeftModule Fraction Integer 
- *: (Integer, %) -> %
- from AbelianGroup 
- *: (NonNegativeInteger, %) -> %
- from AbelianMonoid 
- *: (PositiveInteger, %) -> %
- from AbelianSemiGroup 
- +: (%, %) -> %
- from AbelianSemiGroup 
- -: % -> %
- from AbelianGroup 
- -: (%, %) -> %
- from AbelianGroup 
- /: (%, Coef) -> % if Coef has Field
- from AbelianMonoidRing(Coef, Expon) 
- ^: (%, NonNegativeInteger) -> %
- from MagmaWithUnit 
- ^: (%, PositiveInteger) -> %
- from Magma 
- annihilate?: (%, %) -> Boolean
- from Rng 
- antiCommutator: (%, %) -> %
- associates?: (%, %) -> Boolean if Coef has IntegralDomain
- from EntireRing 
- associator: (%, %, %) -> %
- from NonAssociativeRng 
- characteristic: () -> NonNegativeInteger
- from NonAssociativeRing 
- charthRoot: % -> Union(%, failed) if Coef has CharacteristicNonZero
- coefficient: (%, Expon) -> Coef
- from AbelianMonoidRing(Coef, Expon) 
- coerce: % -> % if Coef has CommutativeRing
- from Algebra % 
- coerce: % -> OutputForm
- from CoercibleTo OutputForm 
- coerce: Coef -> % if Coef has CommutativeRing
- from Algebra Coef 
- coerce: Fraction Integer -> % if Coef has Algebra Fraction Integer
- coerce: Integer -> %
- from NonAssociativeRing 
- commutator: (%, %) -> %
- from NonAssociativeRng 
- complete: % -> %
- complete(f)causes all terms of- fto be computed. Note: this results in an infinite loop if- fhas infinitely many terms.
- construct: List Record(k: Expon, c: Coef) -> %
- from IndexedProductCategory(Coef, Expon) 
- constructOrdered: List Record(k: Expon, c: Coef) -> %
- from IndexedProductCategory(Coef, Expon) 
- degree: % -> Expon
- degree(f)returns the exponent of the lowest order term of- f.
- exquo: (%, %) -> Union(%, failed) if Coef has IntegralDomain
- from EntireRing 
- latex: % -> String
- from SetCategory 
- leadingCoefficient: % -> Coef
- leadingCoefficient(f)returns the coefficient of the lowest order term of- f
- leadingMonomial: % -> %
- leadingMonomial(f)returns the monomial of- fof lowest order.
- leadingSupport: % -> Expon
- from IndexedProductCategory(Coef, Expon) 
- leadingTerm: % -> Record(k: Expon, c: Coef)
- from IndexedProductCategory(Coef, Expon) 
- leftPower: (%, NonNegativeInteger) -> %
- from MagmaWithUnit 
- leftPower: (%, PositiveInteger) -> %
- from Magma 
- leftRecip: % -> Union(%, failed)
- from MagmaWithUnit 
- map: (Coef -> Coef, %) -> %
- from IndexedProductCategory(Coef, Expon) 
- monomial?: % -> Boolean
- from IndexedProductCategory(Coef, Expon) 
- monomial: (Coef, Expon) -> %
- from IndexedProductCategory(Coef, Expon) 
- one?: % -> Boolean
- from MagmaWithUnit 
- opposite?: (%, %) -> Boolean
- from AbelianMonoid 
- plenaryPower: (%, PositiveInteger) -> % if Coef has CommutativeRing or Coef has Algebra Fraction Integer
- from NonAssociativeAlgebra Coef 
- pole?: % -> Boolean
- pole?(f)determines if the power series- fhas a pole.
- recip: % -> Union(%, failed)
- from MagmaWithUnit 
- reductum: % -> %
- from IndexedProductCategory(Coef, Expon) 
- rightPower: (%, NonNegativeInteger) -> %
- from MagmaWithUnit 
- rightPower: (%, PositiveInteger) -> %
- from Magma 
- rightRecip: % -> Union(%, failed)
- from MagmaWithUnit 
- sample: %
- from AbelianMonoid 
- subtractIfCan: (%, %) -> Union(%, failed)
- unit?: % -> Boolean if Coef has IntegralDomain
- from EntireRing 
- unitCanonical: % -> % if Coef has IntegralDomain
- from EntireRing 
- unitNormal: % -> Record(unit: %, canonical: %, associate: %) if Coef has IntegralDomain
- from EntireRing 
- zero?: % -> Boolean
- from AbelianMonoid 
AbelianMonoidRing(Coef, Expon)
Algebra % if Coef has CommutativeRing
Algebra Coef if Coef has CommutativeRing
Algebra Fraction Integer if Coef has Algebra Fraction Integer
BiModule(%, %)
BiModule(Coef, Coef)
BiModule(Fraction Integer, Fraction Integer) if Coef has Algebra Fraction Integer
CharacteristicNonZero if Coef has CharacteristicNonZero
CharacteristicZero if Coef has CharacteristicZero
CommutativeRing if Coef has CommutativeRing
CommutativeStar if Coef has CommutativeRing
EntireRing if Coef has IntegralDomain
IndexedProductCategory(Coef, Expon)
IntegralDomain if Coef has IntegralDomain
LeftModule Coef
LeftModule Fraction Integer if Coef has Algebra Fraction Integer
Module % if Coef has CommutativeRing
Module Coef if Coef has CommutativeRing
Module Fraction Integer if Coef has Algebra Fraction Integer
NonAssociativeAlgebra % if Coef has CommutativeRing
NonAssociativeAlgebra Coef if Coef has CommutativeRing
NonAssociativeAlgebra Fraction Integer if Coef has Algebra Fraction Integer
noZeroDivisors if Coef has IntegralDomain
RightModule Coef
RightModule Fraction Integer if Coef has Algebra Fraction Integer
TwoSidedRecip if Coef has CommutativeRing