# IntegralBasisTools(R, UP, F)¶

intclos.spad line 62 [edit on github]

R: EuclideanDomain with

squareFree: % -> Factored %

F: FramedAlgebra(R, UP)

This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.

- diagonalProduct: Matrix R -> R
`diagonalProduct(m)`

returns the product of the elements on the diagonal of the matrix`m`

- divideIfCan!: (Matrix R, Matrix R, R, Integer) -> R
`divideIfCan!(matrix, matrixOut, prime, n)`

attempts to divide the entries of`matrix`

by`prime`

and store the result in`matrixOut`

. If it is successful, 1 is returned and if not,`prime`

is returned. Here both`matrix`

and`matrixOut`

are`n`

-by-`n`

upper triangular matrices.

- idealiser: (Matrix R, Matrix R) -> Matrix R
`idealiser(m1, m2)`

computes the order of an ideal defined by`m1`

and`m2`

- idealiser: (Matrix R, Matrix R, R) -> Matrix R
`idealiser(m1, m2, d)`

computes the order of an ideal defined by`m1`

and`m2`

where`d`

is the known part of the denominator

- idealiserMatrix: (Matrix R, Matrix R) -> Matrix R
`idealiserMatrix(m1, m2)`

returns the matrix representing the linear conditions on the Ring associated with an ideal defined by`m1`

and`m2`

.

- leastPower: (NonNegativeInteger, NonNegativeInteger) -> NonNegativeInteger
`leastPower(p, n)`

returns`e`

, where`e`

is the smallest integer such that`p ^e >= n`

- matrixGcd: (Matrix R, R, NonNegativeInteger) -> R
`matrixGcd(mat, sing, n)`

is`gcd(sing, g)`

where`g`

is the`gcd`

of the entries of the`n`

-by-`n`

upper-triangular matrix`mat`

.

- moduleSum: (Record(basis: Matrix R, basisDen: R, basisInv: Matrix R), Record(basis: Matrix R, basisDen: R, basisInv: Matrix R)) -> Record(basis: Matrix R, basisDen: R, basisInv: Matrix R)
`moduleSum(m1, m2)`

returns the sum of two modules in the framed algebra`F`

. Each module`mi`

is represented as follows:`F`

is a framed algebra with`R`

-module basis`w1, w2, ..., wn`

and`mi`

is a record`[basis, basisDen, basisInv]`

. If`basis`

is the matrix`(aij, i = 1..n, j = 1..n)`

, then a basis`v1, ..., vn`

for`mi`

is given by`vi = (1/basisDen) * sum(aij * wj, j = 1..n)`

, i.e. the`i`

th row of ‘basis’ contains the coordinates of the`i`

th basis vector. Similarly, the`i`

th row of the matrix`basisInv`

contains the coordinates of`wi`

with respect to the basis`v1, ..., vn`

: if`basisInv`

is the matrix`(bij, i = 1..n, j = 1..n)`

, then`wi = sum(bij * vj, j = 1..n)`

.