JetDifferential(JB, D)ΒΆ
jet.spad line 3591 [edit on github]
JetDifferential(JB, D) implements differentials (one-forms) over the jet bundle JB with coefficients from D. The differentials operate on JetVectorField(JB, D).
- 0: %
- from AbelianMonoid 
- *: (%, D) -> %
- from RightModule D 
- *: (D, %) -> %
- from LeftModule D 
- *: (Integer, %) -> %
- from AbelianGroup 
- *: (NonNegativeInteger, %) -> %
- from AbelianMonoid 
- *: (PositiveInteger, %) -> %
- from AbelianSemiGroup 
- +: (%, %) -> %
- from AbelianSemiGroup 
- -: % -> %
- from AbelianGroup 
- -: (%, %) -> %
- from AbelianGroup 
- coefficient: (%, JB) -> D
- coefficient(om, jb)returns the coefficient of- omfor the differential of- jb.
- coefficients: % -> List D
- coefficients(om)yields the coefficients of- om.
- coerce: % -> OutputForm
- from CoercibleTo OutputForm 
- contract: (JetVectorField(JB, D), %) -> D
- contract(v, om)computes the interior derivative of- omwith respect to- v.
- copy: % -> %
- copy(om)returns a copy of the differential- om.
- d: D -> %
- d(f)computes the differential of- f.
- d: JB -> %
- d(jb)returns the differential of- jb.
- differentials: % -> List JB
- directions(om)yields the differentials where- omhas non-vanishing coefficients.
- dP: (PositiveInteger, List NonNegativeInteger) -> %
- dP(i, mu)returns the differential of- P(i, mu).
- dU: PositiveInteger -> %
- dU(i)returns the differential of- U(i).
- dX: PositiveInteger -> %
- dX(i)returns the differential of- X(i).
- eval: (%, JetVectorField(JB, D)) -> D
- eval(om, v)applies the differential- omto the vector field- v.
- latex: % -> String
- from SetCategory 
- lie: (JetVectorField(JB, D), %) -> %
- lie(v, om)calculates the Lie derivative of- omwith respect to- v.
- opposite?: (%, %) -> Boolean
- from AbelianMonoid 
- sample: %
- from AbelianMonoid 
- subtractIfCan: (%, %) -> Union(%, failed)
- zero?: % -> Boolean
- from AbelianMonoid 
BiModule(D, D)
Module D