JetDifferential(JB, D)ΒΆ
jet.spad line 3591 [edit on github]
JetDifferential(JB, D)
implements differentials (one-forms) over the jet bundle JB
with coefficients from D
. The differentials operate on JetVectorField(JB, D)
.
- 0: %
from AbelianMonoid
- *: (%, D) -> %
from RightModule D
- *: (D, %) -> %
from LeftModule D
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- coefficient: (%, JB) -> D
coefficient(om, jb)
returns the coefficient ofom
for the differential ofjb
.
- coefficients: % -> List D
coefficients(om)
yields the coefficients ofom
.
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- contract: (JetVectorField(JB, D), %) -> D
contract(v, om)
computes the interior derivative ofom
with respect tov
.
- copy: % -> %
copy(om)
returns a copy of the differentialom
.
- d: D -> %
d(f)
computes the differential off
.
- d: JB -> %
d(jb)
returns the differential ofjb
.
- differentials: % -> List JB
directions(om)
yields the differentials whereom
has non-vanishing coefficients.
- dP: (PositiveInteger, List NonNegativeInteger) -> %
dP(i, mu)
returns the differential ofP(i, mu)
.
- dU: PositiveInteger -> %
dU(i)
returns the differential ofU(i)
.
- dX: PositiveInteger -> %
dX(i)
returns the differential ofX(i)
.
- eval: (%, JetVectorField(JB, D)) -> D
eval(om, v)
applies the differentialom
to the vector fieldv
.
- latex: % -> String
from SetCategory
- lie: (JetVectorField(JB, D), %) -> %
lie(v, om)
calculates the Lie derivative ofom
with respect tov
.
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- sample: %
from AbelianMonoid
- subtractIfCan: (%, %) -> Union(%, failed)
- zero?: % -> Boolean
from AbelianMonoid
BiModule(D, D)
Module D