MultivariateSquareFree(E, OV, R, P)¶
multsqfr.spad line 1 [edit on github]
OV: OrderedSet
P: PolynomialCategory(R, E, OV)
Author : P
.Gianni This package provides the functions for the computation of the square free decomposition of a multivariate polynomial. It uses modular reduction and the package MultivariateLifting
for the “multivariate” lifting.
- check: (List Record(factor: SparseUnivariatePolynomial R, exponent: NonNegativeInteger), List Record(factor: SparseUnivariatePolynomial R, exponent: NonNegativeInteger)) -> Boolean
check should
be local
- coefChoose: (Integer, P, List Record(factor: P, exponent: NonNegativeInteger)) -> P
coefChoose should
be local
- compdegd: List Record(factor: SparseUnivariatePolynomial R, exponent: NonNegativeInteger) -> Integer
compdegd should
be local
- consnewpol: (SparseUnivariatePolynomial P, SparseUnivariatePolynomial R, Integer) -> Record(pol: SparseUnivariatePolynomial P, polval: SparseUnivariatePolynomial R)
consnewpol should
be local
- intChoose: (SparseUnivariatePolynomial P, List OV, List List R) -> Record(upol: SparseUnivariatePolynomial R, Lval: List R, Lfact: List Record(factor: SparseUnivariatePolynomial R, exponent: NonNegativeInteger), ctpol: R)
intChoose should
be local
- lift: (SparseUnivariatePolynomial P, SparseUnivariatePolynomial R, SparseUnivariatePolynomial R, P, List OV, List NonNegativeInteger, List R, R) -> Union(List SparseUnivariatePolynomial P, failed)
lift should
be local
- myDegree: (SparseUnivariatePolynomial P, List OV, NonNegativeInteger) -> List NonNegativeInteger
myDegree should
be local
- normDeriv2: (SparseUnivariatePolynomial R, Integer) -> SparseUnivariatePolynomial R
normDeriv2 should
be local
- nsqfree: (SparseUnivariatePolynomial P, List OV, List List R) -> Record(unitPart: P, suPart: List Record(factor: SparseUnivariatePolynomial P, exponent: NonNegativeInteger))
nsqfree should
be local
- squareFree: P -> Factored P
squareFree(p)
computes the square free decomposition of a multivariate polynomialp
.
- squareFree: SparseUnivariatePolynomial P -> Factored SparseUnivariatePolynomial P
squareFree(p)
computes the square free decomposition of a multivariate polynomialp
presented as a univariate polynomial with multivariate coefficients.
- univcase: (P, OV) -> Factored P
univcase should
be local