NGroebnerPackage(Dom, Expon, Dpol)ΒΆ
skpol.spad line 36 [edit on github]
Dom: LeftOreRing
Expon: OrderedAbelianMonoidSup
Dpol: SolvableSkewPolynomialCategory(Dom, Expon)
This is package computes noncommutative Groebner basis. Based on commutative version. Note that this package accepts rings as base domain, however computed basis is over left fraction field. Computations are done in fraction free way (coefficients stay in base ring).
- groebner: List Dpol -> List Dpol
groebner(lp)
computes a groebner basis for a polynomial ideal generated by the list of polynomialslp
.
- hMonic: Dpol -> Dpol
hMonic(p)
tries to remove content fromp
- redPol: (Dpol, List Dpol) -> Dpol
normalForm(poly,
gb
) reduces the polynomial poly modulo the precomputed groebner basisgb
giving up to a constant factor a canonical representative of the residue class.
- sPol: Record(lcmfij: Expon, totdeg: NonNegativeInteger, poli: Dpol, polj: Dpol) -> Dpol
sPol
- virtualDegree: Dpol -> NonNegativeInteger
virtualDegree