SolvableSkewPolynomialCategory(R, Expon)ΒΆ
skpol.spad line 6 [edit on github]
- R: Ring 
- Expon: OrderedAbelianMonoidSup 
This is the category of polynomials in noncommutative variables over noncommutative rings. We do not assume that variables and elements of the base ring commute. We assume that the polynomial ring is of solvable type, so noncommutative version of Buchberger algorithm works.
- 0: %
- from AbelianMonoid 
- 1: %
- from MagmaWithUnit 
- *: (%, %) -> %
- from Magma 
- *: (Integer, %) -> %
- from AbelianGroup 
- *: (NonNegativeInteger, %) -> %
- from AbelianMonoid 
- *: (PositiveInteger, %) -> %
- from AbelianSemiGroup 
- *: (R, %) -> %
- from LeftModule R 
- +: (%, %) -> %
- from AbelianSemiGroup 
- -: % -> %
- from AbelianGroup 
- -: (%, %) -> %
- from AbelianGroup 
- ^: (%, NonNegativeInteger) -> %
- from MagmaWithUnit 
- ^: (%, PositiveInteger) -> %
- from Magma 
- annihilate?: (%, %) -> Boolean
- from Rng 
- antiCommutator: (%, %) -> %
- associator: (%, %, %) -> %
- from NonAssociativeRng 
- characteristic: () -> NonNegativeInteger
- from NonAssociativeRing 
- coerce: % -> OutputForm
- from CoercibleTo OutputForm 
- coerce: Integer -> %
- from NonAssociativeRing 
- commutator: (%, %) -> %
- from NonAssociativeRng 
- degree: % -> Expon
- degree(p)returns the maximum of the exponents of the terms of- p.
- latex: % -> String
- from SetCategory 
- leadingCoefficient: % -> R
- leadingCoefficient(p)returns the coefficient of the highest degree term of- p.
- leadingMonomial: % -> %
- leadingMonomial(p)returns the monomial of- pwith the highest degree.
- leftPower: (%, NonNegativeInteger) -> %
- from MagmaWithUnit 
- leftPower: (%, PositiveInteger) -> %
- from Magma 
- leftRecip: % -> Union(%, failed)
- from MagmaWithUnit 
- monomial: (R, Expon) -> %
- monomial(r, e)makes a term from a coefficient- rand an exponent- e.
- one?: % -> Boolean
- from MagmaWithUnit 
- opposite?: (%, %) -> Boolean
- from AbelianMonoid 
- recip: % -> Union(%, failed)
- from MagmaWithUnit 
- reductum: % -> %
- reductum(u)returns- uminus its leading monomial returns zero if handed the zero element.
- rightPower: (%, NonNegativeInteger) -> %
- from MagmaWithUnit 
- rightPower: (%, PositiveInteger) -> %
- from Magma 
- rightRecip: % -> Union(%, failed)
- from MagmaWithUnit 
- sample: %
- from AbelianMonoid 
- subtractIfCan: (%, %) -> Union(%, failed)
- zero?: % -> Boolean
- from AbelianMonoid 
BiModule(%, %)