FourierSeries(R, E)ΒΆ
fourier.spad line 40 [edit on github]
R: Join(CommutativeRing, Algebra Fraction Integer)
E: Join(OrderedSet, AbelianGroup)
Author: James Davenport Date Created: 17 April 1992 Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
- *: (%, %) -> %
from Magma
- *: (%, R) -> %
from RightModule R
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- *: (R, %) -> %
from LeftModule R
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- associator: (%, %, %) -> %
from NonAssociativeRng
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: FourierComponent E -> %
coerce(c)
converts sin/cos terms into Fourier Series- coerce: Integer -> %
from NonAssociativeRing
- coerce: R -> %
coerce(r)
converts coefficients into Fourier Series
- commutator: (%, %) -> %
from NonAssociativeRng
- latex: % -> String
from SetCategory
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- makeCos: (E, R) -> %
makeCos(e, r)
makes a sin expression with given argument and coefficient
- makeSin: (E, R) -> %
makeSin(e, r)
makes a sin expression with given argument and coefficient
- one?: % -> Boolean
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- plenaryPower: (%, PositiveInteger) -> %
from NonAssociativeAlgebra R
- recip: % -> Union(%, failed)
from MagmaWithUnit
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- sample: %
from AbelianMonoid
- subtractIfCan: (%, %) -> Union(%, failed)
- zero?: % -> Boolean
from AbelianMonoid
Algebra R
BiModule(%, %)
BiModule(R, R)
Canonical if E has Canonical and R has Canonical
Module R