FourierSeries(R, E)ΒΆ

fourier.spad line 40 [edit on github]

Author: James Davenport Date Created: 17 April 1992 Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:

0: %

from AbelianMonoid

1: %

from MagmaWithUnit

*: (%, %) -> %

from Magma

*: (%, R) -> %

from RightModule R

*: (Integer, %) -> %

from AbelianGroup

*: (NonNegativeInteger, %) -> %

from AbelianMonoid

*: (PositiveInteger, %) -> %

from AbelianSemiGroup

*: (R, %) -> %

from LeftModule R

+: (%, %) -> %

from AbelianSemiGroup

-: % -> %

from AbelianGroup

-: (%, %) -> %

from AbelianGroup

=: (%, %) -> Boolean

from BasicType

^: (%, NonNegativeInteger) -> %

from MagmaWithUnit

^: (%, PositiveInteger) -> %

from Magma

~=: (%, %) -> Boolean

from BasicType

annihilate?: (%, %) -> Boolean

from Rng

antiCommutator: (%, %) -> %

from NonAssociativeSemiRng

associator: (%, %, %) -> %

from NonAssociativeRng

characteristic: () -> NonNegativeInteger

from NonAssociativeRing

coerce: % -> OutputForm

from CoercibleTo OutputForm

coerce: FourierComponent E -> %

coerce(c) converts sin/cos terms into Fourier Series

coerce: Integer -> %

from NonAssociativeRing

coerce: R -> %

coerce(r) converts coefficients into Fourier Series

commutator: (%, %) -> %

from NonAssociativeRng

latex: % -> String

from SetCategory

leftPower: (%, NonNegativeInteger) -> %

from MagmaWithUnit

leftPower: (%, PositiveInteger) -> %

from Magma

leftRecip: % -> Union(%, failed)

from MagmaWithUnit

makeCos: (E, R) -> %

makeCos(e, r) makes a sin expression with given argument and coefficient

makeSin: (E, R) -> %

makeSin(e, r) makes a sin expression with given argument and coefficient

one?: % -> Boolean

from MagmaWithUnit

opposite?: (%, %) -> Boolean

from AbelianMonoid

plenaryPower: (%, PositiveInteger) -> %

from NonAssociativeAlgebra R

recip: % -> Union(%, failed)

from MagmaWithUnit

rightPower: (%, NonNegativeInteger) -> %

from MagmaWithUnit

rightPower: (%, PositiveInteger) -> %

from Magma

rightRecip: % -> Union(%, failed)

from MagmaWithUnit

sample: %

from AbelianMonoid

subtractIfCan: (%, %) -> Union(%, failed)

from CancellationAbelianMonoid

zero?: % -> Boolean

from AbelianMonoid

AbelianGroup

AbelianMonoid

AbelianSemiGroup

Algebra R

BasicType

BiModule(%, %)

BiModule(R, R)

CancellationAbelianMonoid

Canonical if E has Canonical and R has Canonical

CoercibleTo OutputForm

LeftModule %

LeftModule R

Magma

MagmaWithUnit

Module R

Monoid

NonAssociativeAlgebra R

NonAssociativeRing

NonAssociativeRng

NonAssociativeSemiRing

NonAssociativeSemiRng

RightModule %

RightModule R

Ring

Rng

SemiGroup

SemiRing

SemiRng

SetCategory

unitsKnown