PAdicInteger p¶
padic.spad line 295 [edit on github]
- p: Integer 
Stream-based implementation of Zp: p-adic numbers are represented as sum(i = 0.., a[i] * p^i), where the a[i] lie in 0, 1, …, (p - 1).
- 0: %
- from AbelianMonoid 
- 1: %
- from MagmaWithUnit 
- *: (%, %) -> %
- from Magma 
- *: (Integer, %) -> %
- from AbelianGroup 
- *: (NonNegativeInteger, %) -> %
- from AbelianMonoid 
- *: (PositiveInteger, %) -> %
- from AbelianSemiGroup 
- +: (%, %) -> %
- from AbelianSemiGroup 
- -: % -> %
- from AbelianGroup 
- -: (%, %) -> %
- from AbelianGroup 
- ^: (%, NonNegativeInteger) -> %
- from MagmaWithUnit 
- ^: (%, PositiveInteger) -> %
- from Magma 
- annihilate?: (%, %) -> Boolean
- from Rng 
- antiCommutator: (%, %) -> %
- approximate: (%, Integer) -> Integer
- from PAdicIntegerCategory p 
- associates?: (%, %) -> Boolean
- from EntireRing 
- associator: (%, %, %) -> %
- from NonAssociativeRng 
- characteristic: () -> NonNegativeInteger
- from NonAssociativeRing 
- coerce: % -> %
- from Algebra % 
- coerce: % -> OutputForm
- from CoercibleTo OutputForm 
- coerce: Integer -> %
- from NonAssociativeRing 
- commutator: (%, %) -> %
- from NonAssociativeRng 
- complete: % -> %
- from PAdicIntegerCategory p 
- digits: % -> Stream Integer
- from PAdicIntegerCategory p 
- divide: (%, %) -> Record(quotient: %, remainder: %)
- from EuclideanDomain 
- euclideanSize: % -> NonNegativeInteger
- from EuclideanDomain 
- expressIdealMember: (List %, %) -> Union(List %, failed)
- from PrincipalIdealDomain 
- exquo: (%, %) -> Union(%, failed)
- from EntireRing 
- extend: (%, Integer) -> %
- from PAdicIntegerCategory p 
- extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %)
- from EuclideanDomain 
- extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed)
- from EuclideanDomain 
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial %
- from GcdDomain 
- latex: % -> String
- from SetCategory 
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %)
- from LeftOreRing 
- leftPower: (%, NonNegativeInteger) -> %
- from MagmaWithUnit 
- leftPower: (%, PositiveInteger) -> %
- from Magma 
- leftRecip: % -> Union(%, failed)
- from MagmaWithUnit 
- moduloP: % -> Integer
- from PAdicIntegerCategory p 
- modulus: () -> Integer
- from PAdicIntegerCategory p 
- multiEuclidean: (List %, %) -> Union(List %, failed)
- from EuclideanDomain 
- one?: % -> Boolean
- from MagmaWithUnit 
- opposite?: (%, %) -> Boolean
- from AbelianMonoid 
- order: % -> NonNegativeInteger
- from PAdicIntegerCategory p 
- plenaryPower: (%, PositiveInteger) -> %
- from NonAssociativeAlgebra % 
- principalIdeal: List % -> Record(coef: List %, generator: %)
- from PrincipalIdealDomain 
- quo: (%, %) -> %
- from EuclideanDomain 
- quotientByP: % -> %
- from PAdicIntegerCategory p 
- recip: % -> Union(%, failed)
- from MagmaWithUnit 
- rem: (%, %) -> %
- from EuclideanDomain 
- rightPower: (%, NonNegativeInteger) -> %
- from MagmaWithUnit 
- rightPower: (%, PositiveInteger) -> %
- from Magma 
- rightRecip: % -> Union(%, failed)
- from MagmaWithUnit 
- root: (SparseUnivariatePolynomial Integer, Integer) -> %
- from PAdicIntegerCategory p 
- sample: %
- from AbelianMonoid 
- sizeLess?: (%, %) -> Boolean
- from EuclideanDomain 
- sqrt: (%, Integer) -> %
- from PAdicIntegerCategory p 
- subtractIfCan: (%, %) -> Union(%, failed)
- unit?: % -> Boolean
- from EntireRing 
- unitCanonical: % -> %
- from EntireRing 
- unitNormal: % -> Record(unit: %, canonical: %, associate: %)
- from EntireRing 
- zero?: % -> Boolean
- from AbelianMonoid 
Algebra %
BiModule(%, %)
Module %