AlgebraGivenByStructuralConstants(R, n, ls, gamma)ΒΆ
naalg.spad line 1 [edit on github]
AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring, given by the structural constants gamma
with respect to a fixed basis [a1, .., an]
, where gamma
is an n
-vector of n
by n
matrices [(gammaijk) for k in 1..rank()]
defined by ai * aj = gammaij1 * a1 + ... + gammaijn * an
. The symbols for the fixed basis have to be given as a list of symbols.
- 0: %
from AbelianMonoid
- *: (%, %) -> %
from Magma
- *: (%, R) -> %
from RightModule R
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- *: (R, %) -> %
from LeftModule R
- *: (SquareMatrix(n, R), %) -> %
from LeftModule SquareMatrix(n, R)
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- ^: (%, PositiveInteger) -> %
from Magma
- alternative?: () -> Boolean
- antiAssociative?: () -> Boolean
- antiCommutative?: () -> Boolean
- antiCommutator: (%, %) -> %
- apply: (Matrix R, %) -> %
from FramedNonAssociativeAlgebra R
- associative?: () -> Boolean
- associator: (%, %, %) -> %
from NonAssociativeRng
- associatorDependence: () -> List Vector R if R has IntegralDomain
- basis: () -> Vector %
from FramedModule R
- coefficient: (%, OrderedVariableList ls) -> R
from FreeModuleCategory(R, OrderedVariableList ls)
- coefficients: % -> List R
from FreeModuleCategory(R, OrderedVariableList ls)
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: Vector R -> %
coerce(v)
converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra.
- commutative?: () -> Boolean
- commutator: (%, %) -> %
from NonAssociativeRng
- conditionsForIdempotents: () -> List Polynomial R
from FramedNonAssociativeAlgebra R
- conditionsForIdempotents: Vector % -> List Polynomial R
- construct: List Record(k: OrderedVariableList ls, c: R) -> %
from IndexedProductCategory(R, OrderedVariableList ls)
- constructOrdered: List Record(k: OrderedVariableList ls, c: R) -> %
from IndexedProductCategory(R, OrderedVariableList ls)
- convert: % -> InputForm if R has Finite
from ConvertibleTo InputForm
- convert: % -> Vector R
from FramedModule R
- convert: Vector R -> %
from FramedModule R
- coordinates: % -> Vector R
from FramedModule R
- coordinates: (%, Vector %) -> Vector R
- coordinates: (Vector %, Vector %) -> Matrix R
- coordinates: Vector % -> Matrix R
from FramedModule R
- elt: (%, Integer) -> R
from FramedNonAssociativeAlgebra R
- hash: % -> SingleInteger if R has Hashable
from Hashable
- hashUpdate!: (HashState, %) -> HashState if R has Hashable
from Hashable
- index: PositiveInteger -> % if R has Finite
from Finite
- jacobiIdentity?: () -> Boolean
- jordanAdmissible?: () -> Boolean
- jordanAlgebra?: () -> Boolean
- latex: % -> String
from SetCategory
- leadingCoefficient: % -> R
from IndexedProductCategory(R, OrderedVariableList ls)
- leadingMonomial: % -> %
from IndexedProductCategory(R, OrderedVariableList ls)
- leadingSupport: % -> OrderedVariableList ls
from IndexedProductCategory(R, OrderedVariableList ls)
- leadingTerm: % -> Record(k: OrderedVariableList ls, c: R)
from IndexedProductCategory(R, OrderedVariableList ls)
- leftAlternative?: () -> Boolean
- leftDiscriminant: () -> R
from FramedNonAssociativeAlgebra R
- leftDiscriminant: Vector % -> R
- leftMinimalPolynomial: % -> SparseUnivariatePolynomial R if R has IntegralDomain
- leftNorm: % -> R
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRankPolynomial: () -> SparseUnivariatePolynomial Polynomial R if R has Field
from FramedNonAssociativeAlgebra R
- leftRecip: % -> Union(%, failed) if R has IntegralDomain
- leftRegularRepresentation: % -> Matrix R
from FramedNonAssociativeAlgebra R
- leftRegularRepresentation: (%, Vector %) -> Matrix R
- leftTrace: % -> R
- leftTraceMatrix: () -> Matrix R
from FramedNonAssociativeAlgebra R
- leftTraceMatrix: Vector % -> Matrix R
- leftUnit: () -> Union(%, failed) if R has IntegralDomain
- leftUnits: () -> Union(Record(particular: %, basis: List %), failed) if R has IntegralDomain
- lieAdmissible?: () -> Boolean
- lieAlgebra?: () -> Boolean
- linearExtend: (OrderedVariableList ls -> R, %) -> R
from FreeModuleCategory(R, OrderedVariableList ls)
- listOfTerms: % -> List Record(k: OrderedVariableList ls, c: R)
from IndexedDirectProductCategory(R, OrderedVariableList ls)
- lookup: % -> PositiveInteger if R has Finite
from Finite
- map: (R -> R, %) -> %
from IndexedProductCategory(R, OrderedVariableList ls)
- monomial?: % -> Boolean
from IndexedProductCategory(R, OrderedVariableList ls)
- monomial: (R, OrderedVariableList ls) -> %
from IndexedProductCategory(R, OrderedVariableList ls)
- monomials: % -> List %
from FreeModuleCategory(R, OrderedVariableList ls)
- numberOfMonomials: % -> NonNegativeInteger
from IndexedDirectProductCategory(R, OrderedVariableList ls)
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- plenaryPower: (%, PositiveInteger) -> %
from NonAssociativeAlgebra R
- powerAssociative?: () -> Boolean
- rank: () -> PositiveInteger
- recip: % -> Union(%, failed) if R has IntegralDomain
- reductum: % -> %
from IndexedProductCategory(R, OrderedVariableList ls)
- represents: (Vector R, Vector %) -> %
- represents: Vector R -> %
from FramedModule R
- rightAlternative?: () -> Boolean
- rightDiscriminant: () -> R
from FramedNonAssociativeAlgebra R
- rightDiscriminant: Vector % -> R
- rightMinimalPolynomial: % -> SparseUnivariatePolynomial R if R has IntegralDomain
- rightNorm: % -> R
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRankPolynomial: () -> SparseUnivariatePolynomial Polynomial R if R has Field
from FramedNonAssociativeAlgebra R
- rightRecip: % -> Union(%, failed) if R has IntegralDomain
- rightRegularRepresentation: % -> Matrix R
from FramedNonAssociativeAlgebra R
- rightRegularRepresentation: (%, Vector %) -> Matrix R
- rightTrace: % -> R
- rightTraceMatrix: () -> Matrix R
from FramedNonAssociativeAlgebra R
- rightTraceMatrix: Vector % -> Matrix R
- rightUnit: () -> Union(%, failed) if R has IntegralDomain
- rightUnits: () -> Union(Record(particular: %, basis: List %), failed) if R has IntegralDomain
- sample: %
from AbelianMonoid
- size: () -> NonNegativeInteger if R has Finite
from Finite
- smaller?: (%, %) -> Boolean if R has Comparable
from Comparable
- structuralConstants: () -> Vector Matrix R
from FramedNonAssociativeAlgebra R
- structuralConstants: Vector % -> Vector Matrix R
- subtractIfCan: (%, %) -> Union(%, failed)
- support: % -> List OrderedVariableList ls
from FreeModuleCategory(R, OrderedVariableList ls)
- unit: () -> Union(%, failed) if R has IntegralDomain
- zero?: % -> Boolean
from AbelianMonoid
BiModule(R, R)
Comparable if R has Comparable
ConvertibleTo InputForm if R has Finite
FiniteRankNonAssociativeAlgebra R
FreeModuleCategory(R, OrderedVariableList ls)
IndexedDirectProductCategory(R, OrderedVariableList ls)
IndexedProductCategory(R, OrderedVariableList ls)
LeftModule SquareMatrix(n, R)
Module R
unitsKnown if R has IntegralDomain