AlgebraicNumberΒΆ
constant.spad line 1 [edit on github]
Algebraic closure of the rational numbers.
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
- *: (%, %) -> %
from Magma
- *: (%, Fraction Integer) -> %
from RightModule Fraction Integer
- *: (%, Integer) -> %
from RightModule Integer
- *: (Fraction Integer, %) -> %
from LeftModule Fraction Integer
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- ^: (%, Fraction Integer) -> %
from RadicalCategory
- ^: (%, Integer) -> %
from DivisionRing
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- associates?: (%, %) -> Boolean
from EntireRing
- associator: (%, %, %) -> %
from NonAssociativeRng
- belong?: BasicOperator -> Boolean
from ExpressionSpace
- box: % -> %
from ExpressionSpace
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- coerce: % -> %
from Algebra %
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: Fraction Integer -> %
from CoercibleFrom Fraction Integer
- coerce: Integer -> %
from CoercibleFrom Integer
- coerce: Kernel % -> %
from CoercibleFrom Kernel %
- coerce: SparseMultivariatePolynomial(Integer, Kernel %) -> %
coerce(p)
returnsp
viewed as an algebraic number.
- commutator: (%, %) -> %
from NonAssociativeRng
- convert: % -> Complex Float
from ConvertibleTo Complex Float
- convert: % -> DoubleFloat
from ConvertibleTo DoubleFloat
- convert: % -> Float
from ConvertibleTo Float
- convert: % -> InputForm
from ConvertibleTo InputForm
- D: % -> %
from DifferentialRing
- D: (%, NonNegativeInteger) -> %
from DifferentialRing
- definingPolynomial: % -> %
from ExpressionSpace
- denom: % -> SparseMultivariatePolynomial(Integer, Kernel %)
denom(f)
returns the denominator off
viewed as a polynomial in the kernels overZ
.
- differentiate: % -> %
from DifferentialRing
- differentiate: (%, NonNegativeInteger) -> %
from DifferentialRing
- distribute: % -> %
from ExpressionSpace
- distribute: (%, %) -> %
from ExpressionSpace
- divide: (%, %) -> Record(quotient: %, remainder: %)
from EuclideanDomain
- elt: (BasicOperator, %) -> %
from ExpressionSpace
- elt: (BasicOperator, %, %) -> %
from ExpressionSpace
- elt: (BasicOperator, %, %, %) -> %
from ExpressionSpace
- elt: (BasicOperator, %, %, %, %) -> %
from ExpressionSpace
- elt: (BasicOperator, %, %, %, %, %) -> %
from ExpressionSpace
- elt: (BasicOperator, %, %, %, %, %, %) -> %
from ExpressionSpace
- elt: (BasicOperator, %, %, %, %, %, %, %) -> %
from ExpressionSpace
- elt: (BasicOperator, %, %, %, %, %, %, %, %) -> %
from ExpressionSpace
- elt: (BasicOperator, %, %, %, %, %, %, %, %, %) -> %
from ExpressionSpace
- elt: (BasicOperator, List %) -> %
from ExpressionSpace
- euclideanSize: % -> NonNegativeInteger
from EuclideanDomain
- eval: (%, %, %) -> %
from InnerEvalable(%, %)
- eval: (%, BasicOperator, % -> %) -> %
from ExpressionSpace
- eval: (%, BasicOperator, List % -> %) -> %
from ExpressionSpace
- eval: (%, Equation %) -> %
from Evalable %
- eval: (%, Kernel %, %) -> %
from InnerEvalable(Kernel %, %)
- eval: (%, List %, List %) -> %
from InnerEvalable(%, %)
- eval: (%, List BasicOperator, List(% -> %)) -> %
from ExpressionSpace
- eval: (%, List BasicOperator, List(List % -> %)) -> %
from ExpressionSpace
- eval: (%, List Equation %) -> %
from Evalable %
- eval: (%, List Kernel %, List %) -> %
from InnerEvalable(Kernel %, %)
- eval: (%, List Symbol, List(% -> %)) -> %
from ExpressionSpace
- eval: (%, List Symbol, List(List % -> %)) -> %
from ExpressionSpace
- eval: (%, Symbol, % -> %) -> %
from ExpressionSpace
- eval: (%, Symbol, List % -> %) -> %
from ExpressionSpace
- even?: % -> Boolean
from ExpressionSpace
- expressIdealMember: (List %, %) -> Union(List %, failed)
from PrincipalIdealDomain
- exquo: (%, %) -> Union(%, failed)
from EntireRing
- extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %)
from EuclideanDomain
- extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed)
from EuclideanDomain
- freeOf?: (%, %) -> Boolean
from ExpressionSpace
- freeOf?: (%, Symbol) -> Boolean
from ExpressionSpace
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial %
- height: % -> NonNegativeInteger
from ExpressionSpace
- inv: % -> %
from DivisionRing
- is?: (%, BasicOperator) -> Boolean
from ExpressionSpace
- is?: (%, Symbol) -> Boolean
from ExpressionSpace
- kernel: (BasicOperator, %) -> %
from ExpressionSpace
- kernel: (BasicOperator, List %) -> %
from ExpressionSpace
- kernels: % -> List Kernel %
from ExpressionSpace
- kernels: List % -> List Kernel %
from ExpressionSpace
- latex: % -> String
from SetCategory
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %)
from LeftOreRing
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- mainKernel: % -> Union(Kernel %, failed)
from ExpressionSpace
- map: (% -> %, Kernel %) -> %
from ExpressionSpace
- minPoly: Kernel % -> SparseUnivariatePolynomial %
from ExpressionSpace
- multiEuclidean: (List %, %) -> Union(List %, failed)
from EuclideanDomain
- norm: (%, Kernel %) -> %
norm(f, k)
computes the norm of the algebraic numberf
with respect to the extension generated by kernelk
- norm: (%, List Kernel %) -> %
norm(f, l)
computes the norm of the algebraic numberf
with respect to the extension generated by kernelsl
- norm: (SparseUnivariatePolynomial %, Kernel %) -> SparseUnivariatePolynomial %
norm(p, k)
computes the norm of the polynomialp
with respect to the extension generated by kernelk
- norm: (SparseUnivariatePolynomial %, List Kernel %) -> SparseUnivariatePolynomial %
norm(p, l)
computes the norm of the polynomialp
with respect to the extension generated by kernelsl
- nthRoot: (%, Integer) -> %
from RadicalCategory
- numer: % -> SparseMultivariatePolynomial(Integer, Kernel %)
numer(f)
returns the numerator off
viewed as a polynomial in the kernels overZ
.
- odd?: % -> Boolean
from ExpressionSpace
- one?: % -> Boolean
from MagmaWithUnit
- operators: % -> List BasicOperator
from ExpressionSpace
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- paren: % -> %
from ExpressionSpace
- plenaryPower: (%, PositiveInteger) -> %
from NonAssociativeAlgebra %
- principalIdeal: List % -> Record(coef: List %, generator: %)
from PrincipalIdealDomain
- quo: (%, %) -> %
from EuclideanDomain
- recip: % -> Union(%, failed)
from MagmaWithUnit
- reduce: % -> %
reduce(f)
simplifies all the unreduced algebraic numbers present inf
by applying their defining relations.
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Fraction Integer, vec: Vector Fraction Integer)
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Integer, vec: Vector Integer)
- reducedSystem: Matrix % -> Matrix Fraction Integer
- reducedSystem: Matrix % -> Matrix Integer
- rem: (%, %) -> %
from EuclideanDomain
- retract: % -> Fraction Integer
from RetractableTo Fraction Integer
- retract: % -> Integer
from RetractableTo Integer
- retract: % -> Kernel %
from RetractableTo Kernel %
- retractIfCan: % -> Union(Fraction Integer, failed)
from RetractableTo Fraction Integer
- retractIfCan: % -> Union(Integer, failed)
from RetractableTo Integer
- retractIfCan: % -> Union(Kernel %, failed)
from RetractableTo Kernel %
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- rootOf: (SparseUnivariatePolynomial %, Symbol) -> %
- rootOf: Polynomial % -> %
- rootOf: SparseUnivariatePolynomial % -> %
- rootsOf: (SparseUnivariatePolynomial %, Symbol) -> List %
- rootsOf: Polynomial % -> List %
- rootsOf: SparseUnivariatePolynomial % -> List %
- sample: %
from AbelianMonoid
- sizeLess?: (%, %) -> Boolean
from EuclideanDomain
- smaller?: (%, %) -> Boolean
from Comparable
- solveLinearPolynomialEquation: (List SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> Union(List SparseUnivariatePolynomial %, failed)
- sqrt: % -> %
from RadicalCategory
- squareFree: % -> Factored %
- squareFreePart: % -> %
- subst: (%, Equation %) -> %
from ExpressionSpace
- subst: (%, List Equation %) -> %
from ExpressionSpace
- subst: (%, List Kernel %, List %) -> %
from ExpressionSpace
- subtractIfCan: (%, %) -> Union(%, failed)
- tower: % -> List Kernel %
from ExpressionSpace
- tower: List % -> List Kernel %
from ExpressionSpace
- trueEqual: (%, %) -> Boolean
trueEqual(x, y)
tries to determine if the two numbers are equal
- unit?: % -> Boolean
from EntireRing
- unitCanonical: % -> %
from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %)
from EntireRing
- zero?: % -> Boolean
from AbelianMonoid
- zeroOf: (SparseUnivariatePolynomial %, Symbol) -> %
- zeroOf: Polynomial % -> %
- zeroOf: SparseUnivariatePolynomial % -> %
- zerosOf: (SparseUnivariatePolynomial %, Symbol) -> List %
- zerosOf: Polynomial % -> List %
- zerosOf: SparseUnivariatePolynomial % -> List %
Algebra %
BiModule(%, %)
BiModule(Fraction Integer, Fraction Integer)
CoercibleFrom Fraction Integer
Evalable %
InnerEvalable(%, %)
InnerEvalable(Kernel %, %)
LinearlyExplicitOver Fraction Integer
Module %
NonAssociativeAlgebra Fraction Integer
PolynomialFactorizationExplicit