DistributedJetBundlePolynomial(R, JB, LJV, E)ΒΆ
jet.spad line 6527 [edit on github]
R: Ring
LJV: List JB
E: DirectProductCategory(# LJV, NonNegativeInteger)
DistributedJetBundlePolynomial implements polynomials in a distributed representation. The unknowns come from a finite list of jet variables. The implementation is basically a copy of the one of GeneralDistributedMultivariatePolynomial.
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
- *: (%, %) -> %
from Magma
- *: (%, Fraction Integer) -> % if R has Algebra Fraction Integer
from RightModule Fraction Integer
- *: (%, Integer) -> % if R has LinearlyExplicitOver Integer
from RightModule Integer
- *: (%, R) -> %
from RightModule R
- *: (Fraction Integer, %) -> % if R has Algebra Fraction Integer
from LeftModule Fraction Integer
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- *: (R, %) -> %
from LeftModule R
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- /: (%, R) -> % if R has Field
from AbelianMonoidRing(R, E)
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- associates?: (%, %) -> Boolean if R has EntireRing
from EntireRing
- associator: (%, %, %) -> %
from NonAssociativeRng
- binomThmExpt: (%, %, NonNegativeInteger) -> % if % has CommutativeRing
from FiniteAbelianMonoidRing(R, E)
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- charthRoot: % -> Union(%, failed) if R has CharacteristicNonZero or % has CharacteristicNonZero and R has PolynomialFactorizationExplicit
- coefficient: (%, E) -> R
from AbelianMonoidRing(R, E)
- coefficient: (%, JB, NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, E, JB)
- coefficient: (%, List JB, List NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, E, JB)
- coefficients: % -> List R
from FreeModuleCategory(R, E)
- coerce: % -> % if R has CommutativeRing
from Algebra %
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: Fraction Integer -> % if R has Algebra Fraction Integer or R has RetractableTo Fraction Integer
- coerce: Integer -> %
from NonAssociativeRing
- coerce: JB -> %
from CoercibleFrom JB
- coerce: R -> %
from Algebra R
- commutator: (%, %) -> %
from NonAssociativeRng
- conditionP: Matrix % -> Union(Vector %, failed) if % has CharacteristicNonZero and R has PolynomialFactorizationExplicit
- const: % -> R
const(p)
coerces a polynomial into an element of the coefficient ring, if it is constant. Otherwise an error occurs.
- construct: List Record(k: E, c: R) -> %
from IndexedProductCategory(R, E)
- constructOrdered: List Record(k: E, c: R) -> %
from IndexedProductCategory(R, E)
- content: % -> R if R has GcdDomain
from FiniteAbelianMonoidRing(R, E)
- content: (%, JB) -> % if R has GcdDomain
from PolynomialCategory(R, E, JB)
- convert: % -> InputForm if R has ConvertibleTo InputForm and JB has ConvertibleTo InputForm
from ConvertibleTo InputForm
- convert: % -> JetBundlePolynomial(R, JB)
convert(p)
converts a polynomialp
in distributive representation into a polynomial in recursive representation.- convert: % -> Pattern Float if R has ConvertibleTo Pattern Float and JB has ConvertibleTo Pattern Float
from ConvertibleTo Pattern Float
- convert: % -> Pattern Integer if R has ConvertibleTo Pattern Integer and JB has ConvertibleTo Pattern Integer
from ConvertibleTo Pattern Integer
- convert: JetBundlePolynomial(R, JB) -> %
convert(p)
converts a polynomialp
in recursive representation into a polynomial in distributive representation.
- D: (%, JB) -> %
from PartialDifferentialRing JB
- D: (%, JB, NonNegativeInteger) -> %
from PartialDifferentialRing JB
- D: (%, List JB) -> %
from PartialDifferentialRing JB
- D: (%, List JB, List NonNegativeInteger) -> %
from PartialDifferentialRing JB
- degree: % -> E
from AbelianMonoidRing(R, E)
- degree: (%, JB) -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, E, JB)
- degree: (%, List JB) -> List NonNegativeInteger
from MaybeSkewPolynomialCategory(R, E, JB)
- differentiate: (%, JB) -> %
from PartialDifferentialRing JB
- differentiate: (%, JB, NonNegativeInteger) -> %
from PartialDifferentialRing JB
- differentiate: (%, List JB) -> %
from PartialDifferentialRing JB
- differentiate: (%, List JB, List NonNegativeInteger) -> %
from PartialDifferentialRing JB
- discriminant: (%, JB) -> % if R has CommutativeRing
from PolynomialCategory(R, E, JB)
- eval: (%, %, %) -> %
from InnerEvalable(%, %)
- eval: (%, Equation %) -> %
from Evalable %
- eval: (%, JB, %) -> %
from InnerEvalable(JB, %)
- eval: (%, JB, R) -> %
from InnerEvalable(JB, R)
- eval: (%, List %, List %) -> %
from InnerEvalable(%, %)
- eval: (%, List Equation %) -> %
from Evalable %
- eval: (%, List JB, List %) -> %
from InnerEvalable(JB, %)
- eval: (%, List JB, List R) -> %
from InnerEvalable(JB, R)
- exquo: (%, %) -> Union(%, failed) if R has EntireRing
from EntireRing
- exquo: (%, R) -> Union(%, failed) if R has EntireRing
from FiniteAbelianMonoidRing(R, E)
- factor: % -> Factored % if R has PolynomialFactorizationExplicit
- factorPolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if R has PolynomialFactorizationExplicit
- factorSquareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if R has PolynomialFactorizationExplicit
- fmecg: (%, E, R, %) -> %
from FiniteAbelianMonoidRing(R, E)
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial % if R has GcdDomain
- groebner: List % -> List % if R has GcdDomain
groebner(lp)
computes a Groebner basis for the ideal generated by the list of polynomialslp
.
- ground?: % -> Boolean
from FiniteAbelianMonoidRing(R, E)
- ground: % -> R
from FiniteAbelianMonoidRing(R, E)
- hash: % -> SingleInteger if JB has Hashable and R has Hashable
from Hashable
- isExpt: % -> Union(Record(var: JB, exponent: NonNegativeInteger), failed)
from PolynomialCategory(R, E, JB)
- isPlus: % -> Union(List %, failed)
from PolynomialCategory(R, E, JB)
- isTimes: % -> Union(List %, failed)
from PolynomialCategory(R, E, JB)
- latex: % -> String
from SetCategory
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %) if R has GcdDomain
from LeftOreRing
- leadingCoefficient: % -> R
from IndexedProductCategory(R, E)
- leadingMonomial: % -> %
from IndexedProductCategory(R, E)
- leadingSupport: % -> E
from IndexedProductCategory(R, E)
- leadingTerm: % -> Record(k: E, c: R)
from IndexedProductCategory(R, E)
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- linearExtend: (E -> R, %) -> R if R has CommutativeRing
from FreeModuleCategory(R, E)
- listOfTerms: % -> List Record(k: E, c: R)
from IndexedDirectProductCategory(R, E)
- mainVariable: % -> Union(JB, failed)
from MaybeSkewPolynomialCategory(R, E, JB)
- map: (R -> R, %) -> %
from IndexedProductCategory(R, E)
- mapExponents: (E -> E, %) -> %
from FiniteAbelianMonoidRing(R, E)
- minimumDegree: % -> E
from FiniteAbelianMonoidRing(R, E)
- minimumDegree: (%, JB) -> NonNegativeInteger
from PolynomialCategory(R, E, JB)
- minimumDegree: (%, List JB) -> List NonNegativeInteger
from PolynomialCategory(R, E, JB)
- monicDivide: (%, %, JB) -> Record(quotient: %, remainder: %)
from PolynomialCategory(R, E, JB)
- monomial?: % -> Boolean
from IndexedProductCategory(R, E)
- monomial: (%, JB, NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, E, JB)
- monomial: (%, List JB, List NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, E, JB)
- monomial: (R, E) -> %
from IndexedProductCategory(R, E)
- monomials: % -> List %
from MaybeSkewPolynomialCategory(R, E, JB)
- multivariate: (SparseUnivariatePolynomial %, JB) -> %
from PolynomialCategory(R, E, JB)
- multivariate: (SparseUnivariatePolynomial R, JB) -> %
from PolynomialCategory(R, E, JB)
- numberOfMonomials: % -> NonNegativeInteger
from IndexedDirectProductCategory(R, E)
- one?: % -> Boolean
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- patternMatch: (%, Pattern Float, PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %) if JB has PatternMatchable Float and R has PatternMatchable Float
from PatternMatchable Float
- patternMatch: (%, Pattern Integer, PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if JB has PatternMatchable Integer and R has PatternMatchable Integer
from PatternMatchable Integer
- plenaryPower: (%, PositiveInteger) -> % if R has Algebra Fraction Integer or R has CommutativeRing
from NonAssociativeAlgebra %
- pomopo!: (%, R, E, %) -> %
from FiniteAbelianMonoidRing(R, E)
- prime?: % -> Boolean if R has PolynomialFactorizationExplicit
- primitiveMonomials: % -> List %
from MaybeSkewPolynomialCategory(R, E, JB)
- primitivePart: % -> % if R has GcdDomain
from PolynomialCategory(R, E, JB)
- primitivePart: (%, JB) -> % if R has GcdDomain
from PolynomialCategory(R, E, JB)
- recip: % -> Union(%, failed)
from MagmaWithUnit
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Integer, vec: Vector Integer) if R has LinearlyExplicitOver Integer
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix R, vec: Vector R)
from LinearlyExplicitOver R
- reducedSystem: Matrix % -> Matrix Integer if R has LinearlyExplicitOver Integer
- reducedSystem: Matrix % -> Matrix R
from LinearlyExplicitOver R
- reductum: % -> %
from IndexedProductCategory(R, E)
- resultant: (%, %, JB) -> % if R has CommutativeRing
from PolynomialCategory(R, E, JB)
- retract: % -> Fraction Integer if R has RetractableTo Fraction Integer
from RetractableTo Fraction Integer
- retract: % -> Integer if R has RetractableTo Integer
from RetractableTo Integer
- retract: % -> JB
from RetractableTo JB
- retract: % -> R
from RetractableTo R
- retractIfCan: % -> Union(Fraction Integer, failed) if R has RetractableTo Fraction Integer
from RetractableTo Fraction Integer
- retractIfCan: % -> Union(Integer, failed) if R has RetractableTo Integer
from RetractableTo Integer
- retractIfCan: % -> Union(JB, failed)
from RetractableTo JB
- retractIfCan: % -> Union(R, failed)
from RetractableTo R
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- sample: %
from AbelianMonoid
- smaller?: (%, %) -> Boolean if R has Comparable
from Comparable
- solveLinearPolynomialEquation: (List SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> Union(List SparseUnivariatePolynomial %, failed) if R has PolynomialFactorizationExplicit
- squareFree: % -> Factored % if R has GcdDomain
from PolynomialCategory(R, E, JB)
- squareFreePart: % -> % if R has GcdDomain
from PolynomialCategory(R, E, JB)
- squareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if R has PolynomialFactorizationExplicit
- subtractIfCan: (%, %) -> Union(%, failed)
- support: % -> List E
from FreeModuleCategory(R, E)
- totalDegree: % -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, E, JB)
- totalDegree: (%, List JB) -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, E, JB)
- totalDegreeSorted: (%, List JB) -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, E, JB)
- unit?: % -> Boolean if R has EntireRing
from EntireRing
- unitCanonical: % -> % if R has EntireRing
from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %) if R has EntireRing
from EntireRing
- univariate: % -> SparseUnivariatePolynomial R
from PolynomialCategory(R, E, JB)
- univariate: (%, JB) -> SparseUnivariatePolynomial %
from PolynomialCategory(R, E, JB)
- variables: % -> List JB
from MaybeSkewPolynomialCategory(R, E, JB)
- zero?: % -> Boolean
from AbelianMonoid
AbelianMonoidRing(R, E)
Algebra % if R has CommutativeRing
Algebra Fraction Integer if R has Algebra Fraction Integer
Algebra R if R has CommutativeRing
BiModule(%, %)
BiModule(Fraction Integer, Fraction Integer) if R has Algebra Fraction Integer
BiModule(R, R)
canonicalUnitNormal if R has canonicalUnitNormal
CharacteristicNonZero if R has CharacteristicNonZero
CharacteristicZero if R has CharacteristicZero
CoercibleFrom Fraction Integer if R has RetractableTo Fraction Integer
CoercibleFrom Integer if R has RetractableTo Integer
CommutativeRing if R has CommutativeRing
CommutativeStar if R has CommutativeRing
Comparable if R has Comparable
ConvertibleTo InputForm if R has ConvertibleTo InputForm and JB has ConvertibleTo InputForm
ConvertibleTo Pattern Float if R has ConvertibleTo Pattern Float and JB has ConvertibleTo Pattern Float
ConvertibleTo Pattern Integer if R has ConvertibleTo Pattern Integer and JB has ConvertibleTo Pattern Integer
EntireRing if R has EntireRing
Evalable %
FiniteAbelianMonoidRing(R, E)
FreeModuleCategory(R, E)
Hashable if JB has Hashable and R has Hashable
IndexedDirectProductCategory(R, E)
IndexedProductCategory(R, E)
InnerEvalable(%, %)
InnerEvalable(JB, %)
InnerEvalable(JB, R)
IntegralDomain if R has IntegralDomain
LeftModule Fraction Integer if R has Algebra Fraction Integer
LeftOreRing if R has GcdDomain
LinearlyExplicitOver Integer if R has LinearlyExplicitOver Integer
MaybeSkewPolynomialCategory(R, E, JB)
Module % if R has CommutativeRing
Module Fraction Integer if R has Algebra Fraction Integer
Module R if R has CommutativeRing
NonAssociativeAlgebra % if R has CommutativeRing
NonAssociativeAlgebra Fraction Integer if R has Algebra Fraction Integer
NonAssociativeAlgebra R if R has CommutativeRing
noZeroDivisors if R has EntireRing
PatternMatchable Float if JB has PatternMatchable Float and R has PatternMatchable Float
PatternMatchable Integer if JB has PatternMatchable Integer and R has PatternMatchable Integer
PolynomialCategory(R, E, JB)
PolynomialFactorizationExplicit if R has PolynomialFactorizationExplicit
RetractableTo Fraction Integer if R has RetractableTo Fraction Integer
RetractableTo Integer if R has RetractableTo Integer
RightModule Fraction Integer if R has Algebra Fraction Integer
RightModule Integer if R has LinearlyExplicitOver Integer
TwoSidedRecip if R has CommutativeRing
UniqueFactorizationDomain if R has PolynomialFactorizationExplicit